2 замечательный предел примеры решения. Замечательные пределы

Термин "замечательный предел" широко используется в учебниках и методических пособиях для обозначения важных тождеств, которые помогают существенно упростить работу по нахождению пределов.

Но чтобы суметь привести свой предел к замечательному, нужно к нему хорошенько приглядеться, ведь они встречаются не в прямом виде, а часто в виде следствий, снабженные дополнительными слагаемыми и множителями. Впрочем, сначала теория, потом примеры, и все у вас получится!

Первый замечательный предел

Понравилось? Добавьте в закладки

Первый замечательный предел записывается так (неопределенность вида $0/0$):

$$ \lim\limits_{x\to 0}\frac{\sin x}{x}=1. $$

Следствия из первого замечательного предела

$$ \lim\limits_{x\to 0}\frac{x}{\sin x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\sin (ax)}{\sin (bx)}=\frac{a}{b}. $$ $$ \lim\limits_{x\to 0}\frac{\tan x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\arcsin x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\arctan x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{1-\cos x}{x^2/2}=1. $$

Примеры решений: 1 замечательный предел

Пример 1. Вычислить предел $$\lim\limits_{x\to 0}\frac{\sin 3x}{8x}.$$

Решение. Первый шаг всегда одинаковый - подставляем предельное значение $x=0$ в функцию и получаем:

$$\left[ \frac{\sin 0}{0} \right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$, которую следует раскрыть. Если посмотреть внимательно, исходный предел очень похож на первый замечательный, но не совпадает с ним. Наша задача - довести до похожести. Преобразуем так - смотрим на выражение под синусом, делаем такое же в знаменателе (условно говоря, умножили и поделили на $3x$), дальше сокращаем и упрощаем:

$$ \lim\limits_{x\to 0}\frac{\sin 3x}{8x} = \lim\limits_{x\to 0}\frac{\sin 3x}{3x}\frac{3x}{8x}=\lim\limits_{x\to 0}\frac{\sin (3x)}{3x}\frac{3}{8}=\frac{3}{8}. $$

Выше как раз и получился первый замечательный предел: $$ \lim\limits_{x\to 0}\frac{\sin (3x)}{3x} = \lim\limits_{y\to 0}\frac{\sin (y)}{y}=1, \text{ сделали условную замену } y=3x. $$ Ответ: $3/8$.

Пример 2. Вычислить предел $$\lim\limits_{x\to 0}\frac{1-\cos 3x}{\tan 2x\cdot \sin 4x}.$$

Решение. Подставляем предельное значение $x=0$ в функцию и получаем:

$$\left[ \frac{1-\cos 0}{\tan 0\cdot \sin 0}\right] =\left[ \frac{1-1}{ 0\cdot 0}\right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$. Преобразуем предел, используя в упрощении первый замечательный предел (три раза!):

$$\lim\limits_{x\to 0}\frac{1-\cos 3x}{\tan 2x\cdot \sin 4x} = \lim\limits_{x\to 0}\frac{ 2 \sin^2 (3x/2)}{\sin 2x\cdot \sin 4x}\cdot \cos 2x = $$ $$ = 2\lim\limits_{x\to 0}\frac{ \sin^2 (3x/2)}{(3x/2)^2} \cdot \frac{ 2x}{\sin 2x} \cdot \frac{ 4x}{ \sin 4x}\cdot \frac{ (3x/2)^2}{ 2x \cdot 4x} \cdot \cos 2x = $$ $$ =2\lim\limits_{x\to 0} 1 \cdot 1 \cdot 1 \cdot \frac{ (9/4)x^2}{ 8x^2} \cdot \cos 2x= 2 \cdot \frac{ 9}{ 32} \lim\limits_{x\to 0} \cos 2x=\frac{9}{16}. $$

Ответ: $9/16$.

Пример 3. Найти предел $$\lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{5x-x^5}.$$

Решение. А что если под тригонометрической функцией сложное выражение? Не беда, и тут действуем аналогично. Сначала проверим тип неопределенности, подставляем $x=0$ в функцию и получаем:

$$\left[ \frac{\sin (0+0)}{0-0}\right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$. Умножим и поделим на $2x^3+3x$:

$$ \lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{5x-x^5}=\lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{(2x^3+3x)} \cdot \frac{2x^3+3x}{5x-x^5}=\lim\limits_{x\to 0} 1 \cdot \frac{2x^3+3x}{5x-x^5}= \left[\frac{0}{0}\right] = $$

Снова получили неопределенность, но в этом случае это просто дробь. Сократим на $x$ числитель и знаменатель:

$$ =\lim\limits_{x\to 0} \frac{2x^2+3}{5-x^4}= \left[\frac{0+3}{5-0}\right] =\frac{3}{5}. $$

Ответ: $3/5$.

