Формула разложения и сочетания. Перестановки, сочетания и размещения без повторений




Перестановки. Формула для числа перестановок

Перестановки из n элементов

Пусть множество Х состоит из n элементов.

Определение. Размещение без повторений из n элементов множества X по n называется перестановкой из n элементов.

Заметим, что в любую перестановку входят все элементы множества Х , причём ровно по одному разу. То есть перестановки одна от другой отличаются только порядком следования элементов и могут получиться одна из другой перестановкой элементов (отсюда и название).

Число всех перестановок из n элементов обозначается символом .

Так как перестановки – это частный случай размещений без повторений при , то формулу для нахождения числа получим из формулы (2), подставляя в неё :

Таким образом,

(3)

Пример. Сколькими способами можно разместить на полке 5 книг?

Решение. Способов размещения книг на полке существует столько, сколько существует различных перестановок из пяти элементов: способов.

Замечание. Формулы (1)-(3) запоминать не обязательно: задачи на их применение всегда можно решить с помощью правила произведения. Если у учащихся существуют проблемы с составлением комбинаторных моделей задач, то лучше сделать более узким множество используемых формул и правил (чтобы было меньше возможности ошибиться). Правда, задачи, в которых используются перестановки и формула (3), обычно решаются без особых проблем.

Задачи

1. Ф. Сколькими способами могут встать в очередь в билетную кассу: 1) 3 человека; 2) 5 человек?

Решение.

Различные варианты расположения п человек в очереди отличаются один от другого только порядком расположения людей, т. е. являются различными перестановками из п элементов.

Три человека могут встать в очередь Р3 = 3! = 6 различными способами.

Ответ: 1) 6 способов; 2) 120 способов.

2. Т. Сколькими способами 4 человека могут разместиться на четырехместной скамейке?

Решение.

Количество человек равно количеству мест на скамейке, поэтому количество способов размещения равно числу перестановок из 4 элементов: Р4 = 4! = 24.

Можно рассуждать по правилу произведения: для первого человека можно выбрать любое из 4 мест, для второго - любое из 3 оставшихся, для третьего - любое из 2 оставшихся, последний займет 1 оставшееся место; всего есть = 24 разных способов Размещения 4 человек на четырехместной скамейке.

Ответ: 24 способами.

3. М. У Вовы на обед - первое, второе, третье блюда и пирожное. Он обязательно начнет с пирожного, а все остальное съест в произвольном порядке. Найдите число возможных вариантов обеда.

М- задачи из уч. пособия А.Г.Мордковича

Т- под ред. С.А.Теляковского

Ф- М.В.Ткачевой

Решение.

После пирожного Вова может выбрать любое из трех блюд, затем - из двух, и закончить оставшимся. Общее число возможных вариантов обеда: =6.

Ответ: 6.

4. Ф. Сколько различных правильных (с точки зрения русского языка) фраз можно составить, изменяя порядок слов в предложении: 1) «Я пошел гулять»; 2) «Во дворе гуляет кошка»?

Решение.

Во втором предложении предлог «во» должен всегда стоять перед существительным «дворе», к которому он относится. Поэтому, считая пару «во дворе» за одно слово, можно найти количество различных перестановок трех условных слов: Р3 = 3! = 6. Таким образом, и в этом случае можно составить 6 правильных предложений.

Ответ: 1) 6; 2) 6.

5. Сколькими способами можно с помощью букв К, L, М, Н обозначить вершины четырехугольника?

Решение.

Будем считать, что вершины четырехугольника пронумерованы, за каждой закреплен постоянный номер. Тогда задача сводится к подсчету числа разных способов расположения 4 букв на 4 местах (вершинах), т. е. к подсчету числа различных перестановок: Р4 = 4! =24 способа.

Ответ: 24 способа.

6. Ф. Четыре друга купили билеты в кино: на 1-е и 2-е места в первом ряду и на 1-е и 2-е места во втором ряду. Сколькими способами друзья могут занять эти 4 места в кинотеатре?

Решение.

Четыре друга могут занять 4 разных места Р4 = 4! = 24 различными способами.

Ответ: 24 способа.

7. Т. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов может он выбрать?

Решение.

Под маршрутом следует понимать порядок посещения курьером учреждений. Пронумеруем учреждения номерами от 1 до 7, тогда маршрут будет представляться последовательностью из 7 Цифр, порядок которых может меняться. Количество маршрутов равно числу перестановок из 7 элементов: Р7= 7! = 5 040.

Ответ: 5 040 маршрутов.

8. Т. Сколько существует выражений, тождественно равных произведению abcde, которые получаются из него перестановкой множителей?

Решение.

Дано произведение пяти различных сомножителей abcde, порядок которых может меняться (при перестановке множителей произведение не меняется).

Всего существует Р5 = 5! = 120 различных способов расположения пяти множителей; один из них (abcde) считаем исходным, остальные 119 выражений тождественно равны данному.

Ответ: 119 выражений.

9. Т. Ольга помнит, что телефон подруги оканчивается цифрами 5, 7, 8, но забыла, в каком порядке эти цифры следуют. Укажите наибольшее число вариантов, которые ей придется перебрать, чтобы дозвониться подруге.

Решение.

Три последних цифры телефонного номера могут быть расположены в одном из Р3 =3! =6 возможных порядков, из которых только один верный. Ольга может сразу набрать верный вариант, может набрать его третьим, и т. д. Наибольшее число вариантов ей придется набрать, если правильный вариант окажется последним, т. е. шестым.

Ответ: 6 вариантов.

10. Т. Сколько шестизначных чисел (без повторения цифр) можно составить из цифр: а) 1,2, 5, 6, 7, 8; б) 0, 2, 5, 6, 7, 8? Решение.

