Формула нахождения всех возможных вариантов. Основные формулы комбинаторики

Комбинаторика - это раздел математики, основной задачей которой является подсчёт числа вариантов, возникающих в той или иной ситуации. При решении задач с использованием классического определения вероятности нам понадобятся некоторые формулы комбинаторики.

Размещения .

Определение 1. Размещением без повторений из n элементов по k называется всякое упорядоченное подмножество данного множества M={a 1 ,a 2 ,¼,a n }, содержащее k элементов.

Отметим, что из определения сразу следует, что, во-первых, все элементы в размещении без повторений различны (в противном случае найдется два одинаковых элемента), во-вторых, k£ n , в-третьих, два различных размещения без повторений различаются либо составом входящих в них элементов, либо порядком их расположения. То есть порядок следования существенен.

Теорема 1. Число различных размещений без повторений из n элементов по k (k£ n) равно

Доказательство.

Пусть M ={a 1 ,a 2 ,¼,a n }. Требуется определить число различных строк вида (x 1 ,x 2 ,¼,x k ), где все элементы x 1 ,x 2 ,¼,x k ÎM и различны. Первый элемент x 1 можно выбрать n способами. Если x 1 уже выбран, то для выбора x 2 осталось n-1 элементов. Аналогично, x 3 можно выбрать n -2 способами и т.д. Последний элемент x k можно выбрать n-k+1 способами. Перемножая эти числа, получим формулу (4).Теорема доказана.

Пример 1. В классе 12 учебных предметов и в понедельник 5 разных уроков. Сколькими способами может быть составлено расписание занятий на понедельник?

Число всевозможных вариантов расписания есть, очевидно, число различных размещений из 12 элементов по 5, то есть

Важным частным случаем, является случай, когда n=k , то есть когда в строке (x 1 ,x 2 ,¼,x n) участвуют все элементы множества M . Строки без повторений, составленные из n элементов множества M называют перестановками из n элементов. Напомним, что в математике через n! обозначают произведение всех натуральных чисел от 1 до n, то есть ¼и по определению считают, что 0!=1.

Следствие 1 . Пользуясь формулой (4), находим, что число различных перестановок P n из n элементов равно P n = n !.

Определение 2. Размещением с повторениями из n элементов по k называется любая упорядоченная строка из k элементов множества M={a 1 ,a 2 ,¼,a n }, некоторые из которых могут повторяться.

Например, слово “мама” есть размещение с повторениями из 2-х элементов M ={м, а} по 4.

Теорема 2. Число различных размещений с повторениями из n элементов по k

Доказательство.

Первый элемент в строку из k элементов может быть выбран n способами, поскольку |M|=n. Точно также 2-й, 3-й, …,k-й элементы могут быть выбраны n способами. Перемножая эти числа, получим


k раз

Теорема доказана.

Пример 2. Сколько можно составить различных двузначных чисел из цифр 1, 2, 3, 4, 5?

В этой задаче M ={1, 2, 3, 4, 5}, n=5, k=2.Поэтому ответом является число

Пример 3. Сколькими способами k пассажиров могут распределиться по n вагонам, если для каждого пассажира существенным является только номер вагона, а не занимаемое им в вагоне место?

Перенумеруем всех пассажиров. Пусть x 1 - номер вагона, выбранного первым пассажиром, x 2 - номер вагона второго пассажира, …, x k - номер вагона k -го пассажира. Строка (x 1 ,x 2 ,¼,x k ) полностью характеризует распределение пассажиров по вагонам. Каждое из чисел x 1 ,x 2 ,¼,x k может принимать любое целое значение от 1 до n. Поэтому в этом примере

M ={1, 2,…,n} и различных распределений по вагонам будет столько же, сколько строк длиной k можно составить из элементов множества M , то есть

Отметим ещё раз, что в размещениях с повторениями и без повторений важен порядок следования элементов. Если порядок следования элементов не существенен, то в этом случае говорят о сочетаниях.

Сочетания (без повторения ).

Определение 3. Пусть M={a 1 ,a 2 ,¼,a n }. Любое подмножество X мно-жества M , содержащее k элементов, называется сочетанием k элементов из n.

Отметим сразу, что в этом определении порядок следования элементов множества X несущественен и, что k£n , поскольку k=½X½, n=½M½ и XÍM .

Теорема 3. Число различных сочетаний k элементов из n равно

. (6)

Доказательство.

Каждое сочетание k элементов из n порождает k! различных размещений без повторений из n по k с помощью различных перестановок (см. следствие 1). Таким образом, все сочетаний из k элементов из n после различных k! перестановок порождают все размещений без повторений из n по k . Поэтому . Следовательно,

Комбинаторика — раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.