Второй замечательный предел

Второй замечательный предел записывается так (неопределенность вида $1^\infty$):

$$ \lim\limits_{x\to \infty} \left(1+\frac{1}{x}\right)^{x}=e, \quad \text{или} \quad \lim\limits_{x\to 0} \left(1+x\right)^{1/x}=e. $$

Следствия второго замечательного предела

$$ \lim\limits_{x\to \infty} \left(1+\frac{a}{x}\right)^{bx}=e^{ab}. $$ $$ \lim\limits_{x\to 0}\frac{\ln (1+x)}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{e^x -1}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{a^x-1}{x \ln a}=1, a>0, a \ne 1. $$ $$ \lim\limits_{x\to 0}\frac{(1+x)^{a}-1}{ax}=1. $$

Примеры решений: 2 замечательный предел

Пример 4. Найти предел $$\lim\limits_{x\to \infty}\left(1-\frac{2}{3x}\right)^{x+3}.$$

Решение. Проверим тип неопределенности, подставляем $x=\infty$ в функцию и получаем:

$$\left[ \left(1-\frac{2}{\infty}\right)^{\infty} \right] = \left.$$

Получили неопределенность вида $\left$. Предел можно свести к второму замечательному. Преобразуем:

$$ \lim\limits_{x\to \infty}\left(1-\frac{2}{3x}\right)^{x+3} = \lim\limits_{x\to \infty}\left(1+\frac{1}{(-3x/2)}\right)^{\frac{-3x/2}{-3x/2}(x+3)}= $$ $$ = \lim\limits_{x\to \infty}\left(\left(1+\frac{1}{(-3x/2)}\right)^{(-3x/2)}\right)^\frac{x+3}{-3x/2}= $$

Выражение в скобках фактически и есть второй замечательный предел $\lim\limits_{t\to \infty} \left(1+\frac{1}{t}\right)^{t}=e$, только $t=-3x/2$, поэтому

$$ = \lim\limits_{x\to \infty}\left(e\right)^\frac{x+3}{-3x/2}= \lim\limits_{x\to \infty}e^\frac{1+3/x}{-3/2}=e^{-2/3}. $$

Ответ: $e^{-2/3}$.

Пример 5. Найти предел $$\lim\limits_{x\to \infty}\left(\frac{x^3+2x^2+1}{x^3+x-7}\right)^{x}.$$

Решение. Подставляем $x=\infty$ в функцию и получаем неопределенность вида $\left[ \frac{\infty}{\infty}\right]$. А нам нужно $\left$. Поэтому начнем с преобразования выражения в скобках:

$$ \lim\limits_{x\to \infty}\left(\frac{x^3+2x^2+1}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\frac{x^3+(x-7)-(x-7)+2x^2+1}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\frac{(x^3+x-7)+(-x+7+2x^2+1)}{x^3+x-7}\right)^{x} = $$ $$ = \lim\limits_{x\to \infty}\left(1+\frac{2x^2-x+8}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\left(1+\frac{2x^2-x+8}{x^3+x-7}\right)^{\frac{x^3+x-7}{2x^2-x+8}}\right)^{x \frac{2x^2-x+8}{x^3+x-7}}= $$

Выражение в скобках фактически и есть второй замечательный предел $\lim\limits_{t\to \infty} \left(1+\frac{1}{t}\right)^{t}=e$, только $t=\frac{x^3+x-7}{2x^2-x+8} \to \infty$, поэтому

$$ = \lim\limits_{x\to \infty}\left(e\right)^{x \frac{2x^2-x+8}{x^3+x-7}}= \lim\limits_{x\to \infty}e^{ \frac{2x^2-x+8}{x^2+1-7/x}}= \lim\limits_{x\to \infty}e^{ \frac{2-1/x+8/x^2}{1+1/x^2-7/x^3}}=e^{2}. $$

Первым замечательным пределом именуют следующее равенство:

\begin{equation}\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1 \end{equation}

Так как при $\alpha\to{0}$ имеем $\sin\alpha\to{0}$, то говорят, что первый замечательный предел раскрывает неопределённость вида $\frac{0}{0}$. Вообще говоря, в формуле (1) вместо переменной $\alpha$ под знаком синуса и в знаменателе может быть расположено любое выражение, - лишь бы выполнялись два условия:

  1. Выражения под знаком синуса и в знаменателе одновременно стремятся к нулю, т.е. присутствует неопределенность вида $\frac{0}{0}$.
  2. Выражения под знаком синуса и в знаменателе совпадают.

