Дифференциальные уравнения для "чайников". Примеры решения

Дифференциальные уравнения первого порядка, разрешенные относительно производной

Как решать дифференциальные уравнения первого порядка

Пусть мы имеем дифференциальное уравнение первого порядка, разрешенное относительно производной:
.
Разделив это уравнение на , при , мы получим уравнение вида:
,
где .

Далее смотрим, не относятся ли эти уравнения к одному из перечисленных ниже типов. Если нет, то перепишем уравнение в форме дифференциалов. Для этого пишем и умножаем уравнение на . Получаем уравнение в форме дифференциалов:
.

Если это уравнение не является уравнением в полных дифференциалах, то считаем, что в этом уравнении - независимая переменная, а - это функция от . Разделим уравнение на :
.
Далее смотрим, не относится ли это уравнение к одному из, перечисленных ниже типов учитывая, что и поменялись местами.

Если и для этого уравнения не найден тип, то смотрим, нельзя ли упростить уравнение простой подстановкой. Например, если уравнение имеет вид:
,
то замечаем, что . Тогда делаем подстановку . После этого уравнение примет более простой вид:
.

Если и это не помогает, то пытаемся найти интегрирующий множитель.

Уравнения с разделяющимися переменными

;
.
Делим на и интегрируем. При получаем:
.

Уравнения, приводящиеся к уравнениям с разделяющимися переменными

Однородные уравнения

Решаем подстановкой:
,
где - функция от . Тогда
;
.
Разделяем переменные и интегрируем.

Уравнения, приводящиеся к однородным

Вводим переменные и :
;
.
Постоянные и выбираем так, чтобы свободные члены обратились в нуль:
;
.
В результате получаем однородное уравнение в переменных и .

Обобщенные однородные уравнения

Делаем подстановку . Получаем однородное уравнение в переменных и .

Линейные дифференциальные уравнения

Есть три метода решения линейных уравнений.

2) Метод Бернулли.
Ищем решение в виде произведения двух функций и от переменной :
.
;
.
Одну из этих функций мы можем выбрать произвольным образом. Поэтому в качестве выбираем любое не нулевое решение уравнения:
.

3) Метод вариации постоянной (Лагранжа).
Здесь мы сначала решаем однородное уравнение:

Общее решение однородного уравнения имеет вид:
,
где - постоянная. Далее мы заменяем постоянную на функцию , зависящую от переменной :
.
Подставляем в исходное уравнение. В результате получаем уравнение, из которого определяем .

Уравнения Бернулли

Подстановкой уравнение Бернулли приводится к линейному уравнению.

Также это уравнение можно решать методом Бернулли. То есть ищем решение в виде произведения двух функций, зависящих от переменной :
.
Подставляем в исходное уравнение:
;
.
В качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .

Уравнения Риккати

Оно не решается в общем виде. Подстановкой

уравнение Риккати приводится к виду:
,
где - постоянная; ; .
Далее, подстановкой:

оно приводится к виду:
,
где .

Свойства уравнения Риккати и некоторые частные случаи его решения представлены на странице
Дифференциальное уравнение Риккати >>>

Уравнения Якоби

Решается подстановкой:
.

Уравнения в полных дифференциалах

При условии
.
При выполнении этого условия, выражение в левой части равенства является дифференциалом некоторой функции:
.
Тогда
.
Отсюда получаем интеграл дифференциального уравнения:
.

Для нахождения функции , наиболее удобным способом является метод последовательного выделения дифференциала. Для этого используют формулы:
;
;
;
.

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то можно попытаться найти интегрирующий множитель . Интегрирующий множитель - это такая функция, при умножении на которую, дифференциальное уравнение становится уравнением в полных дифференциалах. Дифференциальное уравнение первого порядка имеет бесконечное число интегрирующих множителей. Однако, общих методов для нахождения интегрирующего множителя нет.

Уравнения, не решенные относительно производной y"

Уравнения, допускающие решение относительно производной y"

Сначала нужно попытаться разрешить уравнение относительно производной . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, допускающие разложение на множители

Если удастся уравнение разложить на множители:
,
то задача сводится к последовательному решению более простых уравнений:
;
;

;
. Полагаем . Тогда
или .
Далее интегрируем уравнение:
;
.
В результате получаем выражение второй переменной через параметр .

