Действия с непрерывными процентами. Постоянная сила роста

2.2.3. Переменная ставка процентов

Необходимо отметить, что основная формула сложных процентов предполагает постоянную процентную ставку на протяжении всего срока начисления процентов. Однако, предоставляя долгосрочную ссуду, часто используют изменяющиеся во времени, но заранее зафиксированные для каждого периода ставки сложных процентов. В случае использования переменных процентных ставок, формула наращения имеет следующий вид:

где i k – последовательные во времени значения процентных ставок;

n k – длительность периодов, в течение которых используются соответствующие ставки.

Пример. Фирма получила кредит в банке на сумму 100"000 долларов сроком на 5 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-го года предусмотрена надбавка к процентной ставке в размере 1,5%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.

Решение:

Используем формулу переменных процентных ставок:

FV = PV (1 + i 1) n 1 (1 + i 2) n 2 … (1 + i k ) n k =

100"000 (1 + 0,1) (1 + 0,115) (1 + 0,125) 3 =

174"632,51 долларов

Таким образом, сумма, подлежащая погашению в конце срока займа, составит 174"632,51 доллара, из которых 100"000 долларов являются непосредственно суммой долга, а 74"632,51 доллара – проценты по долгу.

2.2.4. Непрерывное начисление процентов

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно , за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

k н = (1 + j / m ) m = (1 + j / 365) 365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j :

где e ≈ 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV e j n = P e δ n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом δ , в отличие от ставки дискретных процентов (j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Решение:

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100"000 (1 + 0,08) 3 = 125"971,2 долларов;

ежедневное начисление процентов

FV = 100"000 (1 + 0,08 / 365) 365 3 = 127"121,6 долларов

непрерывное начисление процентов

FV = 100"000 e 0,08 3 = 127"124,9 долларов.

Графически изменение наращенной суммы в зависимости от частоты начисления имеет следующий вид:

При дискретном начислении каждая "ступенька" характеризует прирост основной суммы долга в результате очередного начисления процентов. Обратите внимание, что высота "ступенек" все время возрастает.

В рамках одного года одной "ступеньке" на левом графике соответствует две "ступеньки" на среднем графике меньшего размера, но в сумме они превышают высоту "ступеньки" однократного начисления. Еще более быстрыми темпами идет наращение при непрерывном начислении процентов, что и показывает график справа.

Таким образом, в зависимости от частоты начисления процентов наращение первоначальной суммы осуществляется с различными темпами, причем максимально возможное наращение осуществляется при бесконечном дроблении годового интервала.

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов

2.2.5. Определение срока ссуды и величины процентной ставки

Так же как для простых процентов, для сложных процентов необходимо иметь формулы, позволяющие определить недостающие параметры финансовой операции:

    срок ссуды:

n = / = / ;

    ставка сложных процентов:

Таким образом, увеличение вклада за три года в три раза эквивалентно годовой процентной ставке в 44,3%, поэтому размещение денег под 46% годовых будет более выгодно.

2.3. Эквивалентность ставок и замена платежей

2.3.1. Эквивалентность процентных ставок

Достаточно часто в практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций и коммерческих сделок. Условия финансово-коммерческих операций могут быть весьма разнообразными и напрямую несопоставимыми. Для сопоставления альтернативных вариантов ставки, используемые в условиях контрактов, приводят к единообразному показателю.

Эквивалентная процентная ставка – это ставка, которая для рассматриваемой финансовой операции даст точно такой же денежный результат (наращенную сумму), что и применяемая в этой операции ставка.

Классическим примером эквивалентности являются номинальная и эффективная ставка процентов:

i = (1 + j / m ) m - 1.

j = m [(1 + i ) 1 / m - 1].

Эффективная ставка измеряет тот относительный доход, который может быть получен в целом за год, т.е. совершенно безразлично – применять ли ставку j при начислении процентов m раз в год или годовую ставку i , – и та, и другая ставки эквивалентны в финансовом отношении.