Часто используются также следствия из первого замечательного предела:

\begin{equation} \lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1 \end{equation}

На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти .

Замечу, что наличие тригонометрических функций вкупе с неопределённостью $\frac {0} {0}$ ещё не означает обязательное применение первого замечательного предела. Иногда бывает достаточно простых тригонометрических преобразований, - например, см. .

Пример №1

Доказать, что $\lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$.

а) Так как $\tg\alpha=\frac{\sin\alpha}{\cos\alpha}$, то:

$$ \lim_{\alpha\to{0}}\frac{\tg{\alpha}}{\alpha}=\left|\frac{0}{0}\right| =\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} $$

Так как $\lim_{\alpha\to{0}}\cos{0}=1$ и $\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1$, то:

$$ \lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} =\frac{\displaystyle\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha}}{\displaystyle\lim_{\alpha\to{0}}\cos{\alpha}} =\frac{1}{1} =1. $$

б) Сделаем замену $\alpha=\sin{y}$. Поскольку $\sin{0}=0$, то из условия $\alpha\to{0}$ имеем $y\to{0}$. Кроме того, существует окрестность нуля, в которой $\arcsin\alpha=\arcsin(\sin{y})=y$, поэтому:

$$ \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\sin{y}} =\lim_{y\to{0}}\frac{1}{\frac{\sin{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\sin{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$ доказано.

в) Сделаем замену $\alpha=\tg{y}$. Поскольку $\tg{0}=0$, то условия $\alpha\to{0}$ и $y\to{0}$ эквивалентны. Кроме того, существует окрестность нуля, в которой $\arctg\alpha=\arctg\tg{y})=y$, поэтому, опираясь на результаты пункта а), будем иметь:

$$ \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\tg{y}} =\lim_{y\to{0}}\frac{1}{\frac{\tg{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\tg{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$ доказано.

Равенства а), б), в) часто используются наряду с первым замечательным пределом.

Пример №2

Вычислить предел $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}$.

Так как $\lim_{x\to{2}}\frac{x^2-4}{x+7}=\frac{2^2-4}{2+7}=0$ и $\lim_{x\to{2}}\sin\left(\frac{x^2-4}{x+7}\right)=\sin{0}=0$, т.е. и числитель и знаменатель дроби одновременно стремятся к нулю, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Кроме того, видно, что выражения под знаком синуса и в знаменателе совпадают (т.е. выполнено и ):

Итак, оба условия, перечисленные в начале страницы, выполнены. Из этого следует, что применима формула , т.е. $\lim_{x\to{2}} \frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Ответ : $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Пример №3

Найти $\lim_{x\to{0}}\frac{\sin{9x}}{x}$.

Так как $\lim_{x\to{0}}\sin{9x}=0$ и $\lim_{x\to{0}}x=0$, то мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Однако выражения под знаком синуса и в знаменателе не совпадают. Здесь требуется подогнать выражение в знаменателе под нужную форму. Нам необходимо, чтобы в знаменателе расположилось выражение $9x$, - тогда станет истинным. По сути, нам не хватает множителя $9$ в знаменателе, который не так уж сложно ввести, - просто домножить выражение в знаменателе на $9$. Естественно, что для компенсации домножения на $9$ придётся тут же на $9$ и разделить:

$$ \lim_{x\to{0}}\frac{\sin{9x}}{x}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\sin{9x}}{9x\cdot\frac{1}{9}} =9\lim_{x\to{0}}\frac{\sin{9x}}{9x} $$

Теперь выражения в знаменателе и под знаком синуса совпали. Оба условия для предела $\lim_{x\to{0}}\frac{\sin{9x}}{9x}$ выполнены. Следовательно, $\lim_{x\to{0}}\frac{\sin{9x}}{9x}=1$. А это значит, что:

$$ 9\lim_{x\to{0}}\frac{\sin{9x}}{9x}=9\cdot{1}=9. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{9x}}{x}=9$.

Пример №4

Найти $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}$.