а) Дано 6 цифр: 1, 2, 5, 6, 7, 8, из них можно составлять разные шестизначные числа, только переставляя эти цифры местами. Количество различных шестизначных чисел при этом равно Р6 = 6! = 720.

б) Дано 6 цифр: 0, 2, 5, 6, 7, 8, из них нужно составлять различные шестизначные числа. Отличие от предыдущей задачи состоит в том, что ноль не может стоять на первом месте.

Можно напрямую применить правило произведения: на первое место можно выбрать любую из 5 цифр (кроме нуля); на второе место - любую из 5 оставшихся цифр (4 «ненулевые» и теперь считаем ноль); на третье место - любую из 4 оставшихся после первых двух выборов цифр, и т. д. Общее количество вариантов равно: = 600.

Можно применить метод исключения лишних вариантов. 6 цифр можно переставить Р6 = 6! = 720 различными способами. Среди этих способов будут такие, в которых на первом месте стоит ноль, что недопустимо. Подсчитаем количество этих недопустимых вариантов. Если на первом месте стоит ноль (он фиксирован), то на последующих пяти местах могут стоять в произвольном порядке «ненулевые» цифры 2, 5, 6, 7, 8. Количество различных способов, которыми можно разместить 5 цифр на 5 местах, равно Р5 = 5! = 120, т. е. количество перестановок чисел, начинающихся с нуля, равно 120. Искомое количество различных шестизначных чисел в этом случае равно: Р6 - Р5 = 720 - 120 = 600.

Ответ: а) 720; б) 600 чисел.

11. Т. Сколько среди четырехзначных чисел (без повторения цифр), составленных из цифр 3, 5, 7, 9, таких, которые: а) начинаются с цифры 3;

б) кратны 15?

Решение.

а) Из цифр 3, 5, 7, 9 составляем четырехзначные числа, начинающиеся с цифры 3.

Фиксируем цифру 3 на первом месте; тогда на трех оставшихся местах в произвольном порядке могут располагаться цифры 5, 7 9 Общее количество вариантов их расположения равно Р 3 = 3!=6. Столько и будет разных четырехзначных чисел, составленных из данных цифр и начинающихся с цифры 3.

б) Заметим, что сумма данных цифр 3 + 5 + 7 + 9 = 24 делится на 3, следовательно, любое четырехзначное число, составленное из этих цифр, делится на 3. Для того, чтобы некоторые из этих чисел делились на 15, необходимо, чтобы они заканчивались цифрой 5.

Фиксируем цифру 5 на последнем месте; остальные 3 цифры можно разместить на трех местах перед 5 Рз = 3! = 6 различными способами. Столько и будет разных четырехзначных чисел, составленных из данных цифр, которые делятся на 15.

Ответ: а) 6 чисел; б) 6 чисел.

12. Т. Найдите сумму цифр всех четырехзначных чисел, которые можно составить из цифр 1, 3, 5, 7 (без их повторения).

Решение.

Каждое четырехзначное число, составленное из цифр 1, 3, 5, 7 (без повторения), имеет сумму цифр, равную 1+3 + 5 + 7=16.

Из этих цифр можно составить Р4 = 4! = 24 различных числа, отличающихся только порядком цифр. Сумма цифр всех этих чисел будет равна

16 = 384.

Ответ: 384.

13. Т. Семь мальчиков, в число которых входят Олег и Игорь, становятся в ряд. Найдите число возможных комбинаций, если:

а) Олег должен находиться в конце ряда;

б) Олег должен находиться в начале ряда, а Игорь - в конце ряда;

в) Олег и Игорь должны стоять рядом.
Решение.

а) Всего 7 мальчиков на 7 местах, но один элемент фиксирован, не переставляется (Олег находится в конце ряда). Число возможных комбинаций при этом равно числу перестановок 6 мальчиков, стоящих перед Олегом: Р6=6!=720.

пару как единый элемент, переставляемый с другими пятью элементами. Число возможных комбинаций тогда будет Р6 = 6! = 720.

Пусть теперь Олег и Игорь стоят рядом в порядке ИО. Тогда получим еще Р6 = 6! = 720 других комбинаций.

Общее число комбинаций, в которых Олег и Игорь стоят рядом (в любом порядке) равно 720 + 720 = 1 440.

Ответ: а) 720; б) 120; в) 1 440 комбинаций.

14. М. Одиннадцать футболистов строятся перед началом матча. Первым становится капитан, вторым - вратарь, а остальные - случайным образом. Сколько существует способов построения?

Решение.

После капитана и вратаря третий игрок может выбрать любое из 9 оставшихся мест, следующий - из 8, и т. д. Общее число способов построения по правилу произведения равно:

1 =362 880, или Р 9 = 9! = 362 880.

Ответ: 362 880.

15. М. Сколькими способами можно обозначить вершины куба буквами А, В, С, D, E, F, G, K?

Решение.

Для первой вершины можно выбрать любую из 8 букв, для второй - любую из 7 оставшихся, и т. д. Общее число способов по правилу произведения равно =40 320, или Р8 = 8!

Ответ: 40 320.

16. Т. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание уроков на этот день так, чтобы два урока математики стояли рядом?

Решение.

Всего 6 уроков, из них два урока математики должны стоять рядом.

«Склеиваем» два элемента (алгебра и геометрия) сначала в порядке АГ, затем в порядке ГА. При каждом варианте «склеивания» получаем Р5 = 5! = 120 вариантов расписания. Общее число способов составить расписание равно120 (AГ) +120 (ГА) = 240.

Ответ: 240 способов.

17. Т. Сколько существует перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом?

Решение.

Дано 5 букв, из которых три буквы должны стоять рядом. Три буквы К, О, Н могут стоять рядом одним из Р3 = 3! = 6 способов. Для каждого способа «склеивания» букв К, О, Н получаем Р3 = 3! = 6 способов перестановки букв, «склейка», У, С. Общее число различных перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом, равно 6 6 = 36 перестановок- анаграмм.