Комбинаторика возникла в XVI веке. Первые комбинаторные задачи касались азартных игр. Сегодня комбинаторные методы используются для решения транспортных задач, составления планов производства и реализации продукции. Установлены связи между комбинаторикой и задачами линейного программирования, статистики. Комбинаторика используется для составления и декодирования шифров, для решения других проблем теории информации.

Значительную роль комбинаторные методы играют и в чисто математических вопросах — теории групп и их представлений, изучении основ геометрии, неассоциативных алгебр и др.

Пример комбинаторной задачи. Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

I способ. Постараемся выписать все такие числа. На первом месте может стоять любая цифра кроме 0. Например, 2. На втором месте любая цифра из 0, 4, 6 и 8. Пусть 0. Тогда в качестве третьей цифры можно выбрать любую из 4, 6, 8. Получаем три числа

Вместо 0 на второе место можно было поставить 4, тогда третье цифрой можно записать или 0, или 6, или 8:

Рассуждая аналогично, получаем ещё две тройки трёхзначных чисел с цифрой 2 на первом месте:

Других, кроме выписанных 12-ти, трёхзначных чисел с цифрой 2 на первом месте, и удовлетворяющих условию, нет.

Если на первом месте записать цифру 4, а остальные выбирать из цифр 0, 2, 6, 8, то получим ещё 12 чисел:

По столько же трёхзначных чисел можно составить с цифрой 6 на первом месте и цифрой 8 на первом месте. Значит, искомое количество:

Вот эти числа:

204, 206, 208, 240, 246, 248, 260, 264, 268, 280, 284, 286;

402, 406, 408, 420, 426, 428, 460, 462, 468, 480, 482, 486;

602, 604, 608, 620, 624, 628, 640, 642, 648, 680, 682, 684;

802, 804, 806, 820, 824, 826, 840, 842, 846, 860, 862, 864.

Ответ: 48.

Метод рассуждения, которым мы воспользовались при решении предыдущей задачи, называется перебором возможных вариантов .

Правила сложения и умножения

Комбинаторное правило сложения (правило "или") — одно из основных правил комбинаторики, утверждающее, что, если имеется n элементов и элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 A n можно выбрать m n способами, то выбрать или A 1 , или A 2 , или, и так далее, A n можно

m 1 + m 2 + ... + m n

способами.

Например, выбрать подарок ребёнку из 9 машинок, 7 плюшевых медведей и 3 железных дорог можно

способами.

Ответ: 19.

Правило умножения (правило "и") — ещё одно из важных правил комбинаторики. Согласно ему, если элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 способами и так далее, элемент A n можно выбрать m n способами, то набор элементов (A 1 , A 2 , ... , A n ) можно выбрать

m 1 · m 2 · ... · m n

способами.

Например.

1) Выбрать ребёнку в подарок машинку, плюшевого медведя и железную дорогу, выбирая из 9 машинок, 7 плюшевых медведей и 3 железных дорог, можно

9 · 7 · 3 = 189

способами.

Ответ: 189.

2) Воспользуемся правилом умножения для решения задачи, уже рассмотренной выше: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II способ.

0 не может стоять первым, значит первую цифру нужно выбрать из 2, 4, 6, 8 — 4 способа;

второй цифрой может быть любая из четырёх оставшихся — 4 способа;

третью цифру можно выбрать среди трёх оставшихся — 3 способа.

Итак, искомое количество трёхзначных чисел:

4 · 4 · 3 = 48.

Ответ: 48.

Перестановки

Множество из n элементов называется упорядоченным , если каждому его элементу поставлено в соответствие натуральное число от 1 до n .

Перестановкой из n элементов называется любое упорядоченное множество из n элементов.

Например, из 4 элементов ♦ ♣ ♠ можно составить следующие 24 перестановки:

♦ ♣ ♠
♣ ♠


♦ ♠



♦ ♣ ♠



♦ ♣ ♠
♣ ♠


♦ ♠







Количество перестановок из n элементов принято обозначать P n . С помощью перебора возможных вариантов легко убедиться, в том что

P 1 = 1; P 2 = 2; P 3 = 6; P 4 = 24.

Вообще, число всевозможных перестановок из n элементов равно произведению всех натуральных чисел от 1 до n , то есть n ! (читается "эн факториал"):

P n = 1 · 2 · 3 · ... · (n - 1 ) · n = n !.

Для P n справедлива рекуррентная формула:

P n = n · P n - 1 .

Значение факториала определено не только для натуральных чисел, но и для 0:

0! = 1 .

Таблица факториалов целых чисел от 0 до 10
n
1
2
3
4
5
6
7
8
9
10
n !
1
1
2
6
24
120
720
5 040
40 320
362 880
3 628 800

Например, сколькими способами 5 мальчиков и 5 девочек могут занять в театре места в одном ряду с 1-го по 10-е место, если никакие два мальчика и никакие две девочки не сидят рядом?