Более общие уравнения:
или
также решаются в параметрическом виде. Для этого нужно подобрать такую функцию , чтобы из исходного уравнения можно было выразить или через параметр .
Чтобы выразить вторую переменную через параметр , интегрируем уравнение:
;
.

Уравнения, разрешенные относительно y

Уравнения Клеро

Такое уравнение имеет общее решение

Уравнения Лагранжа

Решение ищем в параметрическом виде. Полагаем , где - параметр.

Уравнения, приводящиеся к уравнению Бернулли


Эти уравнения приводятся к уравнению Бернулли, если искать их решения в параметрическом виде, введя параметр и делая подстановку .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Первого порядка, имеющее стандартний вид $y"+P\left(x\right)\cdot y=0$, где $P\left(x\right)$ -- непрерывная функция , называется линейным однородным. Название "линейное" объясняется тем, что неизвестная функция $y$ и её первая производная $y"$ входят в состав уравнения линейно, то есть в первой степени. Название "однородное" объясняется тем, что в правой части уравнения находится нуль.

Такое дифференциальное уравнение можно решить методом разделения переменных. Представим его в стандартном виде метода: $y"=-P\left(x\right)\cdot y$, где $f_{1} \left(x\right)=-P\left(x\right)$ и $f_{2} \left(y\right)=y$.

Вычислим интеграл $I_{1} =\int f_{1} \left(x\right)\cdot dx =-\int P\left(x\right)\cdot dx $.

Вычислим интеграл $I_{2} =\int \frac{dy}{f_{2} \left(y\right)} =\int \frac{dy}{y} =\ln \left|y\right|$.

Запишем общее решение в виде $\ln \left|y\right|+\int P\left(x\right)\cdot dx =\ln \left|C_{1} \right|$, где $\ln \left|C_{1} \right|$ -- произвольная постоянная, взятая в удобном для дальнейших преобразований виде.

Выполним преобразования:

\[\ln \left|y\right|-\ln \left|C_{1} \right|=-\int P\left(x\right)\cdot dx ; \ln \frac{\left|y\right|}{\left|C_{1} \right|} =-\int P\left(x\right)\cdot dx .\]

Используя определение логарифма, получим: $\left|y\right|=\left|C_{1} \right|\cdot e^{-\int P\left(x\right)\cdot dx } $. Это равенство, в свою очередь, эквивалентно равенству $y=\pm C_{1} \cdot e^{-\int P\left(x\right)\cdot dx } $.

Заменив произвольную постоянную $C=\pm C_{1} $, получим общее решение линейного однородного дифференциального уравнения: $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $.

Решив уравнение $f_{2} \left(y\right)=y=0$, найдем особые решения. Обычной проверкой убеждаемся, что функция $y=0$ является особым решением данного дифференциального уравнения.

Однако это же решение можно получить из общего решения $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $, положив в нём $C=0$.

Таким образом, окончательный результат: $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $.

Общий метод решения линейного однородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y"+P\left(x\right)\cdot y=0$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I=\int P\left(x\right)\cdot dx $.
  3. Записываем общее решение в виде $y=C\cdot e^{-I} $ и при необходимости выполняем упрощающие преобразования.

Задача 1

Найти общее решение дифференциального уравнения $y"+3\cdot x^{2} \cdot y=0$.

Имеем линейное однородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=3\cdot x^{2} $.

Вычисляем интеграл $I=\int 3\cdot x^{2} \cdot dx =x^{3} $.

Общее решение имеет вид: $y=C\cdot e^{-x^{3} } $.

Линейные неоднородные дифференциальные уравнения первого порядка

Определение

Дифференциальное уравнение первого порядка, которое можно представить в стандартном виде $y"+P\left(x\right)\cdot y=Q\left(x\right)$, где $P\left(x\right)$ и $Q\left(x\right)$ -- известные непрерывные функции, называется линейным неоднородным дифференциальным уравнением. Название "неоднородное" объясняется тем, что правая часть дифференциального уравнения отлична от нуля.