Поэтому совершенно не имеет значения, какую из приведенных ставок указывать в финансовых условиях, поскольку использование их дает одну и ту же наращенную сумму. В США в практических расчетах применяют номинальную ставку, а в европейских странах предпочитают эффективную ставку процентов.

Если две номинальные ставки определяют одну и ту же эффективную ставку процентов, то они называются эквивалентными.

Пример. Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 25%?

Решение:

Находим номинальную ставку для полугодового начисления процентов:

j = m [(1 + i ) 1 / m - 1] = 2[(1 + 0,25) 1/2 - 1] = 0,23607.

Находим номинальную ставку для ежемесячного начисления процентов:

j = m [(1 + i ) 1 / m - 1] = 4[(1 + 0,25) 1/12 - 1] = 0,22523.

Таким образом, номинальные ставки 23,61% с полугодовым начислением процентов и 22,52% с ежемесячным начислением процентов являются эквивалентными.

При выводе равенств, связывающих эквивалентные ставки, приравниваются друг к другу множители наращения, что дает возможность использовать формулы эквивалентности простых и сложных ставок:

простая процентная ставка:

i = [(1 + j / m ) m n - 1] / n ;

сложная процентная ставка:

Пример. Предполагается поместить капитал на 4 года либо под сложную процентную ставку 20% годовых с полугодовым начислением процентов, либо под простую процентную ставку 26% годовых. Найти оптимальный вариант.

Решение:

Находим для сложной процентной ставки эквивалентную простую ставку:

i = [(1 + j / m ) m n - 1] / n = [(1 + 0,2 / 2) 2 4 - 1] / 4 = 0,2859.

Таким образом, эквивалентная сложной ставке по первому варианту простая процентная ставка составляет 28,59% годовых, что выше предлагаемой простой ставки в 26% годовых по второму варианту, следовательно, выгоднее разместить капитал по первому варианту, т.е. под 20% годовых с полугодовым начислением процентов.

При многократном начислении простых процентов начисление делается по отношению к исходной сумме и представляет собой каждый раз одну и ту же величину. Иначе говоря,

P - исходная сумма;

S - наращенная сумма (исходная сумма вместе с начисленными процентами);

i - процентная ставка, выраженная в долях;

n - число периодов начисления.

В этом случае говорят о простой процентной ставке.

При многократном начислении сложных процентов начисление каждый раз делается по отношению к сумме с уже начисленными ранее процентами. Иначе говоря, S = (1 + i) n P

В этом случае говорят о сложной процентной ставке .

Часто рассматривается следующая ситуация. Годовая процентная ставка составляет j, а проценты начисляются m раз в году по сложной процентной ставке равной j / m (например, поквартально, тогда m = 4 или ежемесячно, тогда m = 12). Тогда формула для наращенной суммы будет выглядеть:

В этом случае говорят о номинальной процентной ставке.

Иногда рассматривают ситуацию так называемых непрерывно начисляемых процентов, то есть годовое число периодов начисления m устремляют к бесконечности. Процентную ставку обозначают δ, а формула для наращенной суммы:

В этом случае номинальную процентную ставку δ называют сила роста .

Реальная и номинальная ставки

Различают номинальную и реальную процентную ставку.

Реальная процентная ставка - это процентная ставка, очищенная от инфляции. Взаимосвязь реальной, номинальной ставки и инфляции в общем случае описывается следующей (приближённой) формулой:

i r = i n − π

i n - номинальная процентная ставка; i r - реальная процентная ставка;

π - ожидаемый или планируемый уровень инфляции.

Ирвинг Фишер предложил более точную модель взаимосвязи реальной, номинальной ставок и инфляции, выражаемую названной в его честь формулой Фишера:

При небольших значениях уровня инфляции π результаты мало отличаются, но если инфляция велика, то следует применять формулу Фишера.

Формула сложных процентов

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

Проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов.

Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:



S = P + I = P + P i = P (1 + i )– за один период начисления;

S = (P + I ) (1 + i ) = P (1 + i ) (1 + i ) = P (1 + i ) 2

– за два периода начисления; отсюда, за n периодов начисления формула примет вид: S= P (1 + i ) n = P k н , где

S – наращенная сумма долга;

P – первоначальная сумма долга;

i – ставка процентов в периоде начисления;

n – количество периодов начисления;

k н – коэффициент (множитель) наращения сложных процентов.

Эта формула называется формулой сложных процентов.

Различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.

Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста. Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен: (1 + i ).

Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид: (1 + i ) n .

Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Приложении 2. Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i .



При краткосрочных ссудах начисление по простым процентам предпочтительнее, чем по сложным процентам; при сроке в один год разница отсутствует, но при среднесрочных и долгосрочных ссудах наращенная сумма, рассчитанная по сложным процентам значительно выше, чем по простым.

При любом i ,

если 0 < n < 1, то (1 + ni ) > (1 + i ) n ;

если n > 1, то (1 + ni ) < (1 + i ) n ;

если n = 1, то (1 + ni ) = (1 + i ) n .

Таким образом, для лиц, предоставляющих кредит:

Более выгодна схема простых процентов, если срок ссуды менее года (проценты начисляются однократно в конце года);

Более выгодной является схема сложных процентов, если срок ссуды превышает один год;

Обе схемы дают одинаковый результат при продолжительности периода один год и однократном начислении процентов.

Пример 1. Сумма в размере 2"000 руб. дана в долг на 2 года по ставке процента равной 10% годовых. Определить проценты и сумму, подлежащую возврату.

Решение:

Наращенная сумма

S= P (1 + i ) n = 2"000 (1 + 0,1) 2 = 2"420 руб.

S = P k н = 2"000 1,21 = 2"420 руб.,

где k н = 1,21

Сумма начисленных процентов

I = S - P = 2"420 - 2"000 = 420 руб.

Таким образом, через два года необходимо вернуть общую сумму в размере 2"420 руб., из которой 2"000 руб. составляет долг, а 420 руб. – "цена долга".

Достаточно часто финансовые контракты заключаются на период, отличающийся от целого числа лет.

В случае, когда срок финансовой операции выражен дробным числом лет, начисление процентов возможно с использованием двух методов:

-общий метод заключается в прямом расчете по формуле сложных процентов:

S = P (1 + i ) n , n = a + b,

где n – период сделки;

a – целое число лет;

b – дробная часть года.

-смешанный метод расчета предполагает для целого числа лет периода начисления процентов использовать формулу сложных процентов, а для дробной части года – формулу простых процентов:

S= P (1 + i ) a (1 + bi ).

Поскольку b < 1, то (1 + bi ) > (1 + i ) a , следовательно, наращенная сумма будет больше при использовании смешанной схемы.

Пример 2. В банке получен кредит под 9,5% годовых в размере 250 тыс. руб. со сроком погашения через два года и 9 месяцев. Определить сумму, которую необходимо вернуть по истечении срока займа двумя способами.

Решение:

Общий метод:

S = P (1 + i ) n = 250 (1 + 0,095) 2,9 = 320,87 тыс. руб.

Смешанный метод:

S = P (1 + i ) a (1 + bi ) =

250 (1 + 0,095) 2 (1 + 270/360 0,095) =

321,11 тыс. руб.

Таким образом, по общему методу проценты по кредиту составят

I = S - P = 320,87 - 250,00 = 70,84 тыс. руб.,

а по смешанному методу

I = S - P = 321,11 - 250,00 = 71,11 тыс. руб.

Как видно, смешанная схема более выгодна кредитору.

В практически финансово-кредитных операциях непрерывное наращение, т.е. наращение за бесконечно малые отрезки времени, применяется крайне редко. Существенно большее значение непрерывное наращение имеет в анализе сложных финансовых проблем, например, при обосновании и выборе инвестиционных решений, в финансовом проектировании.