Ответ: 36 анаграмм.

18. Т. Сколькими способами 5 мальчиков и 5 девочек могут занять в театре в одном ряду места с 1 по 10? Сколькими способами они могут это сделать, если мальчики будут сидеть на нечетных местах, а девочки - на четных?

Решение.

Каждый вариант расположения мальчиков может сочетаться с каждым из вариантов расположения девочек, поэтому по правилу произведения общее число способов рассадить детей в этом случае равно 120 20= 14400.

Ответ: 3 628 800 способов; 14 400 способов.

19. Т. Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать?

Решение.

По условию задачи мальчики и девочки должны чередоваться, т. е. девочки могут сидеть только на четных местах, а мальчики -только на нечетных. Поэтому меняться местами девочки могут только с девочками, а мальчики - только с мальчиками. Четырех девочек можно рассадить на четырех четных местах Р4 = 4! = 24 способами, а пятерых мальчиков на пяти нечетных местах Р5 = 5! = 120 способами.

Каждый способ размещения девочек может сочетаться с каждым способом размещения мальчиков, поэтому по правилу произведения общее число способов равно: Р4 20 = 2 880 способов.

Ответ: 2 880 способов.

20. Ф. Разложить на простые множители числа 30 и 210. Сколькими способами можно записать в виде произведения продых множителей число: 1) 30; 2) 210?

Решение.

Разложим данные числа на простые множители:

30 = 2 ; 210 = 2 .

    Число 30 можно записать в виде произведения простых множителей

Р 3 = 3! = 6 разными способами (переставляя множители).

    Число 210 можно записать в виде произведения простых
    множителей Р 4 = 4! = 24 разными способами.

Ответ: 1) 6 способов; 2) 24 способа.

21. Ф. Сколько различных четных четырехзначных чисел с неповторяющимися цифрами можно записать, используя цифры 1, 2, 3, 5?

Решение.

Чтобы число было четным, оно должно заканчиваться четной цифрой, т. е. 2. Зафиксируем двойку на последнем месте, остальные три цифры должны стоять перед ней в произвольном порядке. Количество различных перестановок из 3 цифр равно P3 = 3! = 6; следовательно, различных четных четырехзначных чисел будет также 6 (к каждой перестановке из трех цифр добавляется цифра 2).

Ответ: 6 чисел.

22. Ф. Сколько различных нечетных пятизначных чисел, в которых нет одинаковых цифр, можно записать с помощью Цифр 1,2, 4, 6, 8?

Решение.

Чтобы составленное число было нечетным, необходимо, чтобы оно оканчивалось нечетной цифрой, т. е. единицей. Остальные 4 Цифры можно переставлять местами, располагая каждую перестановку перед единицей.

Общее число нечетных пятизначных чисел равно числу перестановок: Р4 = 4! =24.

23. Ф. Сколько различных шестизначных чисел с неповторяющимися цифрами можно записать с помощью цифр 1; 2 3, 4, 5, 6, если: 1) число должно начинаться с 56; 2) цифры 5 и 6 в числе должны стоять рядом?

Решение.

Две цифры 5 и 6 фиксируем в начале числа и дописываем к ним различные перестановки из 4 оставшихся цифр; количество различных шестизначных чисел равно: Р4 = 4! = 24.

Общее количество различных шестизначных чисел, в которых цифры 5 и 6 стоят рядом (в любом порядке), равно 120 + 120 = 240 чисел. (Варианты 56 и 65 несовместны, не могут реализоваться одновременно; применяем комбинаторное правило суммы.)

Ответ: 1) 24 числа; 2) 240 чисел.

24. Ф. Сколько различных четных четырехзначных чисел, в записи которых нет одинаковых цифр, можно составить из цифр 1,2,3,4?

Решение.

Четное число должно оканчиваться четной цифрой. Фиксируем на последнем месте цифру 2, тогда 3 предшествующие цифры можно переставить Р3 = 3! = 6 различными способами; получим 6 чисел с двойкой на конце. Фиксируем на последнем месте цифру 4, получим Р3 = 3! = 6 различных перестановок трех предшествующих цифр и 6 чисел, оканчивающихся цифрой 4.

Общее количество четных четырехзначных чисел будет 6 + 6 = 12 различных чисел.

Ответ: 12 чисел.

Замечание. Общее количество вариантов мы находим, пользуясь комбинаторным правилом суммы (6 вариантов чисел, оканчивающихся двойкой, 6 вариантов чисел, оканчивающихся четверкой; способы построения чисел с двойкой и с четверкой на конце являются взаимоисключающими, несовместными, поэтому общее количество вариантов равно сумме числа вариантов с двойкой на конце и числа вариантов с 4 на конце). Запись 6 + 6 = 12 лучше отражает основания наших действий, чем запись Р .

25. Ф. Сколькими способами можно записать в виде произведения простых множителей число 1) 12; 2) 24; 3) 120?

Решение.

Особенностью этой задачи является то, что в разложении каждого из данных чисел есть одинаковые, повторяющиеся множители. При образовании различных перестановок из множителей мы не получим новую перестановку, если поменяем местами какие-нибудь два одинаковых множителя.

1) Число 12 разлагается на три простых множителя, два из которых одинаковы: 12 = .

Если бы все множители были различны, то их можно было бы переставить в произведении Р3 = 3! = 6 различными способами. Чтобы перечислить эти способы, условно «различим» две двойки, подчеркнем одну из них: 12 = 2 .

Тогда возможны следующие 6 вариантов разложения на жители:

Но на самом деле подчеркивание цифр не имеет в математике никакого значения, поэтому полученные 6 перестановок в обычной записи имеют вид:

т. е. фактически мы получили не 6, а 3 различные перестановки Количество перестановок уменьшилось в два раза за счет того, что мы не должны учитывать перестановки двух двоек между собой.