Возможны два случая с одинаковым количеством способов: 1) мальчики — на нечётных местах, девочки на чётных и 2) наоборот.

Рассмотрим первый случай. Мальчики по нечётным местам могут сесть

P 5 = 120

способами. Столько способов и для девочек на чётных местах. Согласно правилу умножения, мальчики — на нечётных местах, девочки на чётных могут расположиться

120 · 120 = 14 400

способами. Значит, всего способов

14 400 + 14 400 = 28 800.

Ответ: 28 800.

Перестановки с повторениями

Перестановкой с повторениями из n элементов, среди которых k разных, при этом насчитывается n 1 неразличимых элементов первого типа, n 2 неразличимых элементов второго типа и так далее, n k неразличимых элементов k -го типа (где n 1 + n 2 + … + n k = n ), называется любое расположение этих элементов по n различным местам.

Число перестановок с повторениями длины n из k разных элементов, взятых соответственно по n 1 , n 2 , …, n k раз каждый обозначается и вычисляется следующим образом:$$P_{n_1,n_2, ... , n_k}=\frac{n!}{n_1!n_2! ... n_k!}~.$$

Например, сколько различных десятизначных чисел можно составить из цифр: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

В данном случае: n = 10, n 1 = 1, n 2 = 2, n 3 = 3, n 4 = 4,$$P_{1, 2, 3, 4}=\frac{10!}{1!2! 3! 4!}=\frac{10!}{1!2! 3! 4!}=12~600.$$

Ответ: 12 600.

Размещения

Размещением из n элементов по m (m ≤ n) m элементов, взятых в определённом порядке из данных n элементов.

Два размещения из n элементов по m считаются различными, если они различаются самими элементами или порядком их расположения.

Например, составим все размещения из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B A; B C; B D;

C A; C В; C D;

D A; D В; D C.

Число всех размещений из n элементов по m обозначают \(A_n^m\) (читается: "А из n по m ") и вычисляется по любой из формул:$$A_n^m=n\cdot (n-1)\cdot (n-2)\cdot ...\cdot (n-m+1)\\A_n^m=\frac{n!}{(n-m)!}$$

Примеры задач.

1) Воспользуемся понятием размещений из n элементов по m для решения задачи, уже дважды рассмотренной ранее: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II I способ.

Первую цифру можно выбрать четырьмя способами из набора 2, 4, 6, 8. В каждом из этих случаев количество пар второй и третей цифры равно числу размещений из 4 оставшихся цифр по 2. Значит искомое количество трёхзначных чисел равно:$$4\cdot A_4^2=4\cdot \frac{4!}{(4-2)!}=4\cdot \frac{4!}{2!}=4\cdot (3\cdot 4)=48.$$Ответ: 48.

2) Для полёта в космос необходимо укомплектовать экипаж из шести человек. В него должны входить: командир корабля, первый и второй его помощники, два бортинженера, один из которых старший, и один врач. Командный состав выбирается из 20 лётчиков, бортинженеры — из 15 специалистов, а врач — из 5 медиков. Сколькими способами можно укомплектовать экипаж?

Поскольку в выборе командного состава важен порядок, то командира и двух его помощников можно выбрать \(A_{20}^3\) способами. Порядок бортинженеров тоже важен, значит, для их выбора существует \(A_{15}^2\) способов. Врач всего один, для его выбора существует 5 способов. Воспользуемся комбинаторным правилом умножения и найдём количество возможных экипажей корабля:$$A_{20}^3\cdot A_{15}^2\cdot 5=\frac{20!}{17!}\cdot \frac{15!}{13!}\cdot 5=(18\cdot 19\cdot 20)\cdot (14\cdot 15)\cdot 5=7~182~000.$$Ответ: 7 182 000.

Понятно, что, если m = n , то$$A_n^m=A_n^n=P_n=n!.$$

Справедливо также, что, если m = n - 1 , то$$A_n^{n-1}=A_n^n=P_n=n!.$$

Размещения с повторениями

Помимо обычных размещений бывают и размещения с повторениями или выборки с возвращением .

Пусть имеется n различных объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем под номером 1 его название, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был только что взят), запишем его название, пометив номером 2, и снова вернём объект обратно. И так далее, пока не получим m названий.

Размещения с повторениями обозначаются \(\overline{A}_n^m\) и, согласно правилу умножения, вычисляются по формуле$$\overline{A}_n^m=n^m.$$Заметим, что здесь допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Это неудивительно: каждый объект после "использования" возвращается обратно и может быть использован повторно.