При непрерывном наращении процентов применяют особый вид процентной ставки – силу роста.

Сила роста характеризует относительный прирост наращенной суммы за бесконечно малый промежуток времени. Она может быть постоянной или изменяться во времени.

Для того чтобы отличить непрерывную ставку от дискретной, обозначим силу роста как δ . Тогда наращенная сумма по непрерывной ставке составит:

Дискретные и непрерывные ставки наращения находятся в функциональной зависимости. Из равенства множителей наращения

следует: ,

.

Пример: Сумма, на которую начисляются непрерывные проценты, равна 2 млн. руб., сила роста 10%, срок 5 лет. Определить наращенную сумму.

Непрерывное наращение по ставке = 10% равнозначно наращению за тот же срок дискретных сложных процентов по годовой ставке:

В итоге получим:

Формула дисконтирования:

.

Дисконтный множитель равен .

Пример: Определить современную стоимость платежа, если наращенная стоимость равна 5000 тыс. руб. при условии дисконтирования по силе роста 12%. Срок платежа – 5 лет.

Для непрерывных процентов не существует различий между процентной и учетной ставками, поскольку сила роста - универсальный показатель. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции).

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов.

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно , за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

k н = (1 + j / m ) m = (1 + j / 365) 365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j :

где e ? 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV * e j * n = P * e д * n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом д , в отличие от ставки дискретных процентов (j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100"000 * (1 + 0,08) 3 = 125"971,2 долларов;

ежедневное начисление процентов

FV = 100"000 * (1 + 0,08 / 365) 365 * 3 = 127"121,6 долларов

непрерывное начисление процентов

FV = 100"000 * e 0,08 * 3 = 127"124,9 долларов.

14. Срок ссуды. Необходимые для расчета продолжительности ссуды в годах и днях формулы

срок в годах

срок в днях (напомним, что n = t/K ,где K - временная база)

.

Величина процентной ставки. Необходимость в расчете процентной ставки возникает при определении финансовой эффективности операции и при сравнении контрактов по их доходности в случаях, когда процентные ставки в явном виде не указаны. Решив выражения (1.1) и (1.8) относительно i или d ,получим

Срок платежа. Приведем формулы расчета п для различных условий наращения процентов и дисконтирования. При наращении по сложной годовой ставке i и по номинальной ставке j соответственно получим:

. (2.23) (2.24)

При дисконтировании по сложной годовой учетной ставке d и по номинальной учетной ставке f

. (2.25) (2.26)

При наращении по постоянной силе роста δ и по изменяющейся с постоянным темпом силе роста

.

Величина процентной ставки. Приведем формулы для расчета ставок i, j, d, f, δ для различных условий наращения процентов и дисконтирования. Они получены при решении уравнений, определяющих S и Р, относительно искомых ставок.

При наращении по сложной годовой ставке процентов и по номинальной ставке процента т раз в году находим

. (2.29) (2.30)

При дисконтировании по сложной учетной ставке и по номинальной учетной ставке

. (2.31) (2.32)

При наращении по постоянной силе роста

. (2.33)

При наращении по изменяющейся с постоянным темпом силе роста

.

15.Начисление простых процентов в условиях инфляции . Вернемся к проблеме обесценения денег при их наращении. В общем случае теперь можно записать:

Если наращение производится по простой ставке, имеем:

(2.43)

Как видим, увеличение наращенной суммы с учетом сохранения покупательной способности денег имеет место только тогда, когда 1 + ni > J p .

Пример. Допустим, на сумму 1,5 млн. руб. в течение трех месяцев начисляются простые проценты по ставке 50% годовых (K = 360). Наращенная сумма равна 1,6875 млн. руб. Если ежемесячная инфляция характеризуется темпами, приведенными в примере 2.22,б, то с учетом обесценения наращенная с0умма составит всего 1,6875/1,77 = 0,9534 млн. руб.

