Что такое строка c в симплекс методе. Решение злп симплекс-методом

Для разрешения выполнения апплета на вашем компьютере надо сделать следующее - нажать кнопку Пуск>Панель управления>Программы>Java. В окне Java Control Panel выбираем вкладку Security (Безопасность) нажимаем кнопку Edit Site List, кнопку add и вставляем в свободное поле путь к этой страницы из адресной строки браузера. Далее нажимаем кнопки ОК, после этого перезагружаем компьютер.

Для запуска апплета нажмите на кнопку "Simplex". Если над этой строкой не видна кнопка "Simplex", то на компьютере не установлена Java.

    После нажатия на кнопку « Simplex » выводится первое окно для ввода числа переменных и числа ограничений задачи на симплекс-метод.

    После нажатия на кнопку « ok » выводится окно для ввода остальных данных задачи на симплекс-метод: режима отображения (десятичные дроби или обыкновенные), тип критерия задачи min или max , ввод коэффициентов целевой функции и коэффициентов системы ограничений со знаками « ≤ », « ≥ » или « = », ограничения вида х i ≥ 0 вводить не надо, их учитывает в своем алгоритме.

    После нажатия на кнопку «Решить» выводится окно с результатами решения задачи на . Окно состоит из двух частей, в верхней части находится текстовое поле, содержащее описание приведения исходной задачи к канонической форме, которая используется для составления первой симплекс-таблицы. В нижней части окна в панели со вкладками расположены симплекс-таблицы каждой итерации с небольшим текстовым полем внизу с указанием разрешающего столбца, разрешающей строки и другой информации, что делает программу обучающей. Во вкладке с оптимальной (последней) таблицей в текстовом поле приведено полученное оптимальное решение задачи.

Замеченные ошибки и комментарии по работе апплета присылайте на [email protected] или звоните 8 962 700 77 06, за что мы будем Вам очень благодарны.

Программа М-метод

Программа для решения транспортной задачи

Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами:
-система ограничений должна быть системой уравнений с базисом;
-свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод. Составим первую симплекс-таблицу (Итерация 0), т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

итерация 0

БП

Решение Отношение

Для улучшения решения перейдем к следующей итерации, получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации переменная x 2 заменит в базисе s 3 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0 , цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 2 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z -строки имеем:

Старая z-строка (-4 -6 0 0 0 0)
-(-6)*Новая разрешающая строка -(0
-6 0 0 -6 -120)
=Новая z-строка
(-4 0 0 0 6 120) .

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

итерация 1

Решение Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

Итерация 2

Решение Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

Итерация 3

Решение Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Симплекс-метод, решение задачи с искусственным базисом

2) Решим задачу с искусственным базисом (хотя бы один знак неравенств-ограничений " ≥ " или " = ").

Запишем задачу в канонической форме (в виде системы уравнений, что требует симплекс-метод), для этого введем две переменные х 3 ≥ 0 и х 4 ≥ 0 получим:

Система ограничений предлагает только одну допустимую базисную переменную x 4 , только она входит только в одно уравнение в третье с коэффициентом 1, поэтому в первое и второе уравнения добавляем искусственные переменные R 1 ≥ 0 и R 2 ≥ 0 Чтобы можно было примененить симплекс-метод система уравнений-ограничений должна быть системой с базисом, т.е. в каждом уравнении должна быть переменная с коэффициентом 1, которая входит только в одно уравнение системы, в нашем случае это R 1 , R 2 и x 4 . Получили, так называемую, М-задачу:

Данная система является системой с базисом, в которой R 1 , R 2 и x 4 базисные переменные, а x 1 , x 2 и x 3 свободные переменные, свободние члены всех уравнений неотрицательны. Следовательно, для решения задачи можно применить симплекс-метод. Запишем начальную симплекс-таблицу:

итерация 0

Решение Отношение
-16

В таблицу для задач с искусственным базисом добавлена строка «Оценка». Она получается суммированием соответствующих коэффициентов строк с искусственными переменными (R) с обратным знаком. Она будет присутствовать в таблице до тех пор, пока хотя бы одна из искусственных переменных есть в базисе. По наибольшему по модулю отрицательному коэффициенту строки "Оценка" определяется разрешающий столбец пока она есть в таблице. Когда строка "Оценка" выйдет из таблицы (в базисе нет искусственных переменных) разрешающий столбец будет определяться по z-строке, как и в задаче с начальным базисом. В данной таблице разрешающий столбец х 2 , он выбран по наибольшей по модулю отрицательной оценке (-7). Разрешающая строка R 2 выбрана по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца, как и в задаче без искусственных переменных. Это значит, что на следующей итерации переменная х 2 из свободной перейдет в базисную, а переменная R 2 из базисной – в свободную. Запишем следующую симплекс-таблицу:

Разрешающий столбец х 1 , разрешающая строка R 1 , R 1 выходит из базиса, x 1 входит в базис. После этого в базисе не остается искусственных переменных, поэтому строки «Оценка» в следующей таблице нет:

итерация 2

Решение Отношение

Далее разрешающий столбец выбирается по z-строке. В z-строке все коэффициенты неотрицательны кроме коэффициента при искусственной переменной R 1 , который не влияет на оптимальность, когда искусственные переменные вышли из базиса. Следовательно, получено оптимальное решение x 1 = 6/5; x 2 = 3/5; z max = 72/5.