Так как $\lim_{x\to{0}}\sin{5x}=0$ и $\lim_{x\to{0}}\tg{8x}=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако форма первого замечательного предела нарушена. Числитель, содержащий $\sin{5x}$, требует наличия в знаменателе $5x$. В этой ситуации проще всего разделить числитель на $5x$, - и тут же на $5x$ домножить. Кроме того, проделаем аналогичную операцию и со знаменателем, домножив и разделив $\tg{8x}$ на $8x$:

$$\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}}$$

Сокращая на $x$ и вынося константу $\frac{5}{8}$ за знак предела, получим:

$$ \lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}} =\frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} $$

Обратите внимание, что $\lim_{x\to{0}}\frac{\sin{5x}}{5x}$ полностью удовлетворяет требованиям для первого замечательного предела. Для отыскания $\lim_{x\to{0}}\frac{\tg{8x}}{8x}$ применима формула :

$$ \frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{\displaystyle\lim_{x\to{0}}\frac{\sin{5x}}{5x}}{\displaystyle\lim_{x\to{0}}\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{1}{1} =\frac{5}{8}. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\frac{5}{8}$.

Пример №5

Найти $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}$.

Так как $\lim_{x\to{0}}(\cos{5x}-\cos^3{5x})=1-1=0$ (напомню, что $\cos{0}=1$) и $\lim_{x\to{0}}x^2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Однако чтобы применить первый замечательный предел следует избавиться от косинуса в числителе, перейдя к синусам (дабы потом применить формулу ) или тангенсам (чтобы потом применить формулу ). Сделать это можно таким преобразованием:

$$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)$$ $$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)=\cos{5x}\cdot\sin^2{5x}.$$

Вернемся к пределу:

$$ \lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\cos{5x}\cdot\sin^2{5x}}{x^2} =\lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) $$

Дробь $\frac{\sin^2{5x}}{x^2}$ уже близка к той форме, что требуется для первого замечательного предела. Немного поработаем с дробью $\frac{\sin^2{5x}}{x^2}$, подгоняя её под первый замечательный предел (учтите, что выражения в числителе и под синусом должны совпасть):

$$\frac{\sin^2{5x}}{x^2}=\frac{\sin^2{5x}}{25x^2\cdot\frac{1}{25}}=25\cdot\frac{\sin^2{5x}}{25x^2}=25\cdot\left(\frac{\sin{5x}}{5x}\right)^2$$

Вернемся к рассматриваемому пределу:

$$ \lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) =\lim_{x\to{0}}\left(25\cos{5x}\cdot\left(\frac{\sin{5x}}{5x}\right)^2\right)=\\ =25\cdot\lim_{x\to{0}}\cos{5x}\cdot\lim_{x\to{0}}\left(\frac{\sin{5x}}{5x}\right)^2 =25\cdot{1}\cdot{1^2} =25. $$

Ответ : $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=25$.

Пример №6

Найти предел $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}$.

Так как $\lim_{x\to{0}}(1-\cos{6x})=0$ и $\lim_{x\to{0}}(1-\cos{2x})=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. Раскроем ее с помощью первого замечательного предела. Для этого перейдем от косинусов к синусам. Так как $1-\cos{2\alpha}=2\sin^2{\alpha}$, то:

$$1-\cos{6x}=2\sin^2{3x};\;1-\cos{2x}=2\sin^2{x}.$$

Переходя в заданном пределе к синусам, будем иметь:

$$ \lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{2\sin^2{3x}}{2\sin^2{x}} =\lim_{x\to{0}}\frac{\sin^2{3x}}{\sin^2{x}}=\\ =\lim_{x\to{0}}\frac{\frac{\sin^2{3x}}{(3x)^2}\cdot(3x)^2}{\frac{\sin^2{x}}{x^2}\cdot{x^2}} =\lim_{x\to{0}}\frac{\left(\frac{\sin{3x}}{3x}\right)^2\cdot{9x^2}}{\left(\frac{\sin{x}}{x}\right)^2\cdot{x^2}} =9\cdot\frac{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{3x}}{3x}\right)^2}{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\right)^2} =9\cdot\frac{1^2}{1^2} =9. $$

Ответ : $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=9$.

Пример №7

Вычислить предел $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}$ при условии $\alpha\neq\beta$.

Подробные пояснения были даны ранее, здесь же просто отметим, что вновь наличествует неопределенность $\frac{0}{0}$. Перейдем от косинусов к синусам, используя формулу

$$\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}.$$

Используя указанную формулу, получим:

$$ \lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{-2\sin\frac{\alpha{x}+\beta{x}}{2}\cdot\sin\frac{\alpha{x}-\beta{x}}{2}}{x^2}=\\ =-2\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)\cdot\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x^2} =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x}\right)=\\ =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\frac{\alpha+\beta}{2}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}}\cdot\frac{\alpha-\beta}{2}\right)=\\ =-\frac{(\alpha+\beta)\cdot(\alpha-\beta)}{2}\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}} =-\frac{\alpha^2-\beta^2}{2}\cdot{1}\cdot{1} =\frac{\beta^2-\alpha^2}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\frac{\beta^2-\alpha^2}{2}$.