16.Начисление сложных процентов в условиях инфляции. Обратимся теперь к наращению по сложным процентам. Подставив в формулу (2.42) значения S и J p , находим

(2.44)

Величины, на которые умножается Р в формулах (2.43) и (2.44), представляют собой множители наращения с учетом инфляции. Пример. Найдем реальную ставку сложных процентов для условий: годовая инфляция 120%, брутто-ставка 150%:

= 0,1364, или 13,68% (по упрощенной формуле 30%).

Другой метод компенсации инфляции сводится к индексации первоначальной суммы платежа Р. В этом случае эта сумма периодически корректируется с помощью заранее оговоренного индекса. Такой метод принят в Великобритании. По определению

C = PJ p (1 + i ) n .

17.Расчёт реальной процентоной ставки в условиях инфляции. Перейдем теперь к решению обратной задачи - к измерению реальной ставки процента, т.е. доходности с учетом инфляции - определению i по заданному значению брутто-ставки. Если r - объявленная норма доходности (брутто-ставка), то искомый показатель доходности в виде годовой процентной ставки i можно определить при начислении простых процентов на основе (2.43) как

. (2.48)

Реальная доходность, как видим, здесь зависит от срока наращения процентов. Напомним, что фигурирующий в этой формуле индекс цен охватывает весь период начисления процентов.

Аналогичный по содержанию показатель, но при наращении по сложным процентам найдем на основе формулы (2.44).

Федеральное агентство по образованию и науке

Государственное образовательное учреждение высшего

профессионального образования

Тамбовский государственный университет имени Г.Р. Державина


на тему: «Действия с непрерывными процентами»


Выполнила

студентка 5 курса 502 группы

очной формы обучения Гегамян М.А.


Тамбов 2013г.


1.Постоянная сила роста <#"justify">1. Постоянная сила роста


При использовании дискретной номинальной ставки <#"55" src="doc_zip1.jpg" />


При переходе к непрерывным процентам получим:

Множитель наращения <#"20" src="doc_zip4.jpg" />, получим:

т.к. дискретные и непрерывные ставки функционально связаны друг с другом, то можно записать равенство множителей наращения

На первоначальный капитал 500 тыс. руб. начислили сложные проценты - 8% годовых в течении 4 лет. Определить наращенную сумму, если начисление процентов производится непрерывно.


Дисконтирование на основе непрерывных процентных ставок

В формуле (4.21) можно определить современную величину

Непрерывная процентная ставка, используемая при дисконтировании называется силой дисконта. Она равна силе роста, т.е. используется для дисконтирования силы дисконта или силы роста <#"justify">Пример

Определить современную стоимость платежа при условии, что дисконтирование производится по силе роста 12% и по дискретной сложной учетной ставке такого же размера.

Переменная сила роста


С помощью этой характеристики моделируются процессы наращения денежных сумм с изменяющейся процентной ставкой. Если сила роста описывается некоторой непрерывной функцией времени, то справедливы формулы.

Для наращенной суммы: <#"47" src="doc_zip13.jpg" />


Современная стоимость:

)Пусть сила роста <#"25" src="doc_zip15.jpg" /> в интервалы времени, тогда по истечению срока ссуды наращенная сумма составит:


Если срок наращения равен n, а средняя величина роста: , то

Определить множитель наращения при непрерывном начислении процентов в течение 5 лет. Если сила роста изменяется дискретно и соответствует: 1 год -7%, 2 и 3 - 8%, последние 2 года - 10%.

2)Сила роста непрерывно изменяется во времени и описывается уравнением:


где - начальная сила роста (при)

а - годовой прирост или снижение.

Вычислим степень множителя наращения:

Начальное значение силы роста 8%, процентная ставка непрерывная и линейно изменяется.

Прирост за год -2%, срок наращения - 5 лет. Найти множитель наращения.

) Сила роста изменяется в геометрической прогрессии, тогда


Множитель наращения: <#"50" src="doc_zip29.jpg" />


Определить множитель наращения при непрерывном начислении процентов в течении 5 лет, если начальная сила роста -10%, а процентная ставка ежегодно увеличивается на3%.