Обозначим Р х искомое число перестановок из трех элементов среди которых два одинаковых; тогда полученный нами результат можно записать так: Рз = Р х Но 2 - это количество разных перестановок из двух элементов, т. е. 2 = = 2! = Р 2 , поэтому Р3, = Р х Р 2 , отсюда Р х = . (это формула для числа перестановок с повторениями).

Можно рассуждать иначе, основываясь только на комбинаторном правиле произведения.

Чтобы составить произведение из трех множителей, сначала выберем место для множителя 3; это можно сделать одним из трех способов. После этого оба оставшихся места заполняем двойками; это можно сделать 1 способом. По правилу произведения общее число способов равно: 3-1 =3. , Р х =20.

Второй способ. Составляя произведение из пяти множителей, сначала выберем место для пятерки (5 способов), затем для тройки (4 способа), а оставшиеся 3 места заполним двойками (1 способ); по правилу произведения 5 4 1 = 20.

Ответ: 1) 3; 2) 4; 3) 20.

26. Ф. Сколькими способами можно закрасить 6 клеток таким образом, чтобы 3 клетки были красными, а 3 оставшиеся были закрашены (каждая своим цветом) белым, черным или зеленым?

Решение.

Перестановки из 6 элементов, среди которых три - одинаковые:

Иначе: для закраски белым цветом можно выбрать одну из 6 клеток, черным - из 5, зеленым - из 4; три оставшиеся клетки закрашиваем красным цветом. Общее число способов: 6 5 4 1 = 120.

Ответ: 120 способов.

27.Т. Пешеход должен пройти один квартал на север и три квартала на запад. Выпишите все возможные маршруты пешехода. = 4.

Ответ: 4 маршрута.

28. М. а) На дверях четырех одинаковых кабинетов надо повесить таблички с фамилиями четырех заместителей директора. Сколькими способами это можно сделать?

б) В 9 «А» классе в среду 5 уроков: алгебра, геометрия, физкультура, русский язык, английский язык. Сколько можно составить вариантов расписания на этот день?

в) Сколькими способами четыре вора могут разбежаться по одному на все четыре стороны?

г) Адъютант должен развезти пять копий приказа генерала пяти полкам. Сколькими способами он может выбрать маршрут доставки копий приказа?

Решение.

а) Для первой таблички можно выбрать любой из 4 кабинетов,
Для второй - любой из трех оставшихся, для третьей - любой из двух оставшихся, для четвертой - один оставшийся; по правилу
произведения общее число способов равно: 4 3 2 1 = 24, или Р4 = 4! = 24. = 120, или Р5 = 5! = 120.

Ответ: а) 24; б) 120; в) 24; г) 120.

Литература

    Афанасьев В.В. Теория вероятностей в примерах и задачах, - Ярославль: ЯГПУ, 1994.

    Баврин И. И. Высшая математика: Учебник для студентов химико-математических специальностей педагогических вузов-2-е издание, переработанное. - М.:Просвещение, 1993.

    Бунимович Е. А., Булычёв В.А. Вероятность и статистика. 5-9 классы: Пособие для общеобразовательных учебных заведений, - М.:Дрофа, 2005.

    Виленкин Н. Я. и другие. Алгебра и математический анализ для 10 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики. - М.:Просвещение,1992.

    Виленкин Н. Я. и другие. Алгебра и математический анализ для 11 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики - М.:Просвещение, 1990.

    Глейзер Г.И. История математики в школе: 9-10 класс. Пособие для учителей. - М.: Просвещение 1983.

    Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Математика 9:Алгебра. Функции. Анализ данных - М.: Дрофа, 2000.

    Колягин и другие. Алгебра и начала анализа 11 класс. Математика в школе - 2002 - №4 - с.43,44,46.

    Люпшкас В.С. Факультативные курсы по математике: теория вероятностей: Учебное пособие для 9-11 классов.- М.,1991.

    Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

    Мордкович А.Г., Семенов П.В. Алгебра и начала анализа 10 класс: Учебник для общеобразовательных учреждений (профильный уровень) – М.: Мнемозина, 2005.

    Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

План:

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

Примеры:

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Ответ: n способами.

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

2. Морской семафор.

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

Примеры:

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

- число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

Примеры:

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

Число перестановок.

Примеры:

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
Решение:
Имеем перестановки из 6 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

- число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

Конспект:




4.Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

Задача:

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

Решение:

Составим соответствующее «дерево».






Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.

Цель занятия: уметь применять основные формулы комбинаторики и знать условия применения этих формул; знать свойства биномиальных коэффициентов и уметь определять разложение бинома при конкретных значениях n.

План занятия:

1. Число размещений.

2. Число перестановок.

3. Число сочетаний.

4. Повторения.

5. Бином Ньютона. Треугольник Паскаля.

Методические указания по изучению темы

Во многих практических случаях возникает необходимость подсчитать количество возможных комбинаций объектов, удовлетворяющих определенным условиям. Такие задачи называются комбинаторными. Разнообразие комбинаторных задач не поддается исчерпывающему описанию, но среди них есть целый ряд особенно часто встречающихся, для которых известны способы подсчета.

Комбинаторика – область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству. Термин «комбинаторика» происходит от латинского слова combina – сочетать, соединять.

Пусть есть некоторое множество из n элементов: x 1, x 2, x 3, …, x n .

Из этого множества можно образовать различные подмножества, то есть выборки, каждая из которых содержит m элементов (0 ≤ m ≤ n). Различают упорядоченные выборки (размещения), перестановки и неупорядоченные выборки (сочетания).

Размещения

Размещениями n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком.