Например, количество вариантов шестизначного пароля, в котором каждый знак является цифрой от 0 до 9 или буквой латинского алфавита (одна и та же строчная и прописная буква — один символ) и может повторяться, равно:$$\overline{A}_{10+26}^6=\overline{A}_{36}^6=36^6=2~176~782~336.$$Если же строчные и прописные буквы считаются различными символами (как это обычно и бывает), то количество возможных паролей становится ещё более колоссальным:$$\overline{A}_{10+26+26}^6=\overline{A}_{62}^6=62^6=56~800~235~584.$$

Сочетания

Сочетанием из n элементов по m (m ≤ n) называется любое множество, состоящее из m элементов, выбранных из данных n элементов.

В отличии от размещений в сочетаниях не имеет значения, в каком порядке указаны элементы. Два сочетания из n элементов по m считаются различными, если они различаются хотя бы одним элементом.

Например, составим все сочетания из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B C; B D;

C D .

Число всех сочетаний из n элементов по m обозначают \(C_n^m\) (читается: "C из n по m ") и вычисляется по любой из формул:$$C_n^m=\frac{A_n^m}{P_m}$$$$C_n^m=\frac{n\cdot (n-1)\cdot (n-2)~\cdot~ ...~\cdot~ (n-m+1)}{1\cdot2\cdot3~\cdot~...~\cdot ~m}$$$$C_n^m=\frac{n!}{m!\cdot (n-m)!}.$$

Примеры задач.

1) Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта физкультурного зала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

Так как порядок маляров в каждой выбранной четвёрке и порядок плотников в каждой выбранной паре не имеет значения, то, согласно комбинаторному правилу умножения, искомое количество способов равно:$$C_{12}^4 \cdot C_5^2 =\frac{12!}{4!\cdot 8!}\cdot \frac{5!}{2!\cdot 3!}=\frac{9\cdot10\cdot11\cdot12}{1\cdot2\cdot3\cdot4}\cdot \frac{4\cdot5}{1\cdot 2}=4~950.$$Ответ: 4 950.

2) В классе обучаются 30 учащихся, среди которых 13 мальчиков и 17 девочек. Сколькими способами можно сформировать команду из 7 учащихся этого класса, если в неё должна входить хотя бы одна девочка?

Количество всех возможных команд по 7 человек из класса равно \(C_{30}^7\). Количество команд в которых только мальчики — \(C_{13}^7\). Значит, количество команд, в которых есть хотя бы одна девочка, равно:$$C_{30}^7 - C_{13}^7 =\frac{30!}{7!\cdot 23!} - \frac{13!}{7!\cdot 6!}=2~035~800-1~716=2~034~084.$$Ответ: 2 034 084.

Сочетания с повторениями

Помимо обычных сочетаний рассматривают сочетания с повторениями .

Пусть в множестве имеется n объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был взят и записан ранее), запишем его название и снова вернём объект обратно. И так далее, пока не получим m названий.

Принципиальное отличие от размещений с повторениями заключается в том, что в данном случае элементы списка не нумеруются. Например, список "A, С, A, В" и список "А, А, В, С" считаются одинаковыми.

Сочетания с повторениями обозначаются \(\overline{C}_n^m\) и вычисляются по формуле$$\overline{C}_n^m=P_{m,~n-1}=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$И ещё один способ записи той же формулы:$$\overline{C}_n^m=C_{m+n-1}^m=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$Заметим, что подобно размещениям с повторениями, допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Действительно, каждый объект после "использования" возвращается обратно и может быть использован снова и снова.

Например, выясним сколькими способами можно купить 7 пирожных в кондитерском отделе, если в продаже 4 их сорта?

Естественно полагать, что количество пирожных каждого вида не меньше 7, и при желании можно купить только пирожные одного из них. Так как порядок в котором кладут купленные пирожные в коробку не важен, то имеем дело с сочетаниями с повторениями. Так как нужно выбрать 7 пирожных из 4 его видов, то искомое количество способов равно:$$\overline{C}_4^7=\frac{(7+4-1)!}{7!\cdot (4-1)!}=\frac{10!}{7!\cdot 3!}=\frac{8\cdot 9\cdot 10}{1\cdot 2\cdot 3}=120.$$

Ответ: 120.

Бином Ньютона и биномиальные коэффициенты

Равенство$$(x+a)^n=C_n^0x^na^0+C_n^1x^{n-1}a^1+...+C_n^mx^{n-m}a^m+...+C_n^nx^0a^n$$называют биномом Ньютона или формулой Ньютона . Правая часть равенства называется биномиальным разложением в сумму , а коэффициенты \(C_n^0,~C_n^1,~...~,~C_n^n\) — биномиальными коэффициентами .