Особые случаи применения симплекс-метода

1) Когда прямая (если рассматривается двухмерная задача линейного программирования, а в общем случае гиперплоскость), представляющая целевую функцию параллельна прямой (гиперплоскости), соответствующей одному из неравенств-ограничений (которое в точке оптимума выполняется, как точное равенство) целевая функция принимает одно и тоже оптимальное значение на некотором множестве точек границы области допустимых решений. Эти решения называются альтернативными оптимальными решениями . Наличие альтернативных решений можно определить по оптимальной симплекс-таблице. Если в z-строке оптимальной таблицы есть нулевые коэффициенты небазисных переменных, то есть альтернативные решения.

2) Если в разрешающем столбце симплекс-таблицы все коэффициенты меньше или равны нуль, то нельзя выбрать разрешающую строку, в этом случае решение неограничено.

3) Если ограничения задачи линейного программирования несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип " ≤ " с неотрицательными правыми частями, т.к. в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений использются искусственные переменные. Если задача имеет решение, то в оптимальной таблице в базисе нет искусственных переменных (R i). Если они там есть, то задача не имеет решений.

Симплекс-метод - это итеративный процесс направленного решения системы уравнений по шагам, который начинается с опорного решения и в поисках лучшего варианта движется по угловым точкам области допустимого решения, улучшающих значение целевой функции до тех пор, пока целевая функция не достигнет оптимального значения.

Назначение сервиса . Сервис предназначен для онлайн решения задач линейного программирования (ЗЛП) симплекс-методом в следующих формах записи:

  • в виде симплексной таблицы (метод жордановых преобразований); базовой форме записи;
  • модифицированным симплекс-методом ; в столбцовой форме; в строчечной форме.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel . При этом ограничения типа x i ≥0 не учитывайте. Если в задании для некоторых x i отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом . При решении автоматически определяется использование М-метода (симплекс-метод с искусственным базисом) и двухэтапного симплекс-метода .

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

Алгоритм симплекс-метода включает следующие этапы:

  1. Составление первого опорного плана . Переход к канонической форме задачи линейного программирования путем введения неотрицательных дополнительных балансовых переменных.
  2. Проверка плана на оптимальность . Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить.
  3. Определение ведущих столбца и строки . Из отрицательных коэффициентов индексной строки выбирается наибольший по абсолютной величине. Затем элементы столбца свободных членов симплексной таблицы делит на элементы того же знака ведущего столбца.
  4. Построение нового опорного плана . Переход к новому плану осуществляется в результате пересчета симплексной таблицы методом Жордана-Гаусса .

Если необходимо найти экстремум целевой функции, то речь идет о поиске минимального значения (F(x) → min , см. пример решения минимизации функции) и максимального значения (F(x) → max , см. пример решения максимизации функции)

Экстремальное решение достигается на границе области допустимых решений в одной из вершин угловых точек многоугольника, либо на отрезке между двумя соседними угловыми точками.

Основная теорема линейного программирования . Если целевая функция ЗЛП достигает экстремального значения в некоторой точке области допустимых решений, то она принимает это значение в угловой точке. Если целевая функция ЗЛП достигает экстремального значения более чем в одной угловой точке, то она принимает это же значение в любой из выпуклой линейной комбинации этих точек.

Суть симплекс-метода . Движение к точке оптимума осуществляется путем перехода от одной угловой точки к соседней, которая ближе и быстрее приближает к X опт. Такую схему перебора точек, называемую симплекс-метод , предложил Р. Данцигом.
Угловые точки характеризуются m базисными переменными, поэтому переход от одной угловой точки к соседней возможно осуществить сменой в базисе только одной базисной переменной на переменную из небазиса.
Реализация симплекс-метода в силу различных особенностей и постановок задач ЛП имеет различные модификации .

Построение симплекс-таблиц продолжается до тех пор, пока не будет получено оптимальное решение.

Как с помощью симплекс-таблицы определить, что решение задачи линейного программирования является оптимальным?
Если последняя строка (значения целевой функции) не содержит отрицательных элементов, следовательно, найдет оптимальный план.

Замечание 1 . Если одна из базисных переменных равна нулю, то крайняя точка, соответствующая такому базисному решению - вырожденная. Вырожденность возникает, когда имеется неоднозначность в выборе направляющей строки. Можно вообще не заметить вырожденности задачи, если выбрать другую строку в качестве направляющей. В случае неоднозначности нужно выбирать строку с наименьшим индексом, чтобы избежать зацикливания.

Замечание 2 . Пусть в некоторой крайней точке все симплексные разности неотрицательные D k ³ 0 (k = 1..n+m),т.е. получено оптимальное решение и существует такой А k - небазисный вектор, у которого D k = 0. Тогда максимум достигается по крайней мере в двух точках, т.е. имеет место альтернативный оптимум. Если ввести в базис эту переменную x k , значение целевой функции не изменится.