Пример №8

Найти предел $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}$.

Так как $\lim_{x\to{0}}(\tg{x}-\sin{x})=0$ (напомню, что $\sin{0}=\tg{0}=0$) и $\lim_{x\to{0}}x^3=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Раскроем её следующим образом:

$$ \lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{x}}{\cos{x}}-\sin{x}}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(\frac{1}{\cos{x}}-1\right)}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(1-\cos{x}\right)}{x^3\cdot\cos{x}}=\\ =\lim_{x\to{0}}\frac{\sin{x}\cdot{2}\sin^2\frac{x}{2}}{x^3\cdot\cos{x}} =\frac{1}{2}\cdot\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2\cdot\frac{1}{\cos{x}}\right) =\frac{1}{2}\cdot{1}\cdot{1^2}\cdot{1} =\frac{1}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\frac{1}{2}$.

Пример №9

Найти предел $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}$.

Так как $\lim_{x\to{3}}(1-\cos(x-3))=0$ и $\lim_{x\to{3}}(x-3)\tg\frac{x-3}{2}=0$, то наличествует неопределенность вида $\frac{0}{0}$. Перед тем, как переходить к её раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha \to 0$). Проще всего ввести переменную $t=x-3$. Однако ради удобства дальнейших преобразований (эту выгоду можно заметить по ходу приведённого ниже решения) стоит сделать такую замену: $t=\frac{x-3}{2}$. Отмечу, что обе замены применимы в данном случае, просто вторая замена позволит поменьше работать с дробями. Так как $x\to{3}$, то $t\to{0}$.

$$ \lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{x-3}{2};\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\cos{2t}}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{2\sin^2t}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\tg{t}}=\\ =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\frac{\sin{t}}{\cos{t}}} =\lim_{t\to{0}}\frac{\sin{t}\cos{t}}{t} =\lim_{t\to{0}}\left(\frac{\sin{t}}{t}\cdot\cos{t}\right) =\lim_{t\to{0}}\frac{\sin{t}}{t}\cdot\lim_{t\to{0}}\cos{t} =1\cdot{1} =1. $$

Ответ : $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=1$.

Пример №10

Найти предел $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}$.

Вновь мы имеем дело с неопределенностью $\frac{0}{0}$. Перед тем, как переходить к ее раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha\to{0}$). Проще всего ввести переменную $t=\frac{\pi}{2}-x$. Так как $x\to\frac{\pi}{2}$, то $t\to{0}$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2} =\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{\pi}{2}-x;\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\sin\left(\frac{\pi}{2}-t\right)}{t^2} =\lim_{t\to{0}}\frac{1-\cos{t}}{t^2}=\\ =\lim_{t\to{0}}\frac{2\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{\frac{t^2}{4}\cdot{4}} =\frac{1}{2}\cdot\lim_{t\to{0}}\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2 =\frac{1}{2}\cdot{1^2} =\frac{1}{2}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}=\frac{1}{2}$.

Пример №11

Найти пределы $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}$.

В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.

Так как $\lim_{x\to\frac{\pi}{2}}(1-\sin{x})=0$ (напомню, что $\sin\frac{\pi}{2}=1$) и $\lim_{x\to\frac{\pi}{2}}\cos^2x=0$ (напомню, что $\cos\frac{\pi}{2}=0$), то мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако это вовсе не означает, что нам потребуется использовать первый замечательный предел. Для раскрытия неопределенности достаточно учесть, что $\cos^2x=1-\sin^2x$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x} =\left|\frac{0}{0}\right| =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{1-\sin^2x} =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{(1-\sin{x})(1+\sin{x})} =\lim_{x\to\frac{\pi}{2}}\frac{1}{1+\sin{x}} =\frac{1}{1+1} =\frac{1}{2}. $$

Аналогичный способ решения есть и в решебнике Демидовича (№475) . Что же касается второго предела, то как и в предыдущих примерах этого раздела, мы имеем неопределённость вида $\frac{0}{0}$. Отчего она возникает? Она возникает потому, что $\tg\frac{2\pi}{3}=-\sqrt{3}$ и $2\cos\frac{2\pi}{3}=-1$. Используем эти значения с целью преобразования выражений в числителе и в знаменателе. Цель наших действий: записать сумму в числителе и знаменателе в виде произведения. Кстати сказать, зачастую в пределах аналогичного вида удобна замена переменной, сделанная с таким расчётом, чтобы новая переменная устремилась к нулю (см., например, примеры №9 или №10 на этой странице). Однако в данном примере в замене смысла нет, хотя при желании замену переменной $t=x-\frac{2\pi}{3}$ несложно осуществить.