Свойства биномиальных коэффициентов:

\(~~~~~~~~1.~~C_n^0=C_n^n=1\\ ~~~~~~~~2.~~C_n^m=C_n^{n-m}\\ ~~~~~~~~3.~~C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\\ ~~~~~~~~4.~~C_n^0+C_n^1+C_n^2+~...~+C_n^n=2^n\\ ~~~~~~~~5.~~C_n^0+C_n^2+C_n^4+~... =C_n^1+C_n^3+C_n^5+~...=2^{n-1}\\ ~~~~~~~~6.~~C_n^n+C_{n+1}^n+C_{n+2}^n+~...~+C_{n+m-1}^n=C_{n+m}^{n+1}\\ \)

Свойства биномиального разложения:

1. Число всех членов разложения на единицу больше показателя степени бинома,

то есть равно n + 1 .

2. Сумма показателей степеней x и a каждого члена разложения равна показателю степени бинома,

то есть (n - m) + m = n .

3. Общий член разложения (обозначается T n +1 ) имеет вид$$T_{n+1}=C_n^m x^{n-m}a^m,~~~~m=0,~1,~2,~...~,~n.$$

Треугольник Паскаля

Все возможные значения биномиальных коэффициентов (числа сочетаний) для каждого показателя степени бинома n можно записать в виде бесконечной треугольной таблицы. Такая таблица называется треугольником Паскаля:






\(C_0^0\)









\(C_1^0\)

\(C_1^1\)







\(C_2^0\)

\(C_2^1\)

\(C_2^2\)





\(C_3^0\)

\(C_3^1\)

\(C_3^2\)

\(C_3^3\)



\(C_4^0\)

\(C_4^1\)

\(C_4^2\)

\(C_4^3\)

\(C_4^4\)

\(C_5^0\)

\(C_5^1\)

\(C_5^2\)

\(C_5^3\)

\(C_5^4\)

\(C_5^5\)

. . .



. . .



. . .

В этом треугольнике крайние числа в каждой строке равны 1. Действительно, \(C_n^0=C_n^n=1\). А каждое не крайнее число равно сумме двух чисел предыдущей строки, стоящих над ним: \(C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\).

Таким образом, этот треугольник предлагает ещё один (рекуррентный) способ вычисления чисел \(C_n^m\):

n = 0








1








n = 1







1

1







n = 2






1

2

1






n = 3





1

3

3

1





n = 4




1

4

6

4

1




n = 5



1

5

10

10

5

1



n = 6


1

6

15

20

15

6

1


n = 7

1

7

21

35

35

21

7

1

n = 8
1

8

28

56

70

56

28

8

1
...



...



...

...



...



Основные правила комбинаторики.

Комбинаторика - это раздел математики, изучающий способы расположения объектов в соответствии со специальными правилами и методы подсчета числа всех возможных способов. Правило умножения. Если некоторый выбор A можно осуществить m способами, а для каждого из них некоторый другой выбор B можно осуществить n способами, то выбор A и B (в указанном порядке) можно осуществить m×n способами. Пример 1. На гору ведут 6 дорог. Сколькими способами можно подняться на гору и спуститься с горы, если подъем и спуск должен быть по разным дорогам? Решение. Дорогу на гору можно выбрать 6-ю способами, так как подъем и спуск должны быть по разным дорогам, то выбрать дорогу для спуска можно 5-ю способами. Тогда по правилу умножения число способов выбора дороги для подъема и спуска равно 6×5=30. Правило сложения. Если некоторый выбор A можно осуществить m способами, а выбор B можно осуществить n способами, то выбор A или B можно осуществить m+n способами. Пример 2. В ящике имеется 6 красных карандашей, 5 синих и 3 простых карандаша. Сколькими способами можно выбрать цветной карандаш? Решение. Цветной карандаш - это красный или синий, следовательно, по правилу сложения число способов выбора цветного карандаша равно 6+5=11. Замечание. Данные правила можно обобщить на большее число выборов. Вопрос. Сколько основных правил комбинаторики существует?

Перестановки.

Определение 1. Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое натуральное число от 1 до n, где n - это число элементов данного множества, причем разным элементам поставлены в соответствие разные числа.

Упорядоченные множества считаются различными, если они отличаются либо своими элементами, либо их порядком. Определение 2. Различные упорядоченные множества, составленные из элементов данного множества, отличающиеся лишь порядком элементов, называются его перестановками. Пример 3. Рассмотрим множество M={a,b,c}. Это множество из трех элементов. Составим его различные перестановки: (a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a). Получили 6 перестановок. P n - число всех перестановок множества из n элементов.

