Алгоритм построения интервального вариационного ряда с равными интервалами. Построение дискретного вариационного ряда

Во многих случаях, кота статистическая совокупность включает большое или тем более бесконечное число вариант, что чаще всего встречается при непрерывной вариации, практически невозможно и нецелесообразно формировать группу единиц для каждой варианты. В таких случаях объединение статистических единиц в группы возможно лишь на базе интервала, т.е. такой группы, которая имеет определенные пределы значений варьирующего признака. Эти пределы обозначаются двумя числами, указывающими верхнюю и нижнюю границы каждой группы. Применение интервалов приводит к формированию интервального ряда распределения.

Интервальный рад - это вариационный ряд, варианты которого представлены в виде интервалов.

Интервальный ряд может формироваться с равными инеравными ин­тервалами, при этом выбор принципа построения этого ряда зависит главным образом от степени представительности и удобности статистической совокупности. Если совокупность достаточно велика (представительна) по числу единиц и вполне однородна по своему составу, то в основу формирования интервального ряда целесообразно положить равенства интервалов. Обычно по этому принципу образуют интервальный ряд по тем совокупностям, где размах вариации сравнительно невелик, т.е. максимальная и минимальная варианты различаются между собой обычно в несколько раз. При этом величина равных интервалов рассчитывается отношением размаха вариации признака к заданному числу образуемых интервалов. Для определения равного и нтервала может быть ииспользована формула Стерджесса (обычно при небольшой вариации интервальных признаков и большом числе единиц в статистической совокупности):

где х i - величина равного интервала; X max, X min- максимальная и минимальная варианты в статистической совокупности; n. - число единиц в совокупности.

Пример . Целесообразно рассчитать размер равного интервала по плотности радиоактивного загрязнения цезием – 137 в 100 населенных пунктах Краснопольского района Могилевской области, если известно, что начальная (минимальная) варианта равна I км/км 2 , конечная (максимальная) - 65 ки/км 2 . Воспользовавшись формулой 5.1. получим:

Следовательно, чтобы сформировать интервальный ряд с равными интервалами по плотности загрязнения цезием - 137 населенных пунктов Краснопольского района, размер равного интервала может составить 8 ки/км 2 .

В условиях неравномерного распределения т.е. когда максимальная иминимальная варианты сотни раз, при формировании интервального ряда можно применить принцип неравных интервалов. Неравные интервалы обычно увеличиваются по мере перехода к большим значениям признака.

По форме интервалы могут быть закрытыми и открытыми. Закрытыми принято называть интервалы, у которых обозначены как нижняя, так и верхняя границы. Открытые интервалы имеют только одну границу: в первом интервале – верхняя, в последнем - нижняя граница.

Оценку интервальных рядов, особенно с неравным интервалами, целесообразно проводить с учетом плотности распределения , простейшим способом расчета которого является отношение локальной частоты (или частости) к размеру интервала.

Для практического формирования интервального ряда можно воспользоваться макетом табл. 5.3.

Т а б л и ц а 5.3. Порядок формирования интервального ряда населённых пунктов Краснопольского района по плотности радиоактивного загрязнения цезием –137

Основное преимущество интервального ряда - его предельная компактность. в то же время в интервальном ряду распределения индивидуальные варианты признака скрыты в соответствующих интервалах

При графическом изображении интервального ряда в системе прямоугольных координат на оси абсцисс откладывают верхние границы интервалов, на ос ординат - локальные частоты ряда. Графическое построение интервального ряда отличается от построения полигона распределения тем, что каждый интервал имеет нижнюю и верхнею границы, а одному какому- либо значению ординаты соответствуют две абсциссы. Поэтому на графике интервального ряда отмечается не точка, как в полигоне, а линия, соединяющая две точку. Эти горизонтальные линии соединяются друг с другом вертикальными линиями и получается фигура ступенчатого многоугольника, который принято называть гистограммой распределения (рис.5.3).

При графическом построении интервального ряда по достаточно большой статистической совокупности гистограмма приближается к симметричной форме распределения. В тех же случаях, где статистическая совокупность невелика, как правило, формируется асимметричная гистограмма.

В некоторых случаях имеется целесообразность в формировании ряда накопленных частот, т.е. кумулятивного ряда. Кумулятивный ряд можно образовать на основе дискретного либо интервального ряда распределения. При графическом изображении кумулятивного ряда в системе прямоугольных координат на оси абсцисс откладывают вариан­ты, на оси ординат - накопленные частоты (частости). Полученную при этом кривую линию принято называть кумулятой распределения (рис.5.4).