Срок ссуды определяется по формулам:

при наращении по постоянной ставке

при наращении по изменяющейся ставке, когда изменяется в геометрической прогрессии

Определить срок, необходимый для увеличения первоначальной в 3 раза при начислении по изменяющейся с постоянным темпом роста ставки непрерывных процентов, если начальная ставка - 15%, а годовой темп её роста -1,05

Эквивалентность процентных ставок


Ставки, обеспечивающие равноценность финансовых последствий называются эквивалентными или релятивными.

Равноценность финансовых последствий может быть обеспечена, если наблюдается равенство множителей наращения <#"23" src="doc_zip36.jpg" />;


2)наращенная сумма <#"41" src="doc_zip37.jpg" />


Если, то множители наращения равны



Если срок ссуды меньше года, то и эквивалентность определяется для двух случаев равных временных баз и разных временных баз.

Если временные базы одинаковы (), то формулы имеют вид:

Если начисление процентов по ставке i производится при базе 365, а по ставке d при базе 360, то справедливо:


Вексель учтен в банке по учетной ставкой 8% в день окончания срока его обращения = 200 (k=360). Определить доходность этой операции по ставке простых процентов (k=365).

Эквивалентность простых и сложных процентных ставок

При начислении процентов один раз в год определяется по формулам:


Простая ставка:

сложная ставка:


Какой сложной годовой ставкой можно заменить простую ставку 18% (k=365) не изменяя финансовых последствий. Срок операции - 580 дней.

Эквивалентность простой процентной ставки и сложной ставки.

При начислении m раз в году определяется по формуле:


При разработке условий контракта стороны договорились, что доходность кредита должна составлять 24%. Каков должен быть размер номинальной ставки при начислении процентов ежемесячно, поквартально.

Эквивалентность простой учетной ставки и ставки сложных процентов определяется по формуле:

Эквивалентность номинальной ставки сложных процентов при начислении процентов m раз в год и простой учетной ставки определяется по формулам:

Эквивалентность сложных ставок определяется по формулам:


Эквивалентность сложной учетной ставки и номинальной сложной процентной ставки при начислении процентов m раз в году определяется по формулам:

Эквивалентность непрерывных и дискретных ставок:

Эквивалентность силы роста и номинальной ставки:

При дискретном и линейном изменении силы рост, а так же если она изменяется с постоянным темпом эквивалентную зависимость со ставками сложных процентов можно выразить формулами:

Эквивалентность силы роста <#"41" src="doc_zip68.jpg" />


Для сложной учетной ставки:


Замечание. Используя формулы эквивалентности дискретных и непрерывных ставок можно представить результаты применения непрерывных процентов в виде общепринятых характеристик.


Средние величины в финансовых расчетах


Для нескольких процентных ставок <#"63" src="doc_zip72.jpg" />


Предприятие в течении года получило 2 равных по величине кредита 500 тыс. руб. каждый. 1 кредит на 3 месяца под 10% годовых. 2 кредит - на 9 месяцев под 16 % годовых. Определить среднюю процентную ставку, проверить полученный результат вычислив наращенные суммы.

При получении различных по величине кредитов выданных под различные процентные ставки средняя ставка так же вычисляется по формуле средней взвешенной с весами равными произведениям сумм полученных кредитов на сроки, которые они выданы.

Расчет средней простой учетной ставки <#"67" src="doc_zip78.jpg" />


Средняя ставка по сложным процентам <#"37" src="doc_zip79.jpg" />


При анализе работы кредитных учреждений рассчитываются показатели: средний размер ссуды, её средняя продолжительность, среднее число оборотов ссуды и другие показатели.

Средний размер одной ссуды без учета количества оборотов за год вычисляется по формуле:

С учетом количества оборотов за год по формуле:

где - количество оборотов,

Продолжительность периода

К - число клиентов, получивших ссуд.