P n =n! (1), где

n!=1·2·3·...·n (читается "н факториал"). Замечание. 0!=1; (n+1)!=n!·(n+1) . Пример 4. Сколько шестизначных чисел, кратных пяти, можно составить из цифр 0,1,2,3,4,5, при условии, что в числе нет одинаковых цифр? Решение. Числа, кратные пяти(делящиеся на пять), оканчиваются либо на 0, либо на 5. Если последняя цифра числа 0, то остальные цифры можно располагать в любом порядке, получим перестановки из пяти элементов, их P 5 =5!=120. Если на конце 5, то остальные можно расположить P 5 =120 способами, но среди них не подходят те, которые начинаются на 0, так как это будут не шестизначные числа. а пятизначные, данных чисел P 4 =4!=24.Тогда требуемых чисел будет 120+120-24=216.

Вопрос. Сколько существует перестановок из шести элементов?

Ваш ответ : 720

Перестановки с повторениями.

Если взять цифры 1, 2, 3, 4, то из них можно составить 24 перестановки. Но если взять четыре цифры 1, 1, 2, 2, то можно получить только следующие различные перестановки: (1,1,2,2),(1,2,1,2),(1,2,2,1),((2,2,1,1),(2,1,2,1),(2,1,1,2), то есть шесть перестановок, их в 4 раза меньше, чем перестановок из четырех различных чисел, так как перестановки, в которых меняются местами одинаковые числа - это не новые перестановки, их 2!·2!=4. Рассмотрим задачу в общем виде:пусть имеется множество из элементов, в котором элементывстречаютсяраз, элементывстречаютсяраз,..., элементывстречаютсяраз, причем.

Определение 3. Перестановки с повторениями - это перестановки из элементов данного множества, в которых элементы повторяются. - число всех перестановок с повторениями. Число перестановок, не меняющих данную перестановку с повторениями равно, ачисел можно переставлятьспособами, поэтому получаем следующую формулу для вычисления числа перестановок с повторениями:

Пример 4. Сколькими способами можно расселить 8 студентов по трем комнатам: одноместной, трехместной и четырехместной? Решение. Различныеспособы расселения студентов по комнатам являются перестановками с повторениями, так как внутри, например, трехместной комнаты выбранные студенты могут занимать спальные места по-разному, но эти варианты не будут являться новыми перестановками, поэтому получаем: То есть всего 280 способов расселения студентов.Вопрос. Вычислить

Сочетания.

Пусть некоторое множество содержит n элементов.

Определение 4. Всякое m- элементное подмножество n- элементного множества называется сочетанием из n элементов по m. - число всех сочетаний.

(3)

Пример 5. Для соревнований из 30 спортсменов надо выбрать трех человек. Сколькими способами это можно сделать? Решение. Команда из 3 спортсменов - это подмножество из трех элементов, то есть сочетание из 30 по 3, поэтому количество способов выбора таких команд вычисляется по формуле (3): .

Свойства сочетаний.

1. 2.. Из данных свойств следует, что, тогда, далее,,и так далее. Можно расположить эти числа в виде таблицы:

.....................................................

.......................

Эта таблица в виде треугольника называется треугольником Паскаля.

Определение 5. Выражение a+b называется биномом.

Формула (4) называется биномиальной формулой Ньютона, а коэффициенты называются биномиальными коэффициентами. Из данной формулы вытекает следующее свойство числа сочетаний

Вопрос. .

Сочетания с повторениями

Пусть имеется множество, содержащее n видов элементов, поэтому есть взять какое-то подмножество этого множества, то в нем могут быть одинаковые элементы. Определение 6. Сочетание с повторениями - это m- элементное подмножество множества, содержащего n видов элементов, в котором элементы повторяются. - число всех сочетаний с повторениями из n по m. Состав m- элементного подмножества имеет вид, где. Заменяя каждое из чиселсоответствующим количеством единиц и разделяя единицы нулями, получаем набор, состоящий из m единиц и n-1 нулей. Каждому составу отвечает только одна запись из нулей и единиц, а каждая запись задает только один состав, следовательно, число различных составов равно числу перестановок с повторениями из n-1 нулей и m единиц. Получаем формулу для вычисления всех сочетаний с повторениями.

(5)

Пример 6. В кондитерском магазине продаются пирожные четырех видов: наполеоны, эклеры, песочные и бисквитные. Сколькими способами можно купить 7 пирожных? Решение. Любая покупка - это подмножество, в котором могут быть одинаковые элементы, поэтому это сочетание с повторениями. Число всех возможных покупок находим по формуле (5): .Вопрос. В формуле (5) m может быть больше n.

Размещения

Определение 7. Упорядоченное m - элементное подмножество n- элементного множества называется размещением. - число всех размещений из n элементов по m. Число всех размещений из n по m больше числа всех сочетаний из n по m, так как из каждого подмножества из m элементов с помощью перестановок можно получить m! упорядоченных подмножеств, получаем формулу для числа размещений

(6)

Пример 7. В группе 25 человек. Нужно выбрать актив группы: старосту, заместителя старосты и профорга. Сколькими способами это можно сделать? Решение. Актив группы - это упорядоченное подмножество из трех элементов, так как надо выбрать не только трех человек, но и распределить между ними должности, значит актив группы - это размещение, число всех размещений вычисляем по формуле (6): .Вопрос. Во сколько раз число сочетаний из 20 по 4 меньше числа размещений из 20 по 4?