Решение одного сложного линейного неоднородного дифференциального уравнения может быть сведено к решению двух более простых дифференциальных уравнений. Для этого искомую функцию $y$ следует заменить произведением двух вспомогательных функций $u$ и $v$, то есть положить $y=u\cdot v$.

Выполняем дифференцирование принятой замены: $\frac{dy}{dx} =\frac{du}{dx} \cdot v+u\cdot \frac{dv}{dx} $. Подставляем полученное выражение в данное дифференциальное уравнение: $\frac{du}{dx} \cdot v+u\cdot \frac{dv}{dx} +P\left(x\right)\cdot u\cdot v=Q\left(x\right)$ или $\frac{du}{dx} \cdot v+u\cdot \left[\frac{dv}{dx} +P\left(x\right)\cdot v\right]=Q\left(x\right)$.

Отметим, что если принято $y=u\cdot v$, то в составе произведения $u\cdot v$ одну из вспомогательных функций можно выбирать произвольно. Выберем вспомогательную функцию $v$ так, чтобы выражение в квадратных скобках обратилось в нуль. Для этого достаточно решить дифференциальное уравнение $\frac{dv}{dx} +P\left(x\right)\cdot v=0$ относительно функции $v$ и выбрать для неё простейшее частное решение $v=v\left(x\right)$, отличное от нуля. Это дифференциальное уравнение является линейным однородным и решается оно вышерассмотренным методом.

Полученное решение $v=v\left(x\right)$ подставляем в данное дифференциальное уравнение с учетом того, что теперь выражение в квадратных скобках равно нулю, и получаем еще одно дифференциальное уравнение, но теперь относительно вспомогательной функции $u$: $\frac{du}{dx} \cdot v\left(x\right)=Q\left(x\right)$. Это дифференциальное уравнение можно представить в виде $\frac{du}{dx} =\frac{Q\left(x\right)}{v\left(x\right)} $, после чего становится очевидно, что оно допускает непосредственное интегрирование. Для этого дифференциального уравнения необходимо найти общее решение в виде $u=u\left(x,\; C\right)$.

Теперь можно найти общее решение данного линейного неоднородного дифференциального уравнения первого порядка в виде $y=u\left(x,C\right)\cdot v\left(x\right)$.

Общий метод решения линейного неоднородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y"+P\left(x\right)\cdot y=Q\left(x\right)$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I_{1} =\int P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  3. Вычисляем интеграл $I_{2} =\int \frac{Q\left(x\right)}{v\left(x\right)} \cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_{2} +C$.
  4. Записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$ и при необходимости выполняем упрощающие преобразования.

Задача 2

Найти общее решение дифференциального уравнения $y"-\frac{y}{x} =3\cdot x$.

Имеем линейное неоднородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=-\frac{1}{x} $ и $Q\left(x\right)=3\cdot x$.

Вычисляем интеграл $I_{1} =\int P\left(x\right)\cdot dx =-\int \frac{1}{x} \cdot dx=-\ln \left|x\right| $.

Записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $ и выполняем упрощающие преобразования: $v\left(x\right)=e^{\ln \left|x\right|} $; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$. Вибираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_{2} =\int \frac{Q\left(x\right)}{v\left(x\right)} \cdot dx =\int \frac{3\cdot x}{x} \cdot dx=3\cdot x $.

Записываем выражение $u\left(x,C\right)=I_{2} +C=3\cdot x+C$.

Окончательно записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$, то есть $y=\left(3\cdot x+C\right)\cdot x$.

1. Дифференциальное уравнение первого порядка имеет вид

Если это уравнение можно разрешить относительно та его можно записать в виде

В этом случае мы говорим, что дифференциальное уравнение разрешено относительно производной. Для такого уравнения справедлива следующая теорема, которая называется теоремой о существовании и единственности решения дифференциального уравнения. Теорема. Если в уравнении

функция и ее частная производная по у непрерывны в некоторой области D на плоскости содержащей некоторую точку , то существует единственное решение этого уравнения

удовлетворяющее условию при

Эта теорема будет доказана в § 27 гл. XVI.