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cdot\left(\cos{x}+\frac{1}{2}\right)} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}-\tg\frac{2\pi}{3}}{2\cdot\left(\cos{x}-\cos\frac{2\pi}{3}\right)}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{\frac{\sin\left(x-\frac{2\pi}{3}\right)}{\cos{x}\cos\frac{2\pi}{3}}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}} =\lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{2\sin\frac{x-\frac{2\pi}{3}}{2}\cos\frac{x-\frac{2\pi}{3}}{2}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}} =\lim_{x\to\frac{2\pi}{3}}\frac{\cos\frac{x-\frac{2\pi}{3}}{2}}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.

Каким будет решение с использованием первого замечательного предела? показать\скрыть

При использовании первого замечательного предела получим:

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\left(\frac{\sin\left(x-\frac{2\pi}{3}\right)}{x-\frac{2\pi}{3}}\cdot\frac{1}{\frac{\sin\frac{x-\frac{2\pi}{3}}{2}}{\frac{x-\frac{2\pi}{3}}{2}}}\cdot\frac{1}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}\right) =1\cdot{1}\cdot\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}=\frac{1}{2}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}=-\frac{4}{\sqrt{3}}$.

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.

Доказательство:

Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая получим

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность возрастающая, при этом (2)*Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2: Сумму в скобке найдём по формуле суммы членов геометрической прогрессии: Поэтому (3)*

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть Каждое значение x заключено между двумя положительными целыми числами: ,где - это целая часть x. => =>

Если ,то Поэтому, согласно пределу Имеем

По признаку (о пределе промежуточной функции) существования пределов

2. Пусть . Сделаем подстановку − x = t, тогда

Из двух этих случаев вытекает, что для вещественного x.

Следствия:

9 .) Сравнение бесконечно малых. Теорема о замене бесконечно малых на эквивалентные в пределе и теорема о главной части бесконечно малых.

Пусть функции a(x ) и b(x ) – б.м. при x ® x 0 .

ОПРЕДЕЛЕНИЯ.

1) a(x ) называется бесконечно малой более высокого порядка чем b(x ) если

Записывают: a(x ) = o(b(x )) .

2) a(x ) и b(x ) называются бесконечно малыми одного порядка , если

где С Îℝ и C ¹ 0 .

Записывают: a(x ) = O (b(x )) .

3) a(x ) и b(x ) называются эквивалентными , если

Записывают: a(x ) ~ b(x ).

4) a(x ) называется бесконечно малой порядка k относи-
тельно бесконечно малой
b(x ),
если бесконечно малые a(x ) и (b(x )) k имеют один порядок, т.е. если

где С Îℝ и C ¹ 0 .

ТЕОРЕМА 6 (о замене бесконечно малых на эквивалентные).

Пусть a(x ), b(x ), a 1 (x ), b 1 (x ) – б.м. при x ® x 0 . Если a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ),

то

Доказательство: Пусть a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ), тогда

ТЕОРЕМА 7 (о главной части бесконечно малой).

Пусть a(x ) и b(x ) – б.м. при x ® x 0 , причем b(x ) – б.м. более высокого порядка чем a(x ).

= , a так как b(x )– более высокого порядка чем a(x ) ,то , т.е. из ясно, что a(x ) + b(x ) ~ a(x )

10) Непрерывность функции в точке(на языке пределов эпсилон-дельта,геометрическое) Односторонняя непрерывность. Непрерывность на интервале, на отрезке. Свойства непрерывных функций.

1. Основные определения

Пусть f (x ) определена в некоторой окрестности точки x 0 .

ОПРЕДЕЛЕНИЕ 1. Функция f (x ) называется непрерывной в точке x 0 если справедливо равенство

Замечания .

1) В силу теоремы 5 §3 равенство (1) можно записать в виде

Условие (2) – определение непрерывности функции в точке на языке односторонних пределов .

2) Равенство (1) можно также записать в виде:

Говорят: «если функция непрерывна в точке x 0 , то знак предела и функцию можно поменять местами».

ОПРЕДЕЛЕНИЕ 2 (на языке e-d).