Замечание 3 . Решение двойственной задачи находится в последней симплексной таблице. Последние m компонент вектора симплексных разностей(в столбцах балансовых переменных) - оптимальное решение двойственной задачи. Значение целевых функций прямой и двойственной задачи в оптимальных точках совпадают.

Замечание 4 . При решении задачи минимизации в базис вводится вектор с наибольшей положительной симплексной разностью. Далее применяется тот же алгоритм, что и для задачи максимизации.

Если задано условие «Необходимо, чтобы сырье III вида было израсходовано полностью», то соответствующее условие представляет собой равенство.

Аналитическое введение в симплекс-метод

Симплексный метод является универсальным методом линейного программирования.

Итак, если мы решаем ЗЛП в канонической форме , то система ограничений - это обычная система линейных уравнений. При решении задач ЛП получаются системы линейных уравнений, имеющие, как правило, бесконечно много решений.

Например, пусть дана система

Здесь число уравнений равно 2, а неизвестных - 3, уравнений меньше. Выразим x 1 и x 2 через x 3:

Это общее решение системы. если переменной x 3 придавать произвольные числовые значения, то будем находить частные решения системы. Например, x 3 =1 → x 1 =1 → x 2 =6. Имеем (1, 6, 1) - частное решение. Пусть x 3 =2 → x 1 =-3, x 2 = 1, (-3, 1, 2) - другое частное решение. Таких частных решений бесконечно много.

Переменные x 1 и x 2 называются базисными , а переменная x 3 - не базисная, свободная .

Совокупность переменных x 1 и x 2 образует базис: Б (x 1 , x 2). Если x 3 = 0, то полученное частное решение (5, 11, 0) называется базисным решением, соответствующим базису Б (x 1 , x 2).

Базисным называется решение, соответствующее нулевым значениям свободных переменных .
В качестве базисных можно было взять и другие переменные: (x 1 , x 3) или (x 2 , x 3).
Как переходить от одного базиса Б (x 1 , x 2) к другому базису Б (x 1 , x 3)?
Для этого надо переменную x 3 перевести в базисные, а x 2 - в небазисные т. е. в уравнениях надо x 3 выразить через x 2 и подставить в 1-е:

Б (x 1 , x 3 ), таково: (-19/5; 0; 11/5).

Если теперь от базиса Б (x 1 , x 3) нам захочется перейти к базису Б (x 2 , x 3), то

Базисное решение, соответствующее базису Б (x 2 , x 3): (0;19/4; 7/8).
Из трех найденных базисных решений решение, соответствующее базису Б (x 1 , x 3) - отрицательное x 1 < 0, нас в ЗЛП интересуют только неотрицательные решения.

Если задача ЛП имеет решение, то оно достигается на множестве базисных неотрицательных решений системы ограничений канонической формы.

Поэтому идея симплекс-метода и состоит в последовательном переходе от одного базиса к другому, лучшему с точки зрения значения целевой функции.

Пример . Решить задачу ЛП.

Функцию F = x 2 - x 1 → min необходимо минимизировать при заданной системе ограничений:
-2x 1 + x 2 + x 3 = 2
x 1 + x 2 + x 5 = 5
x 1 - 2x 2 + x 4 = 12
x i ≥ 0, i = 1, 5

Эти ограничения могут рассматриваться как произошедшие из неравенств, а переменные x 3 , x 5 , x 4 - как дополнительные.
Запишем ограничения, выбрав базис из переменных Б { x 3 , x 4 , x 5 }:

Этому базису соответствует базисное неотрицательное решение
x 1 = 0, x 2 = 0, x 3 = 2, x 4 = 2, x 5 = 5 или (0, 0, 2, 2, 5).
Теперь нужно выразить F через небазисные переменные, в нашем случае это уже сделано: F = x 2 - x 1 .
Проверим, достигла ли функция F своего минимального значения. Для этого базисного решения F = 0 - 0 = 0 - значение функции равно 0. Но его можно уменьшить, если x 1 будет возрастать, т. к. коэффициент в функции при x 1 отрицателен. Однако при увеличении x 1 значения переменных x 4 , x 5 уменьшаются (смотрите второе и третье равенство системы ограничений). Переменная x 1 не может быть увеличена больше чем до 2, иначе x 4 станет отрицательной (ввиду равенства 2), и не больше, чем до 5, иначе x 5 - отрицателен. Итак, из анализа равенств следует, что переменную x 1 можно увеличить до 2, при этом значение функции уменьшится.
Перейдем к новому базису Б 2 , введя переменную x 1 в базис вместо x 4 .
Б 2 {x 1 , x 3 , x 5 }.
Выразим эти базисные переменные через небазисные. Для этого сначала выразим x 1 из второго уравнения и подставим в остальные, в том числе и в функцию.