Геометрический смысл теоремы заключается в том, что существует и притом единственная функция график которой проходит через точку

Из только что высказанной теоремы вытекает, что уравнение имеет бесконечное число различных решений (например, решение, график которого проходит через точку другое решение, график которого проходит через точку и т. д., если только эти точки лежат в области

Условие, что при функция у должна равняться заданному числу называется начальным условием. Оно часто записывается в виде

Определение 1. Общим решением дифференциального уравнения первого порядка называется функция

которая зависит от одной произвольной постоянной С и удовлетворяет следующим условиям:

а) она удовлетворяет дифференциальному уравнению при любом конкретном значении постоянной С;

б) каково бы ни было начальное условие при можно найти такое значение , что функция удовлетворяет данному начальному условию. При этом предполагается, что значения принадлежат к той области изменения переменных х и у, в которой выполняются условия теоремы существования и единственности решения.

2. В процессе разыскания общего решения дифференциального уравнения мы нередко приходим к соотношению вида

не разрешенному относительно у. Разрешив это соотношение относительно у, получаем общее решение. Однако выразить у из соотношения (2) в элементарных функциях не всегда оказывается возможным; в таких случаях общее решение оставляется в неявном виде. Равенство вида неявно задающее общее решение, называется общим интегралом дифференциального уравнения.

Определение 2. Частным решением называется любая функция которая получается из общего решения , если в последнем произвольной постоянной С придать определенное значение Соотношение называется в этом случае частным интегралом уравнения.

Пример 1. Для уравнения первого порядка

общим решением будет семейство функции это можно проверить простой подстановкой в уравнение.

Найдем частное решение, удовлетворяющее следующему начальному условию: при Подставляя эти значения в формулу получим или Следовательно, искомым частным решением будет функция

С точки зрения геометрической общий интеграл представляет собой семейство кривых на координатной плоскости, зависящее от одной произвольной постоянной С (или, как говорят, от одного параметра С).

Эти кривые называются интегральными кривыми данного дифференциального уравнения. Частному интегралу соответствует одна кривая этого семейства, проходящая через некоторую заданную точку плоскости.

Так, в последнем примере общий интеграл геометрически изображается семейством гипербол а частный интеграл, определенный указанным начальным условием, изображается одной из этих гипербол, проходящей через точку На рис. 251 изображены кривые семейства, соответствующие некоторым значениям параметра: и т. д.

Чтобы сделать рассуждения более наглядными, мы будем в дальнейшем называть решением уравнения не только функцию удовлетворяющую уравнению, но и соответствующую интегральную кривую. В связи с этим мы будем говорить, например, о решении, проходящем через точку .

Замечание. Уравнение не имеет решения, проходящего через точку, лежащую на оси рис. 251), так как правая часть уравнения при не определена и, следовательно, не является непрерывной.

Решить или, как часто говорят, проинтегрировать дифференциальное уравнение - значит:

а) найти его общее решение или общий интеграл (если начальные условия не заданы) или

б) найти то частное решение уравнения, которое удовлетворяет заданным начальным условиям (если таковые имеются).

3. Дадим геометрическую интерпретацию дифференциального уравнения первого порядка.

Пусть дано дифференциальное уравнение, разрешенное относительно производной:

и пусть есть общее решение данного уравнения. Это общее решение определяет семейство интегральных кривых на плоскости

Уравнение (Г) для каждой точки М с координатами х и у определяет значение производной т. е. угловой коэффициент касательной к интегральной кривой, проходящей через эту точку. Таким образом, дифференциальное уравнение (Г) дает совокупность направлений или, как говорят, определяет поле направлений на плоскости

Следовательно, с геометрической точки зрения задача интегрирования дифференциального уравнения заключается в нахождении кривых, направление касательных к которым совпадает с направлением поля в соответствующих точках.

Для дифференциального уравнения (1) геометрическое место точек, в которых выполняется соотношение называется изоклиной данного дифференциального уравнения.