Функция f (x ) называется непрерывной в точке x 0 если "e>0 $d>0 такое , что

если x ÎU(x 0 , d) (т.е. | x x 0 | < d),

то f (x )ÎU(f (x 0), e) (т.е. | f (x ) – f (x 0) | < e).

Пусть x , x 0 Î D (f ) (x 0 – фиксированная, x – произвольная)

Обозначим: Dx = x – x 0 – приращение аргумента

Df (x 0) = f (x ) – f (x 0) – приращение функции в точкеx 0

ОПРЕДЕЛЕНИЕ 3 (геометрическое).

Функция f (x ) называетсянепрерывной в точке x 0 если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции , т.е.

Пусть функция f (x ) определена на промежутке [x 0 ; x 0 + d) (на промежутке (x 0 – d; x 0 ]).

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной в точке x 0 справа (слева ), если справедливо равенство

Очевидно, что f (x ) непрерывна в точке x 0 Û f (x ) непрерывна в точке x 0 справа и слева.

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной на интервал е (a ; b ) если она непрерывна в каждой точке этого интервала .

Функция f (x ) называется непрерывной на отрезке [a ; b ] если она непрерывна на интервале (a ; b ) и имеет одностороннюю непрерывность в граничных точках (т.е. непрерывна в точке a справа, в точке b – слева).

11) Точки разрыва, их классификация

ОПРЕДЕЛЕНИЕ. Если функция f (x ) определена в некоторой окрестности точки x 0 , но не является непрерывной в этой точке, то f (x ) называют разрывной в точке x 0 , а саму точку x 0 называют точкой разрыва функции f (x ) .

Замечания .

1) f (x ) может быть определена в неполной окрестности точки x 0 .

Тогда рассматривают соответствующую одностороннюю непрерывность функции.

2) Из определения Þ точка x 0 является точкой разрыва функции f (x ) в двух случаях:

а) U(x 0 , d)ÎD (f ) , но для f (x ) не выполняется равенство

б) U * (x 0 , d)ÎD (f ) .

Для элементарных функций возможен только случай б).

Пусть x 0 – точка разрыва функции f (x ) .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва I рода если функция f (x ) имеет в этой точке конечные пределы слева и справа .

Если при этом эти пределы равны, то точка x 0 называется точкой устранимого разрыва , в противном случае – точкой скачка .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва II рода если хотя бы один из односторонних пределов функции f (x ) в этой точке равен ¥ или не существует .

12) Свойства функций, непрерывных на отрезке (теоремы Вейерштрасса(без док-ва) и Коши

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на отрезке , тогда

1)f(x)ограничена на

2)f(x) принимает на промежутке своё наименьшее и наибольшее значение

Определение : Значение функции m=fзовется наименьшим, если m≤f(x) для любого x€ D(f).

Значение функции m=fзовется наибольшим, если m≥f(x) для любого x€ D(f).

Наименьшее\наибольшее значение функция может принимать в нескольких точках отрезка.

f(x 3)=f(x 4)=max

Теорема Коши.

Пусть функция f(x) непрерывна на отрезке и х – число, заключенное между f(a) и f(b),тогда существует хотя бы одна точка х 0 € такая, что f(x 0)= g

Первый замечательный предел часто применяется для вычисления пределов содержащих синус, арксинус, тангенс, арктангенс и получающихся при них неопределенностей ноль делить на ноль.

Формула

Формула первого замечательного предела имеет вид: $$ \lim_{\alpha\to 0} \frac{\sin\alpha}{\alpha} = 1 $$

Замечаем, что при $ \alpha\to 0 $ получается $ \sin\alpha \to 0 $, тем самым в числетеле и в знаменателе имеем нули. Таким образом формула первого замечательного предела нужна для раскрытия неопределенностей $ \frac{0}{0} $.

Для применения формулы необходимо, чтобы были соблюдены два условия:

  1. Выражения, содержащиеся в синусе и знаменателе дроби совпадают
  2. Выражения, стоящие в синусе и знаменателе дроби стремятся к нулю

Внимание! $ \lim_{x\to 0} \frac{\sin(2x^2+1)}{2x^2+1} \neq 1 $ Хотя выражения под синусом и в знаменателе одинаковые, однако $ 2x^2+1 = 1 $, при $ x\to 0 $. Не выполнено второе условие, поэтому применять формулу НЕЛЬЗЯ!