Базисное решение, соответствующее базису Б 3 {х 1 , х 2 , х 3 }, выписывается (4, 1, 9, 0, 0), и функция принимает значение F = -3. Заметим, что значение F уменьшилось, т. е. улучшилось по сравнению с предыдущим базисом.
Посмотрев на вид целевой функции , заметим, что улучшить, т. е. уменьшить значение F нельзя и только при x 4 = 0, x 5 = 0 значение F = -3. как только x 4 , x 5 станут положительными, значение F только увеличится, т. к. коэффициенты при x 4 , x 5 положительны. Значит, функция F достигла своего оптимального значения F * = -3. Итак, наименьшее значение F , равное -3, достигается при x 1 * = 4, x 2 * = 1, x 3 * = 9, x 4 * = 0, x 5 * = 0.

На этом примере очень наглядно продемонстрирована идея метода: постепенно переходя от базиса к базису, при этом всегда обращая внимание на значения целевой функции, которые должны улучшиться, мы приходим к такому базису, в котором значение целевой функции улучшить нельзя, оно оптимально. Заметим, что базисов конечное число, поэтому количество шагов, совершаемых нами до того нужного базиса, конечно.

Двойственный симплексный метод основан на теории двойственности (см. решение двойственной задачи) и используется для решения задач линейного программирования, свободные члены которых b i могут принимать любые значения, а система ограничений задана неравенствами смысла «≤», «≥» или равенством «=».

Назначение сервиса . Онлайн-калькулятор используется для решения задач линейного программирования P-методом в следующих формах записи: базовой форме записи симплекс-метода, в виде симплексной таблицы, модифицированным симплекс-методом.

Инструкция для решения задач двойственным симплекс-методом . Выберите количество переменных и количество строк (количество ограничений), нажмите Далее. Полученное решение сохраняется в файле Word . При этом ограничения типа x i ≥0 не учитывайте.

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

В P-методе оптимальный план получается в результате движения по псевдопланам. Псевдоплан - план, в котором условия оптимальности удовлетворяются, а среди значений базисных переменных x i имеются отрицательные числа. Алгоритм двойственного симплекс-метода включает следующие этапы:

  1. Составление псевдоплана . Систему ограничений исходной задачи приводят к системе неравенств смысла «≤».
  2. Проверка плана на оптимальность . Если в полученном опорном плане не выполняется условие оптимальности, то задача решается симплексным методом .
  3. Выбор ведущих строки и столбца . Среди отрицательных значений базисных переменных выбираются наибольшие по абсолютной величине. Строка, соответствующая этому значению, является ведущей.
  4. Расчет нового опорного плана . Новый план получается в результате пересчета симплексной таблицы методом Жордана-Гаусса . Далее переход к этапу 2.
Двойственный симплекс-метод заключается в построении оптимального недопустимого плана с последующим преобразованием его в допустимый, не нарушая оптимальности.

Алгоритм двойственного симплекс-метода

1) выбирают разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных членов;
2) выбирают разрешающий столбец по наименьшему по абсолютной величине отношению элементов L строки к отрицательным элементам разрешающей строки;
3) пересчитывают симплексную таблицу по правилам обычного симплекс-метода;
4) решение проверяют на оптимальность. Признаком получения допустимого оптимального решения является отсутствие в столбце свободных членов отрицательных элементов.
Замечания
1. Если в разрешающей строке нет ни одного отрицательного элемента, задача неразрешима.
2. Если ограничения задачи заданы неравенствами типа «≥», двойственный симплекс-метод позволяет избавиться от необходимости введения искусственных переменных.

Особенности двойственного симплекс-метода Используются при решении методом Гомори .

Пример №1 . Решить задачу, используя алгоритм двойственного симплекс-метода

L = x 1 + 4x 2 → min
2х 1 +3х 2 +4х 3 ≥ 20
5х 1 -х 2 +2х 3 ≥ 12
х 1 +2х 2 -х 3 ≤ 2
х 1 +4х 2 -2х 3 ≤ 1
х 1 , х 2 , х 3 ≥ 0

Составляем исходную симплексную таблицу.

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 -2 -3 -4 1 0 0 0 -20
x 5 -5 1 -2 0 1 0 0 -12
x 6 1 2 -1 0 0 1 0 2
x 7 -1 4 -2 0 0 0 1 1
L -1 -4 -1 0 0 0 0 0

Отсутствие в L строке положительных оценок свидетельствует об оптимальности исходного решения, а наличие в столбце свободных членов отрицательных элементов – о его недопустимости. Согласно алгоритму двойственного симплекс-метода выбираем разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных элементов. В нашем примере разрешающая строка – первая. Разрешающий столбец выбирается в соответствии с правилом, изложенным в пункте 2 схемы алгоритма. Разрешающий элемент равен (-4). После пересчета получаем следующую таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 1/2 3/4 1 -1/4 0 0 0 5
х 5 -4 5/2 0 -1/2 1 0 0 -2
х 6 3/2 11/4 0 -1/4 0 1 0 7
х 7 0 11/2 0 -1/2 0 0 1 11
L -1/2 -13/4 0 -1/4 0 0 0 5

Аналогично рассуждая, получим еще одну таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 0 17/16 1 -5/16 1/8 0 0 19/4
х 1 1 -5/8 0 1/8 -1/4 0 0 1/2
х 6 0 59/16 0 -7/16 3/8 1 0 25/4
х 7 0 11/2 0 -1/2 0 0 1 11
L 0 -57/16 0 -3/16 -1/8 0 0 21/4

Отсутствие в столбце свободных членов отрицательных элементов свидетельствует о том, что получено оптимальное решение Lmin=21/4, X min(1/2; 0; 19/4; 0; 25/4; 11).
Замечание . Если решение ЗЛП и недопустимо и неоптимально, то сначала получаем допустимое решение, используя алгоритм двойственного симплекс-метода, а затем по правилам обычного симплекс-метода получаем оптимальное решение.