Размещения с повторениями

Пусть дано множество из n элементов, в котором есть одинаковые элементы, тогда его подмножества тоже могут содержать одинаковые элементы. Определение 8. Упорядоченные m- элементные подмножества n- элементного множества, в которых элементы могут повторяться, называются размещениями с повторениями. - число всех размещений из n по m. В подмножестве из m элементов первый элемент можно выбрать n способами(то есть любой элемент множества) , так как элементы могут повторяться, то второй элемент тоже можно выбрать n способами, аналогично остальные элементы подмножества можно выбрать n способами, если воспользоваться правилом умножения, получим формулу для вычисления числа размещений с повторениями:

Пример 8. В лифт десятиэтажного дома вошли 5 человек. Каждый из них может выйти на любом этаже, начиная со второго. Сколькими способами они могут это сделать? Решение. Так как каждый человек может выйти на любом этаже, начиная со второго, то этажей для выхода 9. Надо выбрать этажи для возможности выхода каждого человека: для первого человека - можно выбрать любой из девяти этажей, аналогично для остальных пассажиров, тогда по формуле (7): способов.Вопрос. Вычислить .

Посвященный решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами. Например, сколькими способами можно выбрать 6 карт из колоды, состоящей из 36 карт, или сколькими способами можно составить очередь, состоящей из10 человек и т.д. Каждое правило в комбинаторике определяет способ построения некоторой конструкции, составленной из элементов исходного множества и называемой комбинацией . Основная цель комбинаторики состоит в подсчете количества комбинаций, которые можно составить из элементов исходного множества в соответствии с заданным правилом. Простейшими примерами комбинаторных конструкций являются перестановки, размещения и сочетания.

Рождение комбинаторики связано с работами Б. Паскаля и П. Ферма по поводу азартных игр, большой вклад внесли Лейбниц, Бернулли, Эйлер. В настоящее время интерес к комбинаторике связан с развитием компьютеров. Нас в комбинаторике будет интересовать возможность определения количественно различных подмножеств конечных множеств для вычисления вероятности классическим способом.

Для определения мощности множества, которое соответствует тому или иному событию, полезно разобраться с двумя правилами комбинаторики: правило произведения и правило суммы (иногда их называют принципами умножения и сложения соответственно).

Правило nроизведения: пусть из некоторого конечного множества

1-й объект можно выбрать k 1 способами,

2-ой объект - k 2 способами,

n -ый объект - k n способами. (1.1)

Тогда произвольный набор, перечисленных n объектов из данного множества можно выбрать k 1 , k 2 , …, k n способами.

Пример 1. Сколько существует трехзначных чисел с разными цифрами?

Решение . В десятичной системе исчисления десять цифр: 0,1,2,3,4,5,6,7,8,9. На первом месте может стоять любая из девяти цифр (кроме нуля). На втором месте - любая из оставшихся 9 цифр, кроме выбранной. На последнем месте любая из оставшихся 8 цифр.

По правилу произведения 9·9·8 = 648 трёхзначных чисел имеют разные цифры.

Пример 2. Из пункта в пункт ведут 3 дороги, а из пункта в пункт - 4 дороги. Сколькими способами можно совершить поездку из в через ?

Решение . В пункте есть 3 способа выбора дороги в пункт , а в пункте есть 4 способа попасть в пункт . Согласно принципу умножения, существует 3×4 = 12 способов попасть из пункта в пункт .

Правило суммы: при выполнении условий (1.1), любой из объектов можно выбрать k 1 +k 2 +…+k n способами.

Пример 3. Сколько существует способов выбора одного карандаша из коробки, содержащей 5 красных, 7 синих, 3 зеленых карандаша.


Решение . Один карандаш, по правилу суммы, можно выбрать 5+7+3 = 15 способами.

Пример 4. Пусть из города в город можно добраться одним авиамаршрутом, двумя железнодорожными маршрутами и тремя автобусными маршрутами. Сколькими способами можно добраться из города в город ?

Решение . Все условия принципа сложения здесь выполнены, поэтому, в соответствии с этим принципом, получим 1+2+3 = 6 способов.

Рассмотрим пример, иллюстрирующий различие принципов умножения и сложения.

Пример 5. В магазине электроники продаются три марки телевизоров и два вида видеомагнитофонов. У покупателя есть возможности приобрести либо телевизор, либо видеомагнитофон. Сколькими способами он может совершить одну покупку? Сколько различных комплектов, содержащих телевизор и магнитофон, можно приобрести в этом магазине, если покупатель собирается приобрести в паре и телевизор, и видеомагнитофон?