Число размещений из n элементов по m элементов обозначают (А – первая буква французского слова arrangement, что означает размещение, приведение в порядок) и вычисляют по формуле:

Понятие факториала

Произведение n натуральных чисел от 1 до n обозначается символом n ! (n факториал), то есть

Например, 2!=

5!=

Заметим, что удобно рассчитывать 0!, полагая по определению, 0!=1.

Примеры:

Из последних двух формул следует, что

Пример.

В однокруговом турнире по футболу участвуют 8 команд. Сколько существует вариантов призовой тройки?

Решение : Так как порядок команд в призовой тройке важен, то мы имеем дело с размещениями. Тогда

(вариантов).

Пример.

Сколькими способами можно выбрать три лица на три различные должности из десяти кандидатов?

Решение:

(способов).

Пример.

Сколько можно составить телефонных номеров из 5 цифр так, чтобы в каждом отдельно взятом номере все цифры были различными?

(телефонных номеров).

Перестановки

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения.

Число всех возможных перестановок из n элементов обозначают P n (P – первая буква французского слова permutation, что означает перестановка) и вычисляют по формуле:

Пример.

В финальном забеге на 100 метров участвуют 8 спортсменов. Сколько существует вариантов протокола забега?

Решение:

В данном случае речь идёт обо всех перестановках из 8 элементов. Тогда (вариантов)

Пример.

Сколькими различными способами могут разместиться на скамейке10 человек?

Решение:

(способов)

Пример.

Сколькими способами можно разместить 7 лиц за столом, на котором поставлено 7 столовых приборов?

Решение:

(способов).

Сочетания

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом.

Число сочетаний вычисляют по формуле: (С - первая буква французского слова combinasion).

Пример.

Сколькими способами можно выбрать три лица на три одинаковые должности из десяти кандидатов?

Решение :

(способов).

Пример.

Сколькими способами можно выбрать три детали из ящика, содержащего 15 деталей?

Решение:

(способов).

Другой вид формул числа размещений и числа сочетаний

; , то есть .

Свойства числа сочетаний:

5)

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов n способами, а другой объект В – k способами, то объект «либо А, либо В» можно выбрать n+k способами.

Правило произведения. Если некоторый объект А может быть выбран из совокупности объектов n способами и после каждого такого выбора другой объект В – k способами, то пара объектов (А, В) в указанном порядке может быть выбрана n×k способами.

Если некоторые элементы повторяются, то в этом случае комбинации с повторениями вычисляют по другим формулам.

Размещения с повторениями

Число размещений по m элементов с повторениями из n различных элементов равно n m ,то есть

Пример.

Из цифр 1,2,3,4,5 можно составить 5 3 =125 трехзначных чисел, если в одном и том же числе могут попадаться и одинаковые цифры.

Перестановки с повторениями

Если среди n элементов есть n 1 элементов одного вида, n 2 элементов другого вида и т.д., то число перестановок с повторениями

где

Пример.

Сколько различных перестановок букв можно сделать в слове «математика»?

Решение:

Сочетания с повторениями

Число сочетаний с повторениями из n различных элементов по m элементов равно числу сочетаний без повторений из (n +m -1) различных элементов по m элементов:

Пример.

Найти число сочетаний с повторениями из четырех элементов a , b , c , d по 3 элемента.

Решение:

Искомое число будет

Бином Ньютона

Для произвольного положительного целого числа n справедлива следующая формула:

Это бином Ньютона. Коэффициенты называются биномиальными коэффициентами.

При n = 2 получим формулу ;

При n = 3 получим формулу .

Пример. Определить разложение при n=4.

Решение:

Биномиальные коэффициенты обладают рядом свойств:

2. ;

Рассмотрим следующий треугольник:

………………………….

Строка под номером n содержит биномиальные коэффициенты разложения . Воспользовавшись свойством , можно заметить, что каждый внутренний элемент треугольника равен сумме двух элементов, расположенных над ним, а боковые элементы треугольника – единицы:

……………………….

Это треугольник Паскаля. Он позволяет быстро найти значения биномиальных коэффициентов.

В русскоязычной литературе перестановки, составленные из n различных элементов выбором по m элементов, которые отличаются либо составом элементов, либо их порядком, обычно называют размещениями, а под перестановками понимают всю совокупность комбинаций, состоящих из одних и тех же n различных элементов и отличающихся только порядком их расположения. В этом смысле число всех возможных перестановок для множества из n различных элементов считается по формуле факториала Pn = n! или в Excel «=ФАКТР(N)» (см. рис. № 1)




Например, если ввести «=ПЕРЕСТ(3;2)», получим 6. Это 6 комбинации: (1,2), (2,1), (1,3), (3,1), (2,3), (3,2).

А вот встроенная функция «=ЧИСЛКОМБ(N;K)» выдает комбинаторную формулу, называемую у нас «Число сочетаний». В русскоязычной литературе так именуют перестановки, составленные из n различных элементов выбором по m элементов, которые отличаются только составом элементов, а порядок их выбора безразличен (см. рис, №4)


При использовании встроенных функций пользуйтесь «Справкой по этой функции». Например:

Задачи для самостоятельного решения

1. Вычислить:

2. Вычислить:

3. Вычислить:

4. Найти n , если 5С n 3 =

5. Найти n , если

6. Найти n , если

7. Найти n , если

8. Найти n , если , k n

9. Решить уравнение

10. Решить систему

11. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?

12. Сколькими способами можно выбрать четыре лица на четыре различные должности из девяти кандидатов?

13. Сколько можно составить телефонных номеров из 6 цифр так, чтобы в каждом отдельно взятом номере все цифры были различны?

14. В классе 10 учебных предметов и 5 разных уроков в день. Сколькими способами могут быть распределены уроки в один день?

15. Сколько можно записать четырёхзначных чисел, используя без повторения все 10 цифр?