Пример .
L = 5x 1 – x 2 – x 3 → max
или

Составляем исходную симплекс-таблицу

x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 0 -1 -2 1 0 0 0 -9
x 5 1 -1 0 0 1 0 0 -1
x 6 -1 -1 3 0 0 1 0 -8
x 7 1 0 -1 0 0 0 1 4
L -5 1 4 0 0 0 0 0

Решение недопустимо, так как в столбце свободных членов есть отрицательные элементы и неоптимально, так как в строке L есть отрицательная оценка (-5). Получаем сначала допустимое решение, используя алгоритм двойственного симплекс-метода. После пересчета получаем следующую симплексную таблицу

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
x 5 1 0 2 -1 1 0 0 8
x 6 -1 0 5 -1 0 1 0 1
x 7 -1 0 -1 0 0 0 1 4
L -5 0 2 1 0 0 0 -9
В столбце свободных членов нет отрицательных элементов, но в строке L есть отрицательная оценка (-5), значит решение допустимо, неоптимально.
Используем обычный симплекс-метод и получаем следующие таблицы
Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
х 5 0 0 3 -1 1 0 -1 4
х 6 0 0 -4 -1 0 1 1 5
x 1 1 0 -1 0 0 0 1 4
L 0 0 -3 1 0 0 5 11
Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 0 -1/2 0 -1/2 -1/2 13/2
x 5 1 0 0 -1/4 1 -3/4 -7/4 1/4
x 6 0 0 1 -1/4 0 1/4 1/4 5/4
x 1 0 0 0 -1/4 0 1/4 5/4 21/4
L 0 0 0 1/4 0 3/4 23/4 59/4

Отсутствие в строке L отрицательных оценок свидетельствует о том, что получено оптимальное решение.
Lmax=59/4, X max(21/4; 13/2; 5/4; 0; 1/4; 0; 0).

Пример . Предприятию необходимо выпустить по плану продукции А1 единиц, А2 единиц, А3 единиц. Каждый вид изделия может производиться на двух машинах.
Как распределить работу машин, чтобы общие затраты времени на выполнение плана были минимальны? Дана матрица затрат и ресурс времени каждой машины. Записать модель исследуемой операции в форме, допускающей использование P–метода.

Известно, что содержание n питательных веществ A, B и С в рационе должно быть не менее m1, m2, m3 единиц соответственно. Указанные питательные вещества содержат три вида продуктов. Содержание единиц питательных веществ в одном килограмме каждого из видов продукта приведено в таблице. определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах.

Задание : Решить задачу, используя алгоритм двойственного симплекс-метода.
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = 4x 1 + 2x 2 + x 3 при следующих условиях-ограничений.
- x 1 - x 2 ≤-10
2x 1 + x 2 - x 3 ≤8
переход к канонической форме).
В первом неравенстве смысла (≤) вводим базисную переменную x 4 . Во втором неравенстве смысла (≤) вводим базисную переменную x 5 .
-1x 1 -1x 2 + 0x 3 + 1x 4 + 0x 5 = -10
2x 1 + 1x 2 -1x 3 + 0x 4 + 1x 5 = 8

A =
-1 -1 0 1 0
2 1 -1 0 1
Решим систему уравнений относительно базисных переменных:
x 4 , x 5 ,
Полагая, что свободные переменные равны нулю, получим первый опорный план:
X1 = (0,0,0,-10,8)
Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0

Итерация №1

План 0 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.


Ведущей будет первая строка, а переменную x 4 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x 2 необходимо ввести в базис.

Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0
θ 0 -4: (-1) = 4 -2: (-1) = 2 - - -

4. Пересчет симплекс-таблицы. Выполняем преобразования симплексной таблицы методом Жордано-Гаусса .
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0

Представим расчет каждого элемента в виде таблицы:
B x 1 x 2 x 3 x 4 x 5
-10: -1 -1: -1 -1: -1 0: -1 1: -1 0: -1
8-(-10 1):-1 2-(-1 1):-1 1-(-1 1):-1 -1-(0 1):-1 0-(1 1):-1 1-(0 1):-1
0-(-10 -2):-1 -4-(-1 -2):-1 -2-(-1 -2):-1 -1-(0 -2):-1 0-(1 -2):-1 0-(0 -2):-1

Итерация №2
1. Проверка критерия оптимальности.
План 1 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной.
Среди отрицательных значений базисных переменных выбираем наибольший по модулю.
Ведущей будет вторая строка, а переменную x 5 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует третьему столбцу, т.е. переменную x 3 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-1).