Следствия

Достаточно редко в задания можно увидеть чистый первый замечательный предел, в котором можно сразу было бы записать ответ. На практике всё немного сложнее выглядит, но для таких случаев будет полезно знать следствия первого замечательного предела. Благодаря им можно быстро вычислить нужные пределы.

$$ \lim_{\alpha\to 0} \frac{\alpha}{\sin\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{\sin(a\alpha)}{\sin(b\alpha)} = \frac{a}{b} $$

$$ \lim_{\alpha\to 0} \frac{tg\alpha}{\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{\arcsin\alpha}{\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{arctg\alpha}{\alpha} = 1 $$

Примеры решений

Рассмотрим первый замечательный предел, примеры решения которого на вычисление пределов содержащих тригонометрические функции и неопределенность $ \bigg[\frac{0}{0}\bigg] $

Пример 1
Вычислить $ \lim_{x\to 0} \frac{\sin2x}{4x} $
Решение

Рассмотрим предел и заметим, что в нём присутствует синус. Далее подставим $ x = 0 $ в числитель и знаменатель и получим неопределенность нуль делить на нуль: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \frac{0}{0} $$ Уже два признака того, что нужно применять замечательный предел, но есть небольшой нюанс: сразу применить формулу мы не сможем, так как выражение под знаком синуса отличается от выражения стоящего в знаменателе. А нам нужно, чтобы они были равны. Поэтому с помощью элементарных преобразований числителя мы превратим его в $ 2x $. Для этого мы вынесем двойку из знаменателя дроби отдельным множителем. Выглядит это так: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \lim_{x\to 0} \frac{\sin2x}{2\cdot 2x} = $$ $$ = \frac{1}{2} \lim_{x\to 0} \frac{\sin2x}{2x} = \frac{1}{2}\cdot 1 = \frac{1}{2} $$ Обратите внимание, что в конце $ \lim_{x\to 0} \frac{\sin2x}{2x} = 1 $ получилось по формуле.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to 0} \frac{\sin2x}{4x} =\frac{1}{2} $$
Пример 2
Найти $ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} $
Решение

Как всегда сначала нужно узнать тип неопределенности. Если она нуль делить на нуль, то обращаем внимание на наличие синуса: $$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = \frac{0}{0} = $$ Данная неопределенность позволяет воспользоваться формулой первого замечательного предела, но выражение из знаменателя не равно аргументу синуса? Поэтом "в лоб" применить формулу нельзя. Необходимо умножить и разделить дробь на аргумент синуса: $$ = \lim_{x\to 0} \frac{(x^3+2x)\sin(x^3+2x)}{(2x-x^4)(x^3+2x)} = $$ Теперь по свойствам пределов расписываем: $$ = \lim_{x\to 0} \frac{(x^3+2x)}{2x-x^4}\cdot \lim_{x\to 0} \frac{\sin(x^3+2x)}{(x^3+2x)} = $$ Второй предел как раз подходит под формулу и равен единице: $$ = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4}\cdot 1 = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4} = $$ Снова подставляем $ x = 0 $ в дробь и получаем неопределенность $ \frac{0}{0} $. Для её устранения достоточно вынести за скобки $ x $ и сократить на него: $$ = \lim_{x\to 0} \frac{x(x^2+2)}{x(2-x^3)} = \lim_{x\to 0} \frac{x^2+2}{2-x^3} = $$ $$ = \frac{0^2 + 2}{2 - 0^3} = \frac{2}{2} = 1 $$

Ответ
$$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = 1 $$
Пример 4
Вычислить $ \lim_{x\to0} \frac{\sin2x}{tg3x} $
Решение

Вычисление начнём с подстановки $ x=0 $. В результате получаем неопределенность $ \frac{0}{0} $. Предел содержит синус и тангенс, что намекает на возможное развитие ситуации с использованием формулы первого замечательного предела. Преобразуем числитель и знаменатель дроби под формулу и следствие:

$$ \lim_{x\to0} \frac{\sin2x}{tg3x} = \frac{0}{0} = \lim_{x\to0} \frac{\frac{\sin2x}{2x}\cdot 2x}{\frac{tg3x}{3x}\cdot 3x} = $$

Теперь видим в числителе и знаменателе появились выражения подходящие под формулу и следствия. Аргумент синуса и аргумент тангенса совпадают для соответствующих знаменателей

$$ = \lim_{x\to0} \frac{1\cdot 2x}{1\cdot 3x} = \frac{2}{3} $$

Ответ
$$ \lim_{x\to0} \frac{\sin2x}{tg2x} = \frac{2}{3} $$

В статье: "Первый замечательный предел, примеры решения" было рассказано о случаях, в которых целесообразно использовать данную формулу и её следствия.




Top