Формирование и графическое изображение различных видов вариационных рядов способствует упрощенному расчету основных статистических характеристик, которые подробно рассматриваются в теме 6, помогает лучше понять сущность законов распределения статистической совокупности. Анализ вариационного ряда приобретает особенное значение в тех случаях, когда необходимо выявить и проследить зависимость между вариантами и частотами (частостями). Эта зависимость проявляется в том, что число случаев, приходящихся на каждую варианту, определенным образом связано с величиной этой варианты, т.е. с возрастанием значений варьирующего признака частоты (частости) этих значений испытывают определенные, систематические изменения. Это означает, что числа в столбце частот (частостей) подвержены не хаотическим колебаниям, а изменяются в определенном направлении, в определенном порядке и последовательности.

Если частоты в своих изменениях обнаруживают определенную систематичность, то это означает, что мы находимся на пути к выявлению закономерности. Система, порядок, последовательность в изменении частот - это отражение общих причин, общих условий, характерных для всей совокупности.

Не следует считать, что закономерность распределения всегда дается в готовом виде. Встречается довольно много вариационных рядов, в которых частоты причудливо скачут, то возрастая, то уменьшаясь. В таких случаях целесообразно выяснить, с каким распределением имеет дело исследователь: то ли этому распределению вовсе не присущи закономерности, то его характер еще не выявлен: Первый случай встречается редко, второй же, второй же случай - явление довольно частое и весьма распространенное.

Так, при формировании интервального ряда общее число статистических единиц может быть небольшим, и в каждый интервал попадает малое число вариант (например, 1-3 единицы). В таких случаях рассчитывать на проявление какой-либо закономерности не приходится. Для того чтобы на основе случайных наблюдений получился закономерный результат, необходимо вступление в силу закона больших чисел, т.е. чтобы на каждый интервал приходилось бы не несколько, а десятки и сотни статистических единиц. С этой целью надо стараться, по возможности увеличивать число наблюдений. Это самый верный способ обнаружения закономерности в массовых процессах. Если же не представляется реальная возможность увеличить число наблюдений, то выявление закономерности может быть достигнуто уменьшением числа интервалов в ряду распределения. Уменьшая число интервалов в вариационном ряду, тем самым увеличивается численность частот в каждом интервале. Это означает, что случайные колебания каждой статистической единицы накладываются друг на друга, "сглаживается", превращаясь в закономерность.

Формирование и построение вариационных рядов позволяет получить лишь общую, приближенную картину распределения статистической совокупности. Например, гистограмма лишь в грубой форме выражает зависимость между значениями признака и его частотами (частостями) Поэтому вариационные ряды по существу являются лишь основой для дальнейшего, углубленного изучения внутренней закономерности статического распределения.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ТЕМЕ 5

1. Что представляет собой вариация? Чем вызывается вариация признака в статистической совокупности?

2. Какие виды варьирующих признаков могут иметь место в статистике?

3. Что такое вариационный ряд? Какие могут быть виды вариационных рядов?

4. Что представляет собой ранжированный ряд? Какие его преимущества и недостатки?

5. Что такое дискретный ряд и какие его преимущества и недостатки?

6. Каков порядок формирования интервального ряда, какие его преимущества и недостатки?

7. Что представляет собой графическое изображение ранжированного, дискретного, интервального рядов распределения?

8. Что такое кумулята распределения и что она характеризует?

Число групп (интервалов) приближенно определяется по формуле Стерджесса:

m = 1 + 3,322 × lg(n)

где n - общее число единиц наблюдения (общее количество элементов в совокупности и т.д.), lg(n) – десятичный логарифм от n.

Полученную по формуле Стерджесса величину округляют обычно до целого большего числа, поскольку количество групп не может быть дробным числом.

Если ряд интервальный ряд с таким количеством групп по каким-то критериям не устраивает, то можно построить другой интервальный ряд, округлив m до целого меньшего числа и выбрать из двух рядов более подходящий.

Число групп не должно быть больше 15.

Также можно пользоваться следующей таблицей, если совсем нет возможности вычислить десятичный логарифм.

    Определяем ширину интервала

Ширина интервала для интервального вариационного ряда с равными интервалами определяется по формуле:

где X макс - максимальное из значений x i , X мин - минимальное из значений x i ; m - число групп (интервалов).

Величину интервала (i ) обычно округляют до целого числа, исключение составляют лишь случаи, когда изучаются малейшие колебания признака (например, при группировке деталей по величине размера отклонений от номинала, измеряемого в долях миллиметра).