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0
θ 0 - - -1: (-1) = 1 - -

4. Пересчет симплекс-таблицы. Выполняем преобразования.
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1
Или более подробно:
B x 1 x 2 x 3 x 4 x 5
10-(-2 0):-1 1-(1 0):-1 1-(0 0):-1 0-(-1 0):-1 -1-(1 0):-1 0-(1 0):-1
-2: -1 1: -1 0: -1 -1: -1 1: -1 1: -1
20-(-2 -1):-1 -2-(1 -1):-1 0-(0 -1):-1 -1-(-1 -1):-1 -2-(1 -1):-1 0-(1 -1):-1

В базисном столбце все элементы положительные. Переходим к основному алгоритму симплекс-метода.

Итерация №3
1. Проверка критерия оптимальности.
Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1

Оптимальный план можно записать так: x 1 = 0, x 2 = 10, x 3 = 2
F(X) = 2 10 + 1 2 = 22

Пример №2 . Задание.
5x 1 + 6x 2 ≥1
15x 1 ≥1
7x 1 + 12x 2 ≥1
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = x 1 + x 2 при следующих условиях-ограничений.
- 5x 1 - 6x 2 ≤-1
- 15x 1 ≤-1
- 7x 1 - 12x 2 ≤-1
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме ).
В 1-м неравенстве смысла (≤) вводим базисную переменную x 3 . В 2-м неравенстве смысла (≤) вводим базисную переменную x 4 . В 3-м неравенстве смысла (≤) вводим базисную переменную x 5 .
-5x 1 -6x 2 + 1x 3 + 0x 4 + 0x 5 = -1
-15x 1 + 0x 2 + 0x 3 + 1x 4 + 0x 5 = -1
-7x 1 -12x 2 + 0x 3 + 0x 4 + 1x 5 = -1
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

A= -5 -6 1 0 0
-15 0 0 1 0
-7 -12 0 0 1
Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.

x 3 , x 4 , x 5 ,
Полагая, что свободные переменные равны 0, получим первый опорный план:
X1 = (0,0,-1,-1,-1)
Базисное решение называется допустимым, если оно неотрицательно.
Базис B x 1 x 2 x 3 x 4 x 5
x 3 -1 -5 -6 1 0 0
x 4 -1 -15 0 0 1 0
x 5 -1 -7 -12 0 0 1
F(X0) 0 -1 -1 0 0 0

Пример решения Р-методом

Условие задачи . Предприятию необходимо выпустить по плану продукции А 1 – 500 единиц, А 2 – 300 единиц, А 3 – 450 единиц. Каждый вид изделия может производиться на двух машинах.
Как распределить работу машин, чтобы общие затраты времени на выполнение плана были минимальны? Дана матрица затрат и ресурс времени каждой машины. Записать модель исследуемой операции в форме, допускающей использование P – метода.
Составим математическую модель задачи.
2x 11 + 3x 12 +3x 13 ≤ 1500
5x 21 + 4x 22 +x 23 ≤ 1000
x 11 + x 21 ≥ 500
x 12 + x 22 ≥ 300
x 13 + x 23 ≥ 450
Целевая функция:
2x 11 + 3x 12 +3x 13 + 5x 21 + 4x 22 +x 23 → min
Запишем в виде, решаемом Р-методом.
2x 11 + 3x 12 +3x 13 ≤ 1500
5x 21 + 4x 22 +x 23 ≤ 1000
-x 11 -x 21 ≤ -500
-x 12 -x 22 ≤ -300
-x 13 -x 23 ≤ -450
Определим минимальное значение целевой функции F(X) = 2x 1 +3x 2 +3x 3 +5x 4 +4x 5 +x 6 при следующих условиях-ограничений.
2x 1 +3x 2 +3x 3 ≤1500
5x 4 +4x 5 +x 6 ≤1000
-x 1 -x 4 ≤-500
-x 2 -x 5 ≤-300
-x 3 -x 6 ≤-450
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).
2x 1 + 3x 2 + 3x 3 + 0x 4 + 0x 5 + 0x 6 + 1x 7 + 0x 8 + 0x 9 + 0x 10 + 0x 11 = 1500
0x 1 + 0x 2 + 0x 3 + 5x 4 + 4x 5 + 1x 6 + 0x 7 + 1x 8 + 0x 9 + 0x 10 + 0x 11 = 1000
-1x 1 + 0x 2 + 0x 3 -1x 4 + 0x 5 + 0x 6 + 0x 7 + 0x 8 + 1x 9 + 0x 10 + 0x 11 = -500
0x 1 -1x 2 + 0x 3 + 0x 4 -1x 5 + 0x 6 + 0x 7 + 0x 8 + 0x 9 + 1x 10 + 0x 11 = -300
0x 1 + 0x 2 -1x 3 + 0x 4 + 0x 5 -1x 6 + 0x 7 + 0x 8 + 0x 9 + 0x 10 + 1x 11 = -450
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