16. Фирма производит выбор из девяти кандидатов на три различные должности. Сколько существует способов такого выбора?

17. В восьмом классе изучается 15 предметов. Сколькими способами можно составить расписание на среду, если известно, что в этот день должно быть 6 уроков?

18. В высшей лиге чемпионата страны по футболу 16 команд. Борьба идет за золотые, серебряные и бронзовые медали. Сколькими способами медали могут быть распределены между командами?

19. Сколькими способами можно разместить 9 лиц за столом, на котором поставлено 9 приборов?

20. На собрании выступят 6 ораторов. Сколькими способами их фамилии можно расположить в списке?

21. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?

22. Сколькими различными способами можно расставить 10 различных книг на полке, чтобы определённые 4 книги стояли рядом?

23. В однокруговом турнире по футболу участвуют 8 команд. Сколько всего матчей будет сыграно?

24. Из 25 студентов нужно выбрать трех делегатов на конференцию. Сколькими способами это можно сделать?

25. Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?

26. В колоде 36 карт, из них 4 туза. Сколькими способами можно извлечь 6 карт так, чтобы среди них было 2 туза?

27. Комплексная бригада состоит из двух маляров, трёх штукатуров и одного столяра. Сколько различных бригад можно создать из рабочего коллектива, в котором 15 маляров, 10 штукатуров и 5 столяров?

28. В отборочном турнире за 3 путёвки на чемпионат мира участвуют 10 команд. Сколько существует вариантов «счастливой тройки»?

29. Из 12 человек выбирают четверых для назначения на 4 одинаковые должности. Сколькими способами можно сделать такой выбор?

30. Сколькими различными способами можно составить разведывательную группу из 3-х солдат и одного командира, если имеется 12 солдат и 3 командира?

31. На плоскости дано n точек, из которых никакие три не лежат на одной прямой. Найти число прямых, которые можно получить, соединяя точки попарно.

32. Буквы азбуки Морзе образуются как последовательность точек и тире. Сколько различных букв можно образовать, если использовать 5 символов?

33. Сколько существует различных семизначных телефонных номеров?

34. Пусть буквы некоторой азбуки образуются как последовательность точек, тире и пробелов. Сколько различных букв можно образовать, если использовать 5 символов?

35. При игре в бридж между четырьмя игроками распределяется колода карт в 52 листа по 13 карт каждому игроку. Сколько существует различных способов раздать карты?

36. В почтовом отделении продаются открытки пяти видов. Определить число способов покупки семи открыток.

37. Два коллекционера обмениваются марками. Найти число способов обмена, если первый коллекционер обменивает 3 марки, а второй – 6 марок. (Обмен происходит по одной марке).

38. У одного студента 6 книг по математике, а у другого – 5. Сколькими способами они могут обменять 2 книги одного на 2 книги другого?

39. Сколько различных перестановок букв можно сделать в словах: «замок», «ротор», «обороноспособность», «колокол», «семинар»?

40. Сколькими различными способами можно разместить в 9 клетках следующие 9 букв: а, а, а, б, б, б, в, в, в?

41. В автомашине 6 мест. Сколькими способами 6 человек могут сесть в эту машину, если занять место водителя могут только двое из них?

42. Сколькими способами из колоды в 52 карты можно извлечь 6 карт, содержащих туза и короля одной масти?

43. Определить разложение при n=5.

44. Определить разложение при n=8.

45. Найти член разложения , не содержащий x (то есть содержащий x в нулевой степени).

46. Найти шестой член разложения , если биномиальный коэффициент третьего от конца члена равен 45.

47. В разложении коэффициент третьего члена на 44 больше коэффициента второго члена. Найти свободный член, то есть член разложения, не зависящий от x (членом, не зависящим от x, будет тот, который содержит x в нулевой степени).

48. В разложении бинома найти члены, не содержащие иррациональности.

49. Найти номер того члена разложения , который содержит a и b в одинаковых степенях.

Практическое занятие №2

(интерактивное занятие в малых группах)

Булевы функции

Цель занятия: уметь строить различные булевы функции, проверять эквивалентность булевых формул (используя таблицу истинности), определять существенные и фиктивные переменные.

План занятия:

1. Основные операции

2. Булевы функции от n переменных

3. Основные эквивалентности

Задача . Определить количество всех упорядоченных наборов длиныr , которые можно составить из элементов множестваX (
), если выбор каждого элемента
, производится из всего множестваX .

Упорядоченный набор
– это элемент декартова произведения
, состоящего изr одинаковых множителейX . По правилу произведения количество элементов множества
равно
. Мы вывели формулу
.

Пример . Сколько четырехзначных телефонных номеров можно составить, если использовать все десять цифр?

Здесь
, и количество телефонных номеров равно

2.1.5. Размещения без повторений

Задача . Сколько упорядоченных наборов
можно составить изn элементов множестваX , если все элементы набора различны?

Первый элемент можно выбратьn способами. Если первый элемент уже выбран, то второй элементможно выбрать лишь
способами, а если уже выбран
элемент
, то элементможно выбрать
способами (повторение уже выбранного элемента не допускается). По правилу произведения получаем

Эта формула записывается иначе с использованием обозначения
. Так как

.

Пример . Сколько может быть различных списков победителей олимпиады (первое, второе, третье место), если участвовало 20 человек?

Здесь
, искомым является число

2.1.6. Перестановки без повторений

Рассмотрим частный случай размещения без повторений: если
, то в размещении участвуют все элементы множестваX , т.е. выборки имеют одинаковый состав и отличаются друг от друга только порядком элементов. Такие выборки называютсяперестановками . Количество перестановок изn элементов обозначают:

Пример. Сколькими способами можно выстроить очередь в кассу, если хотят получить зарплату шесть человек?