Средний размер всех ссуд с учетом количества оборотов за год показывает остаток задолженности по всем ссудам за год. Он равен среднему размеру одной ссуды с учетом оборачиваемости за год помноженного на число клиентов, получивших ссуду:


где - это общий оборот, т.е. сумма погашенных кредитов, погашенных за период.

Средний остаток всех ссуд с учетом количества оборотов за год определяется по формуле средней хронологической моментного ряда по данным месячных бухгалтерских балансов кредитного учреждения выдавшего ссуду по формуле:

где - ежемесячные остатки выданных ссуд.

Число оборотов отдельных ссуд при условии их непрерывной оборачиваемости за изучаемый период определяется как частное от деления продолжительности периода на срок выдачи ссуды.

Среднее число оборотов всех ссуд за период при условии, что происходит непрерывная их оборачиваемость рассчитывается по формуле, исходя из наличия данных.

Средний срок кредита отдельных ссуд или всех ссуд в целом рассчитывается по различным формулам

эквивалентность конверсия дисконтирование ставка


Финансовая эквивалентность обязательств и конверсия платежей


Замена одного денежного обязательства на другое или объединение нескольких платежей в один базируется на принципе финансовой эквивалентности обязательств.

Эквивалентными считаются платежи, которые, будучи приведены к одному моменту времени оказываются равными. Он следует из формул наращения и дисконтирования. Две суммы и считаются равными, если их современные величины на один момент времени одинаковы, с ростом процентной ставки размеры современных стоимостей уменьшаются. Ставка, при которой называется критической или барьерной. Она выводится из равенства.

В случае сложной процентной ставки барьерная ставка вычисляется по формулам:

Принцип финансовой эквивалентности применяется при различных изменениях условий выплат денежных сумм. Общий метод решения подобных задач состоит в разработке уравнения эквивалентности, в котором сумма заменяемых платежей приведена к определенному моменту времени приравнивается к сумме платежей по новому обязательству приведенных к той же дате. Для краткосрочных обязательств используется простая, для средне и долгосрочных - сложная.

Одним из распространенных случаев изменения условий контрактов является консолидация, т.е. объединение платежей. Возможны 2 постановки задачи:

)Задан срок и требуется найти величину платежа;

)Заданна сумма консолидированного платежа, требуется определить его срок.

При консолидации нескольких платежей в один при условии, что срок нового платежа больше ранее установленного срока, уравнение эквивалентности записывается в виде:

Где - наращенная сумма консолидированного платежа,

Платежи, подлежащие консолидации,

Временные интервалы между и:

В общем случае величина консолидированного платежа будет иметь вид:

Суммы объединенных платежей, сроки, погашения которых меньше первого срока; - суммы объединенных платежей со сроками, превышающими новый срок.

При консолидации векселей <#"27" src="doc_zip115.jpg" />


При консолидации платежей с использованием сложной процентной ставки консолидированная сумма находится по формулам:

Если известна сумма консолидированного платежа и требуется определить срок его консолидации, сохраняя принцип эквивалентности:

где - консолидированная величина современного платежа. В случае договоренности партнеров о консолидации платежей без изменения общей суммы платежей, то срок консолидированного платежа:

Для расчета срока уплаты консолидированных платежей могут использоваться учетные ставки, <#"45" src="doc_zip122.jpg" />


В случае использования сложных процентов формулы имеют вид:

Список литературы


1.Кочович Е. Финансовая математика: Теория и практика финансово банковских расчетов. - М.: Финансы и статистика, 2004

2.Красина Ф.А. Финансовые вычисления- Финансовые вычисления: учебное пособие / Ф. А. Красина. - Томск: Эль Контент, 2011.

3.Селезнева Н.Н., Ионова А.Ф. Управление финансами. Задачи, ситуации, тесты, схемы: Учеб. пособие для вузов. - М.: ЮНИТИ-ДАНА, 2004. - 176 с.





Top