2

3

3

0

0

0

1

0

0

0

0

0

0

0

5

4

1

0

1

0

0

0

-1

0

0

-1

0

0

0

0

1

0

0

0

-1

0

0

-1

0

0

0

0

1

0

0

0

-1

0

0

-1

0

0

0

0

1
Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.
Решим систему уравнений относительно базисных переменных:
x 7 , x 8 , x 9 , x 10 , x 11 ,
Полагая, что свободные переменные равны 0, получим первый опорный план:
X1 = (0,0,0,0,0,0,1500,1000,-500,-300,-450)

План

Базис

В

x 1

x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

x 10

x 11

0

x 7

1500

2

3

3

0

0

0

1

0

0

0

0


x 8

1000

0

0

0

5

4

1

0

1

0

0

0


x 9

-500

-1

0

0

-1

0

0

0

0

1

0

0


x 10

-300

0

-1

0

0

-1

0

0

0

0

1

0


x 11

-450

0

0

-1

0

0

-1

0

0

0

0

1

Индексная строка

F(X0)

0

-2

-3

-3

-5

-4

-1

0

0

0

0

0

θ



2



5







Оптимальный план можно записать так: x 5 = 133.33, x 8 = 16.67, x 1 = 500, x 2 = 166.67, x 6 = 450
F(X) = 2*500 + 3*166.67 + 4*133.33 + 1*450 = 2483.33

Пример №1 . Предприятию необходимо выпустить по плану продукции, не менее, чем: А 1 - 500 единиц, А2 – 300 единиц, А 3 – 450 единиц. Каждый вид изделия может производиться на двух машинах. Как распределить работу машин, чтобы общие затраты времени на выполнение плана были минимальными, если задана матрица затрат. Ресурс времени каждой машины приведен справа от таблицы. Записать модель исследуемой операции в форме, допускающей использование Р-метода. Решить задачу Р-методом.

Пример №2 . Из 4 видов кормов необходимо составить рацион, в состав которого должно входить не менее в1 ед. вещества А, в 2 ед. вещества В и в 3 ед. вещества С. Количество единиц вещества, содержащегося в 1 кг корма каждого вида, указано в соответствующей таблице. В ней же приведена цена 1 кг корма каждого вида.
Составить рацион, содержащий не менее нужного количества указанных питательных веществ и имеющий минимальную стоимость.

Линейное программирование - это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача линейного программирования математически записывается следующим образом:

где X = (x 1 , x 2 , ... , x n ) ; W – область допустимых значений переменных x 1 , x 2 , ... , x n ;f(Х) – целевая функция.

Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое, что при любом .

Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешимой, если целевая функция f(Х) не ограничена сверху на допустимом множестве W .

Методы решения оптимизационных задач зависят как от вида целевой функции f(Х) , так и от строения допустимого множества W . Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

Характерные черты задач линейного программирования следующие:

    показатель оптимальности f(X) представляет собой линейную функцию от элементов решения X = (x 1 , x 2 , ... , x n ) ;

    ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

(2) (3) (4) (5)

При этом система линейных уравнений (3) и неравенств (4), (5), определяющая допустимое множество решений задачи W , называется системой ограничений задачи линейного программирования, а линейная функция f(Х) называется целевой функцией или критерием оптимальности .

Допустимое решение – это совокупность чисел (план ) X = (x 1 , x 2 , ... , x n ) , удовлетворяющих ограничениям задачи. Оптимальное решение – это план, при котором целевая функция принимает свое максимальное (минимальное) значение.

Если математическая модель задачи линейного программирования имеет вид:

то говорят, что задача представлена в канонической форме .

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалента минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

    если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;

    если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;

    если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;

    если некоторая переменная x j не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными: x 3 = x 3 + - x 3 - , где x 3 + , x 3 - ≥ 0 .

Пример 1 . Приведение к канонической форме задачи линейного программирования:

min L = 2x 1 + x 2 - x 3 ; 2x 2 - x 3 ≤ 5; x 1 + x 2 - x 3 ≥ -1; 2x 1 - x 2 ≤ -3; x 1 ≤ 0; x 2 ≥ 0; x 3 ≥ 0.

Введем в каждое уравнение системы ограничений выравнивающие переменные x 4 , x 5 , x 6 . Система запишется в виде равенств, причем в первое и третье уравнения системы ограничений переменные x 4 , x 6 вводятся в левую часть со знаком "+", а во второе уравнение переменная x 5 вводится со знаком "-".

2x 2 - x 3 + x 4 = 5; x 1 + x 2 - x 3 - x 5 = -1; 2x 1 - x 2 + x 6 = -3; x 4 ≥ 0; x 5 ≥ 0; x 6 ≥ 0.

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

2x 2 - x 3 + x 4 = 5; -x 1 - x 2 + x 3 + x 5 = 1; -2x 1 + x 2 - x 6 = 3.

Симплексный метод решения задач линейного программирования.