Решение . Один телевизор можно выбрать тремя способами, а магнитофон - другими двумя способами. Тогда телевизор или магнитофон можно купить 3+2=5 способами.

Во втором случае один телевизор можно выбрать тремя способами, после этого видеомагнитофон можно выбрать двумя способами. Следовательно, в силу принципа умножения, купить телевизор и видеомагнитофон можно 3×2 = 6 способами.

Рассмотрим теперь примеры, в которых применяются оба правила комбинаторики: и принцип умножения, и принцип сложения.

Пример 6. В корзине лежат 12 яблок и 10 апельсинов. Ваня выбирает либо яблоко, либо апельсин. После чего Надя выбирает из оставшихся фруктов и яблоко и апельсин. Сколько возможно таких выборов?

Решение . Ваня может выбрать яблоко 12 способами, апельсин - 10 способами. Если Ваня выбирает яблоко, то Надя может выбрать яблоко 11 способами, а апельсин - 10 способами. Если Ваня выбирает апельсин, то Надя может выбрать яблоко 12 способами, а апельсин - 9 способами. Таким образом, Ваня и Надя могут сделать свой выбор способами.

Пример 7. Есть 3 письма, каждое из которых можно послать по 6 адресам. Сколькими способами это можно сделать?

Решение . В данной задаче мы должны рассмотреть три случая:

а) все письма рассылаются по разным адресам;

б) все письма посылаются по одному адресу;

в) только два письма посылаются по одному адресу.

Если все письма рассылаются по разным адресам, то число таких способов легко находится из принципа умножения: n 1 = 6×5×4 = 120 способов. Если все письма посылаются по одному адресу, то таких способов будет n 2 = 6. Таким образом, остается рассмотреть только третий случай, когда только 2 письма посылаются по одному адресу. Выбрать какое-либо письмо мы можем 3 способами, и послать его по какому-либо выбранному адресу можем 6 способами. Оставшиеся два письма мы можем послать по оставшимся адресам 5 способами. Следовательно, послать только два письма по одному адресу мы можем n 3 =3×6×5=90 способами. Таким образом, разослать 3 письма по 6 адресам в соответствие с принципом сложения можно

способами.

Обычно в комбинаторике рассматривается идеализированный эксперимент по выбору наудачу k элементов из n . При этом элементы: а) не возвращаются обратно (схема выбора без возвращений); б) возвращаются обратно (схема выбора с возвращением).

1. Схема выбора без возвращений

Размещением из n элементов по k называют любой упорядоченный набор из k элементов, принадлежащих n - элементному множеству. Различные размещения отличны друг от друга или порядком элементов, или составом.

Число размещений из n элементов по k обозначается и вычисляется по формуле

(1.2)

где n ! = 1×2×3×…×n , 1! = 1, 0! = 1.

Пример 8. В соревнованиях участвует 10 человек, трое из них займут 1, 2, 3 место. Сколько существует различных вариантов?

Решение . В этом случае важен порядок распределения мест. Число различных вариантов равно

Перестановкой из n элементов называют размещение из n элементов по n. Число перестановок из n элементов обозначают P n и вычисляют по формуле

(1.3)

Пример 9. Сколько существует способов расстановки 10 книг на полке?

Решение . Общее число способов расстановки определяется как число перестановок (1.3) из 10 элементов и равно Р 10 = 10! = 3628 800.

2. Схема выбора с возвращениями

Если при выборе k элементов из n , элементы возвращаются обратно и упорядочиваются, то говорят, что это размещения с nовторениями .

Число размещений с повторениями:

Пример 11. В гостинице 10 комнат, каждая из которых может разместить четырех человек. Сколько существует вариантов размещения, прибывших четырех гостей?

Решение . Каждый следующий гость из 4 может быть помещён в любую из 10 комнат, так как рассматривается идеализированный опыт, поэтому общее число размещений, по формуле размещений с повторениями (1.5), равно

.

Если при выборе k элементов из n элементы возвращаются обратно без последующего упорядочивания, то говорят, что это сочетания с nовторениями. Число сочетаний с повторениями из n элементов по k определяется:

Пример 12. В магазине продается 10 видов тортов. Очередной покупатель выбил чек на три торта. Считая, что любой набор товаров равновозможен, определить число возможных заказов.

Решение . Число равновозможных заказов по формуле (1.6) равно

.

План:

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

Примеры:

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Ответ: n способами.

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

2. Морской семафор.

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

Примеры:

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

- число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

Примеры:

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

Число перестановок.

Примеры:

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
Решение:
Имеем перестановки из 6 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

- число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

Конспект:




4.Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

Задача:

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

Решение:

Составим соответствующее «дерево».






Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.




Top