При различных значениях k получаем различные изоклины. Уравнение изоклины, соответствующей значению k, будет, очевидно, Построив семейство изоклин, можно приближенно построить семейство интегральных кривых. Говорят, что, зная изоклины, можно качественно определить расположение интегральных кривых на плоскости.

Конспект лекций по

дифференциальным уравнениям

Дифференциальные уравнения

Введение

При изучении некоторых явлений часто возникает ситуация, когда процесс не удаётся описать с помощью уравнения y=f(x) или F(x;y)=0. Помимо переменной х и неизвестной функции, в уравнение входит производная этой функции.

Определение: Уравнение, связывающее переменную х, неизвестную функцию y(x) и её производные называется дифференциальным уравнением . В общем виде дифференциальное уравнение выглядит так:

F(x;y(x);;;...;y (n))=0

Определение: Порядком дифференциального уравнения называется порядок входящей в него старшей производной.

–дифференциальное уравнение 1 порядка

–дифференциальное уравнение 3 порядка

Определение: Решением дифференциального уравнения является функция, которая при подстановке в уравнение обращает его в тождество.

Дифференциальные уравнения 1 порядка

Определение: Уравнение вида =f(x;y) или F(x;y;)=0называется дифференциальным уравнением 1 порядка.

Определение: Общим решением дифференциального уравнения 1 порядка называется функция y=γ(x;c), где (с –const), которая при подстановке в уравнение обращает его в тождество. Геометрически на плоскости общим решением соответствует семейство интегральных кривых, зависящих от параметра с.

Определение: Интегральная кривая, проходящая через точку плоскости с координатами (х 0 ;y 0) соответствует частному решению дифференциального уравнения, удовлетворяющего начальному условию:

Теорема о существовании единственности решения дифференциального уравнения 1 порядка

Дано дифференциальное уравнение 1 порядка
и функцияf(x;y) непрерывна вместе с частными производными в некоторой области D плоскости XOY, тогда через точку М 0 (х 0 ;y 0)D проходит единственная кривая соответствующая частному решению дифференциального уравнения соответствующему начальному условию y(x 0)=y 0

Через точку плоскости с данными координатами проходит 1 интегральная кривая.

Если не удаётся получить общее решение дифференциального уравнения 1 порядка в явном виде, т.е
, то его можно получить в неявном виде:

F(x; y; c) =0 – неявный вид

Общее решение в таком виде называется общим интегралом дифференциального уравнения.

По отношению к дифференциальному уравнению 1 порядка ставится 2 задачи:

1)Найти общее решение (общий интеграл)

2)Найти частное решение (частный интеграл) удовлетворяющее заданному начальному условию. Эту задачу называют задачей Коши для дифференциального уравнения.

Дифференциальные уравнения с разделяющимися переменными

Уравнения вида:
называется дифференциальным уравнением с разделяющимися переменными.

Подставим

умножим на dx

разделим переменные

разделим на

Замечание: обязательно нужно рассматривать частный случай, когда

переменные разделены

проинтегрируем обе части уравнения

- общее решение

Дифференциальное уравнение с разделяющимися переменными можно записать в виде:

Отдельный случай
!

Проинтегрируем обе части уравнения:

1)

2)
нач. условия:

Однородные дифференциальные уравнения 1 порядка

Определение: Функция
называется однородной порядкаn, если

Пример: - однородная функция порядкаn=2

Определение: Однородная функция порядка 0 называется однородной .

Определение: Дифференциальное уравнение
называется однородным, если
- однородная функция, т.е

Таким образом однородное дифференциальное уравнение может быть записано в виде:

С помощью замены , гдеt – функция переменной х, однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными.

- подставим в уравнение

Переменные разделены, проинтегрируем обе части уравнения

Сделаем обратную замену, подставив вместо , получим общее решение в неявном виде.

Однородное дифференциальное уравнение может быть записано в дифференциальной форме.

M(x;y)dx+N(x;y)dy=0, где M(x;y) и N(x;y) – однородные функции одинакового порядка.

Разделим на dx и выразим

1)




Top