Алгоритм симплекс-метода находит оптимальное решение, рассматривая ограниченное количество допустимых базисных решений. Алгоритм симплекс-метода всегда начинается с некоторого допустимого базисного решения и затем пытается найти другое допустимое базисное решение, "улучшающее" значение целевой функции. Это возможно только в том случае, если возрастание какой-либо нулевой (небазисной) переменной ведет к улучшению значения целевой функции. Но для того, чтобы небазисная переменная стала положительной, надо одну из текущих базисных переменных сделать нулевой, т.е. перевести в небазисные. Это необходимо, чтобы новое решение содержало в точности m базисных переменных. В соответствии с терминологией симплекс-метода выбранная нулевая переменная называется вводимой (в базис), а удаляемая базисная переменная - исключаемой (из базиса).

Два правила выбора вводимых и исключающих переменных в симплекс-методе назовем условием оптимальности и условием допустимости . Сформулируем эти правила, а также рассмотрим последовательность действий, выполняемых при реализации симплекс-метода.

Условие оптимальности. Вводимой переменной в задаче максимизации (минимизации) является небазисная переменная, имеющая наибольший отрицательный (положительный) коэффициент в целевой -строке. Если в целевой -строке есть несколько таких коэффициентов, то выбор вводимой переменной делается произвольно. Оптимальное решение достигнуто тогда, когда в целевой -строке все коэффициенты при небазисных переменных будут неотрицательными (неположительными).

Условие допустимости. Как в задаче максимизации, так и в задаче минимизации в качестве исключаемой выбирается базисная переменная, для которой отношение значения правой части ограничения к положительному коэффициенту ведущего столбца минимально. Если базисных переменных с таким свойством несколько, то выбор исключаемой переменной выполняется произвольно.

Приведем алгоритм решения задачи линейного программирования на отыскание максимума с помощью симплекс таблиц.

F = с 1 х 1 +с 2 х 2 +…+с n x n max

х 1 0, х 2 0,…, х n 0.

1-й шаг . Вводим добавочные переменные и записываем полученную систему уравнений и линейную функцию в виде расширенной системы.

F–c 1 x 1 –c 2 x 2 –…–c n x n =0=c p.

2-й шаг. Составляем первоначальную симплекс-таблицу.

Переменные

Основные и добавочные переменные

свободные члены

(решение)

Оценочное

отношение

3-й шаг. Проверяем выполнение критерия оптимальности – наличие в последней строке отрицательных коэффициентов. Если таких нет, то решение оптимально и F * =c o , базисные переменные равны соответствующим коэффициентам b j , неосновные переменные равны нулю, т. е. X * =(b 1 ,b 2 ,…, b m , 0, …, 0).

4-й шаг . Если критерий оптимальности не выполнен, то наибольший по модулю отрицательный коэффициент в последней (оценочной) строке, определяет разрешающий столбец s.

Для определения разрешающей строки, рассчитаем оценочные отношения и заполним последний столбец таблицы.

Оценочное отношение i-ой строки равно

    , если b i и a is имеют разные знаки;

    , если b i =0 и а is <0;

    , если a is =0;

    0, если b i =0 и а is >0;

В столбце оценочных отношений находим минимальный элемент min который определяет разрешающую строку g.

Если минимума нет, то задача не имеет конечного оптимума I и является неразрешимой.

На пересечении разрешающих строки и столбца находится разрешающий элемент а gs .

5-й шаг . Строим следующую таблицу. Для этого

Переходим к третьему шагу.

М-метод Иногда при решении ЗЛП в матрице коэффициентов при неизвестных системы ограничений нет единичных столбцов, из которых можно составить единичную матрицу, т.е. возникает проблема выбора базисных переменных, либо первоначальное решение является недопустимым. В таких случаях используют метод искусственного базиса (М - метод). Во все ограничения, где нет базисных переменных, вводятся искусственные переменные . В целевую функцию искусственные переменные вводятся с коэффициентом (- М) для задач на max и с коэффициентом (+ М) для задач на min, где М – достаточно большое положительное число . Затем решается расширенная задача по правилам симплексного метода. Если все искусственные переменные окажутся равными нулю, т.е. будут исключены из базиса, то либо будет получено оптимальное решение исходной задачи, либо исходная задача решается далее и находится ее оптимальное решение или устанавливается ее неразрешимость. Если хотя бы одна из искусственных переменных окажется отличной от нуля, то исходная задача не имеет решения

Рассмотрен пример решения задачи симплекс методом, а также пример решения двойственной задачи.

Содержание

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 - количество реализованных товаров, в тыс. руб., 1, 2, 3 - ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

0}}}{~}" title="delim{lbrace}{matrix{4}{1}{{2x_1 + 3x_2 + 6x_3= 0}}}{~}">

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс. руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Title="delim{lbrace}{matrix{4}{1}{{2y_1 + 4y_2 + 4y_3>=4} {3y_1 + 2y_2 + 6y_3>=5} {6y_1 + 4y_2 + 8y_3>=4} {y_1, y_2, y_3>= 0}}}{~}">

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

Y 1 = 0; y 2 = 0; y 3 = 1; Z min = 160;




Top