2.1.7. Перестановки с повторениями

Пусть множество X состоит изk различных элементов:
.Перестановкой с повторениями состава
будем называть упорядоченный набор длины
, в котором элементвстречается раз
. Количество таких перестановок обозначается
.

Пример . Из букв
запишем перестановку с повторением состава
. Ее длина
, причем букваa входит 2 раза,b – 2 раза,c – один раз. Такой перестановкой будет, например,
или
.

Выведем формулу количества перестановок с повторениями. Занумеруем все одинаковые элементы, входящие в перестановку, различными индексами, т.е. вместо перестановки
получим
. Теперь все элементы перестановки различны, а количество таких перестановок равно
. Первый элемент встречается в выборкераз. Уберем индексы у первого элемента (в нашем примере получим перестановку
), при этом число различных перестановок уменьшится в раз, т.к. при изменении порядка одинаковых элементов наша выборка не изменится. Уберем индексы у второго элемента – число перестановок уменьшится в раз. И так далее, до элемента с номеромk – число перестановок уменьшится в раз. Получим формулу

Пример . Сколько различных “слов” можно получить, переставляя буквы слова “передача” ?

В этом слове буквы “е” и “а” встречаются два раза, остальные по одному разу. Речь идет о перестановке с повторением состава
длины. Количество таких перестановок равно

2.1.8. Сочетания

Задача . Сколько различных множеств изr элементов можно составить из множества, содержащегоn элементов?

Будем составлять вначале упорядоченные наборы по r элементов в каждом. Количество таких наборов (это размещения изn элементов поr ) равно
. Теперь учитываем, что порядок записи элементов нам безразличен. При этом изразличных размещений, отличающихся только порядком элементов, получим одно сочетание. Например, два различных размещения
и
из двух элементов соответствуют одному сочетанию
. Таким образом, число сочетанийвраз меньше числа размещений:


Пример . Количество способов, которыми мы можем выбрать из восьми дворников троих равно

Аналоги комбинаторных концепций и методов используются и в топологии, при изучении дерева принятия решений, частично упорядоченных множеств, раскрасок графа и др.

25) Что называют перестановками?

Перестановки - различные упорядоченные множества, которые отличаются лишь порядком элементов (т.е. могут быть получены из того же самого множества).

26) По какой формуле вычисляют число перестановок из n различных элементов?

Перестановки. Возьмём n различных элементов: a 1 , a 2 , a 3 , …, a n . Будем переставлять их всеми возможными способами, сохраняя их количество и меняя лишь порядок их расположения. Каждая из полученных таким образом комбинаций называетсяперестановкой. Общее количество перестановок из n элементов обозначается P n . Это число равно произведению всех целых чисел от 1 до n :

Символ n ! (называется факториал ) - сокращённая запись произведения: 1 · 2 · 3 · … · (n – 1) · n .

П р и м е р. Найти число перестановок из трёх элементов: a , b , c .

Р е ш е н и е. В соответствии с приведенной формулой: P 3 = 1 · 2 · 3 = 6.
Действительно, мы имеем 6 перестановок: abc, acb, bac, bca, cab, cba.

27) Что называют размещениями? Запишите формулу, по которой вычисляют число размещений из n элементов по m.

Размещения - это упрядоченные подмножества данного конечного множества.

Размещения. Будем составлять группы из m n элементов, располагая эти m взятых элементов в различном порядке. Полученные комбинации называются размещениями из n элементов по m .

Их общее количество обозначается: и равно произведению:

П р и м е р. Найти число размещений из четырёх элементов a, b, c, d по два.

Р е ш е н и е. В соответствии с формулой получим:

Вот эти размещения: ab, ba, ac, ca, ad, da, bc, cb, bd, db, cd, dc.

28) Что называют сочетаниями? Запишите формулу, по которой вычисляют число сочетаний из n элементов по m.

Сочетание без повторений из n элементов по m есть m -элементное подмножество некоторого n -элементного множества.

Коротко такие сочетания называют "сочетания из m по n " и их число обозначают или . Далее n -элементное множество будем обозначать как n -множество.

Сочетания. Будем составлять группы из m различных элементов, взятых из множества, состоящего из n элементов, не принимая во внимание порядок расположения этих m элементов. Тогда мы получим сочетания из n элементов по m .

Их общее количество обозначается и может быть вычислено по формуле:

Из этой формулы ясно, что

Заметим, что можно составить только одно сочетание из n элементов по n , которое содержит все n элементов. Формула числа сочетаний даёт это значение, если только принять, что 0! = 1 , что является определением 0! .

В соответствии с этим определением получим:

Общее число сочетаний можно вычислить, пользуясь и другим выражением:

П р и м е р. Найти число сочетаний из пяти элементов: a, b, c, d, e по три.

Р е ш е н и е:

Эти сочетания: abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde.

29) По какой формуле вычисляется число перестановок из n элементов, если элементы повторяются?

Перестановками из n элементов называются размещения из этих n элементов по n (Перестановки - частный случай размещений).

Число перестановок без повторений (n

Пример . Возьмем буквы Б, А, Р . Какие перестановки из этих букв можно получить? Сколько таких наборов получится, если: 1) буквы в наборе не повторяются; 2) буква А повторяется два раза?

Решение.

1. Получатся наборы: БАР, БРА, АРБ, АБР, РАБ, РБА.

По формуле (3.3) получаем: наборов.

2. Получатся наборы: БАРА, БРАА, БААР, ААРБ, ААБР, АБАР, АРАБ, АРБА, АБРА, РАБА, РААБ, РБАА.

По формуле (3.4) получаем: наборов.

Пример . Сколько шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4, 5 так, чтобы цифры в числе не повторялись?