Часто применяется следующее правило:

Количество знаков до запятой

Количество знаков после запятой

Пример ширины интервала по формуле

До какого знака округляем

Пример округленной ширины интервала

    Определяем границы интервалов

Нижнюю границу первого интервала принимают равной минимальному значению признака (чаще всего его предварительно округляют до целого меньшего числа с таким же разрядом как ширина интервала). Например, х мин = 15, i=130, х н первого интервала = 10.

х н1 ≈ х мин

Верхняя граница первого интервала соответствует значению (Хmin + i ).

Нижняя граница второго интервала всегда равно верхней границе первого интервала. Для последующих групп границы определяются аналогично, т е. последовательно прибавляется величина интервала.

x в i = x н i + i

x н i = x в i-1

    Определяем частоты интервалов.

Считаем, сколько значений попало в каждый интервал. При этом помним, что если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

    Строим интервальный ряд в виде таблицы.

    Определяем середины интервалов.

Для дальнейшего анализа интервального ряда понадобится выбрать значение признака для каждого интервала. Это значение признака будет общим для всех единиц наблюдения, попавшим в этот интервал. Т.е. отдельные элементы «теряют» свои индивидуальные значения признака и им присваивается одно общее значение признака. Таким общим значением является середина интервала , которая обозначается x" i .

Рассмотрим на примере с ростом детей, как построить интервальный ряд с равными интервалами.

Имеются первоначальные данные.

90, 91, 92, 93, 94, 95, 96, 97, 98, 99 , 92, 93, 94, 95, 96, 98 , , 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 , 100, 101, 102, 104 , 110, 112, 114, 116, 117, 120, 122, 123, 124, 129, 110, 111, 113, 115, 116, 117, 121, 125, 126, 127 , 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129 , 111, 113, 116, 127 , 123, 122, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150 , 131, 133, 135, 136, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148

Если изучаемая случайная величина является непрерывной, то ранжирование и группировка наблюдаемых значений зачастую не позволяют выделить характерные черты варьирования ее значений. Это объясняется тем, что отдельные значения случайной величины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблюдаемых данных одинаковые значения величины могут встречаться редко, а частоты вариантов мало отличаются друг от друга.

Нецелесообразно также построение дискретного ряда для дискретной случайной величины, число возможных значений которой велико. В подобных случаях следует строить интервальный вариационный ряд распределения.

Для построения такого ряда весь интервал варьирования наблюдаемых значений случайной величины разбивают на ряд частичных интервалов и подсчитывают частоту попадания значений величины в каждый частичный интервал.

Интервальным вариационным рядом называют упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или относительными частотами попаданий в каждый из них значений величины.

Для построения интервального ряда необходимо:

  1. определить величину частичных интервалов;
  2. определить ширину интервалов;
  3. установить для каждого интервала его верхнюю и нижнюю границы ;
  4. сгруппировать результаты наблюдении.

1 . Вопрос о выборе числа и ширины интервалов группировки приходится решать в каждом конкретном случае исходя из целей исследования, объема выборки и степени варьирования признака в выборке.

Приблизительно число интервалов k можно оценить исходя только из объема выборки n одним из следующих способов:

  • по формуле Стержеса : k = 1 + 3,32·lg n ;
  • с помощью таблицы 1.

Таблица 1

2 . Обычно предпочтительны интервалы одинаковой ширины. Для определения ширины интервалов h вычисляют:

  • размах варьирования R - значений выборки: R = x max - x min ,

где x max и x min - максимальная и минимальная варианты выборки;

  • ширину каждого из интервалов h определяют по следующей формуле: h = R/k .

3 . Нижняя граница первого интервала x h1 выбирается так, чтобы минимальная варианта выборки x min попадала примерно в середину этого интервала: x h1 = x min - 0,5·h .

Промежуточные интервалы получают прибавляя к концу предыдущего интервала длину частичного интервала h :

x hi = x hi-1 +h .

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина x hi удовлетворяет соотношению:

x hi < x max + 0,5·h .

4 . В соответствии со шкалой интервалов производится группирование значений признака - для каждого частичного интервала вычисляется сумма частот n i вариант, попавших в i -й интервал. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы интервала.

Полигон и гистограмма

Для наглядности строят различные графики статистического распределения.

По данным дискретного вариационного ряда строят полигон частот или относительных частот.

Полигоном частот x 1 ; n 1 ), (x 2 ; n 2 ), ..., (x k ; n k ). Для построения полигона частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им частоты n i . Точки (x i ; n i ) соединяют отрезками прямых и получают полигон частот (Рис. 1).

Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x 1 ; W 1 ), (x 2 ; W 2 ), ..., (x k ; W k ). Для построения полигона относительных частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им относительные частоты W i . Точки (x i ; W i ) соединяют отрезками прямых и получают полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму .

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h , а высоты равны отношению n i / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии n i / h .