Решение. Из данных шести цифр можно составить Р 6 = 6! = 720 перестановок. Но числа, начинающиеся на нуль, не являются шестизначными. Такие числа отличаются друг от друга перестановкой пяти остальных цифр, значит, их будет Р 5 = 120. Поэтому шестизначных чисел будет 720 - 120 = 600 чисел.

Пример . Сколькими способами можно расставить белые фигуры (2 ладьи, 2 коня, 2 слона, ферзь и король) на первой линии шахматной доски?

Решение. Первая линия шахматной доски представляет собой 8 клеток, на которых и надо расположить эти 8 фигур. Различные варианты расположения будут отличаться только порядком фигур, значит, это будут перестановки с повторениями Р 8 (2,2,2).

По формуле (3.4) получаем: способов.

30) Какой формулой определяется число размещений с повторениями из n элементов по m элементов?

Размещения

Размещениями из n элементов по m элементов (m < n ) называются комбинации, составленные из данных n элементов по m элементов, которые отличаются либо самими элементами, либо порядком элементов.

Число размещений без повторений из n по m (n различных элементов) вычисляется по формуле:

Пример . Возьмем буквы Б, А, Р . Какие размещения из этих букв, взятых по две, можно получить? Сколько таких наборов получиться, если: 1) буквы в наборе не повторяются; 2) буквы могут повторяться?

Решение.

1. Получатся следующие наборы: БА, БР, АР, АБ, РБ, РА .

По формуле (3.1) получаем: наборов.

2. Получатся наборы: ББ, БА, БР, АА, АБ, АР, РР, РБ, РА.

По формуле (3.2) получаем: наборов.

Пример. Вдоль дороги стоят 6 светофоров. Сколько может быть различных комбинаций их сигналов, если каждый светофор имеет 3 состояния: "красный", "желтый", "зеленый"?

Решение. Выпишем несколько комбинаций: КККЖЗЗ, ЗЗЗЗЗЗ, КЖЗКЖЗ... Мы видим, что состав выборки меняется и порядок элементов существенен (ведь если, например, в выборке КЖЗКЖЗ поменять местами К и Ж, ситуация на дороге будет другой). Поэтому применяем формулу (3.2) и вычисляем число размещений с повторениями из 3 по 6, получаем комбинаций.

31) Какой формулой определяется число сочетаний с повторениями из n элементов по m элементов?

Сочетания

Сочетаниями из n элементов по m элементов называются комбинации, составленные из данных n элементов по m элементов, которые различаются хотя бы одним элементом (отличие сочетаний от размещений в том, что в сочетаниях не учитывается порядок элементов).

Число сочетаний без повторений (n различных элементов, взятых по m ) вычисляется по формуле:

Пример . Возьмем буквы Б, А, Р . Какие сочетания из этих букв, взятых по две, можно получить? Сколько таких наборов получится, если: 1) буквы в наборе не повторяются; 2) можно брать по два одинаковые буквы.

Решение .

1. Получатся наборы: БА (БА и АБ - один и тот же набор), АР и РБ

По формуле (3.5) получаем: наборов.

2. Получатся наборы: ББ, БА, БР, АА, АР, РР.

По формуле (3.6) получаем: наборов.

Пример . Из 20 учащихся надо выбрать двух дежурных. Сколькими способами это можно сделать?

Решение. Надо выбрать двух человек из 20. Ясно, что от порядка выбора ничего не зависит, то есть Иванов-Петров или Петров-Иванов - это одна и та же пара дежурных. Следовательно, это будут сочетания из 20 по 2.

По формуле (3.5) получаем: способов.

Пример . В хлебном отделе имеются булки белого и черного хлеба. Сколькими способами можно купить 6 булок хлеба?

Решение. Обозначая булки белого и черного хлеба буквами Б и Ч, составим несколько выборок: ББББББ, ББЧЧББ, ЧЧЧЧЧБ, ... Состав меняется от выборки к выборке, порядок элементов несущественен, значит это - сочетания с повторениями из 2 по 6. По формуле (3.6) получаем способов.

Cделаем проверку и выпишем все варианты покупки: ББББББ, БББББЧ, ББББЧЧ, БББЧЧЧ, ББЧЧЧЧ, БЧЧЧЧЧ, ЧЧЧЧЧЧ. Их действительно 7.

32) Что называют суммой двух событий?

Суммойдвух событийи называют событие, состоящее в появлении события , или события , или обоих этих событий.
Суммой нескольких событий называют событие, состоящее в появлении хотя бы одного из этих событий.

33) Что называют произведением двух событий?

Произведением двух событийи называют событие , состоящее в совместном появлении этих событий.

34) Чему равна вероятность суммы двух несовместных событий?

Событие называют независимым от события , если появление события не меняет вероятности появления события , то есть если условная вероятность события равна его безусловной вероятности:
.
Свойство независимости событий взаимно: если событие не зависит от события , то и событие не зависит от события .
Теорема. Вероятность совместного появления двух независимых событий равна произведению вероятности этих событий:
.
Несколько событий называют попарно независимыми , если каждые два из них независимы.
Несколько событий называют независимыми в совокупности , если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных.

35) Сформулируйте теорему сложения?

Вероятность р (А + В ) суммы событий А и В равна

Р (А + В ) = р (А ) + р (В ) – р (АВ ). (2.2)

Доказательство.

Докажем теорему сложения для схемы случаев. Пусть п – число возможных исходов опыта, т А – число исходов, благоприятных событию А , т В – число исходов, благопри-ятных событию В , а т АВ – число исходов опыта, при которых происходят оба события (то есть исходов, благоприятных произведению АВ ). Тогда число исходов, при которых имеет место событие А + В , равно т А + т В – т АВ (так как в сумме (т А + т В ) т АВ учтено дважды: как исходы, благоприятные А , и исходы, благоприятные В ). Следовательно, вероятность суммы можно определить по формуле 2,2 что и требовалось доказать.




Top