Наиболее простым способом обобщения статистического материала является построение рядов. Результатом сводки статистического исследования могут быть ряды распределения. Рядом распределения в статистике называется упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку: по качественному или количественному. Если ряд построен по качественному признаку, то он называется атрибутивным, а если по количественному признаку, то вариационный.

Вариационный ряд характеризуется двумя элементами: вариантой (Х) и частотой (f). Варианта – это отдельное значение признака отдельной единицы или группы совокупности. Число, показывающее, сколько раз встречается то или иное значение признака, называется частотой. Если частота выражена относительным числом, то она называется частостью. Вариационный ряд может быть интервальным, когда определены границы «от» и «до», а может быть дискретным, когда изучаемый признак характеризуется определенным числом.

Построение вариационных рядов рассмотрим на примерах.

Пример . и меются данные о тарифных разрядах 60 рабочих одного их цехов завода.

Распределить рабочих по тарифному разряду, построить вариационный ряд.

Для этого выпишем все значения признака в порядке возрастания и посчитаем число рабочих в каждой группе.

Таблица 1.4

Распределение рабочих по разряду

Разряд рабочих (X)

Число рабочих

человек (f)

в % к итогу (частность)

Мы получили вариационный дискретный ряд, в котором изучаемый признак (разряд рабочего) представлен определенным числом. Для наглядности вариационные ряды изображают графически. На основании данного ряда распределения построили поверхность распределения.

Рис. 1.1. Полигон распределения рабочих по тарифному разряду

Построение интервального ряда с равными интервалами рассмотрим на следующем примере.

Пример . Известны данные о стоимости основного капитала 50 фирм в млн руб. Требуется показать распределение фирм по стоимости основного капитала.

Чтобы показать распределение фирм по стоимости основного капитала, сначала решим вопрос о количестве групп, которые хотим выделить. Предположим, решили выделить 5 групп предприятий. Затем определим величину интервала в группе. Для этого воспользуемся формулой

Согласно нашему примеру .

Путем прибавления величины интервала к минимальному значению признака, получим группы фирм по стоимости основного капитала.

Единица, обладающая двойным значением, относится к той группе, где она выступает в роли верхней границы (т.е. значение признака 17 пойдет в первую группу, 24 – во вторую и т.д.).

Подсчитаем число заводов в каждой группе.

Таблица 1.5

Распределение фирм по стоимости основного капитала (млн руб.)

Стоимость основного капитала
в млн руб. (Х)

Число фирм
(частота) (f)

Накопленные частоты
(кумулятивные)

Согласно данному распределению получили вариационный интервальный ряд, из которого следует, что 36 фирм имеют основной капитал стоимостью от 10 до 24 млн руб. и т.д.

Интервальные ряды распределения можно представить графически в виде гистограммы.

Результаты обработки данных оформляются в статистические таблицы . Статистические таблицы содержат свое подлежащее и сказуемое.

Подлежащее – это та совокупность или часть совокупности, которая подвергается характеристике.

Сказуемое – это показатели, характеризующие подлежащее.

Таблицы различают: простые и групповые, комбинационные, с простой и сложной разработкой сказуемого.

Простая таблица в подлежащем содержит перечень отдельных единиц.

Если же в подлежащем имеется группировка единиц, то такая таблица называется групповой. Например, группа предприятий по числу рабочих, группы населения по полу.

В подлежащем комбинационной таблицы содержится группировка по двум или нескольким признакам. Например, население по полу разделяется на группы по образованию, возрасту и т.д.

Комбинационные таблицы содержат информацию, позволяющую выявить и охарактеризовать взаимосвязь ряда показателей и закономерность их изменения как в пространстве, так и во времени. Чтобы таблица была наглядной при разработке ее подлежащего, ограничиваются двумя-тремя признаками, образуя по каждому из них ограниченное число групп.

Сказуемое в таблицах может быть разработано по-разному. При простой разработке сказуемого все его показатели располагаются независимо друг от друга.

При сложной разработке сказуемого показатели сочетаются друг с другом.

При построении любой таблицы нужно исходить из целей исследования и содержания обработанного материала.

Кроме таблиц в статистике используются графики и диаграммы. Диаграмма – статистические данные изображаются с помощью геометрических фигур. Диаграммы подразделяются на линейные и столбиковые, но могут быть фигурные диаграммы (рисунки и символы), круговые диаграммы (окружность принимается за величину всей совокупности, а площади отдельных секторов отображают удельный вес или долю ее составных частей), радиальные диаграммы (строятся на базе полярных ординат). Картограмма представляет собой сочетание контурной карты или плана местности с диаграммой.




Top