Фрактал в искусстве определение. Фракталы, фрактальная геометрия и исследования фракталов в Изобразительном искусстве

Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.

Порядок в хаосе

Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.

Немного сухих фактов

Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.

Историческая справка, или Как все начиналось

На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора - «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид - С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.

Динамические, или алгебраические фракталы

К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.

Человек с пространственным воображением

Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени.

Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, отличающийся богатым и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.

Жюлиа - Мандельброт

Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».

Л. Карпентер: искусство, созданное природой

Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.

Решение Карпентера

Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.

Первая 3D-визуализация на фрактальном алгоритме

Уже через несколько лет Лорен применил свои наработки в масштабном проекте - анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма "Star Trek". Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.

Том Беддард

В прошлом лазерный физик, а ныне цифровых дел мастер и художник, Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.

Фракталы в природе

Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина - они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.

Музыкальная пауза

Оказывается, фракталы - это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.

Индикатор-фрактал

Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.

В заключение

Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. В основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций - копирования и масштабирования

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно так называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств:

  • обладает сложной структурой при любом увеличении;
  • является (приближенно) самоподобной;
  • обладает дробной хаусдорфовой (фрактальной) размерностью , которая больше топологической;
  • может быть построена рекурсивными процедурами.

На рубеже XIX и XX веков изучение фракталов носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс построил пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха» .

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал - С-кривая Леви . Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов .

Другой класс - динамические (алгебраические) фракталы , к которым относится и множество Мандельброта . Первые исследования в этом направлении относятся к началу XX века и связаны с именами французских математиков Гастона Жюлиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный труд Жюлиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жюлиа - целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жюлиа среди математиков того времени, о ней довольно быстро забыли.

Вновь внимание к работам Жюлиа и Фату обратилось лишь полвека спустя, с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов. Ведь Фату никогда не мог посмотреть на изображения, которые мы сейчас знаем как изображения множества Мандельброта, потому что необходимое количество вычислений невозможно провести вручную. Первым, кто использовал для этого компьютер был Бенуа Мандельброт.

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными то появилось даже целое направление в искусстве - фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.

Презентация на тему: Фракталы в искусстве и архитектуре Подготовил ученик 10 класса Варченков Вадим Валерьевич, руководитель - Стиплина Галина Николаевна Муниципального бюджетного общеобразовательного учреждения «Средняя Общеобразовательная Школа 9» Тел.: , г.Сафоново Смоленской области 2014 Номинация: «Математические модели реальных процессов в природе и обществе»








Фрактал является математическим термином, имеет сложные точные исчисления и строится на точных математических принципах, находит широкое применение в компьютерной графике и построении многих компьютерных процессов. Сейчас, применение фрактала распространяется от математики до искусства, но самым удивительным является то, что копнув глубже, приходишь в выводу, что он отображает самые базисные эзотерические принципы устройства мироздания.


Происхождение термина Фракталы – это структуры, состоящие из частей, которые подобны целому. В переводе с латыни, «fractus» обозначает «дроблёный, сломанный, разбитый». Другими словами, это самоподобие целого частному в рамках геометрических фигур. Существует точная наука изучения и составления фракталов – фрактазм.


Сам термин «фрактал» ввел в математику Бенуа Мальденброт в 1975 году, который и принято считать годом рождения фрактазма. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность, либо метрическую размерность, отличную от топологической. И конечно, как любая другая математическая наука, фрактазм насыщен множеством сложнейших теоретических изысканий и формул.


Фракталы в изобразительном искусстве Возвращаясь к прошлому, в искусстве человечества, как и в природе, с легкостью можно найти примеры использования фракталов. Яркими работами в этой системе является рисунок Леонардо да Винчи «Всемирный потоп», гравюры японского художника Кацусики Хокусая и работы Э. Эшера также являются ярким примером фрактальности и список этот можно продолжать бесконечно.


Таким образом, проявления фрактальности вышло за рамки математической теории и нашло свою пристанище во многих сферах жизни, в том числе и ярко представлен в искусстве ХХ века. появляются новые формы искусства, основой которых является фрактальная графика.


Фрактальный экспрессионизм или фракталаж, в удивительных работах Д. Нильсена, фрактальные монотипии от Л.Лившиц, фрактальная абстракция В.Рибаса, фрактальный реализм В. Усеинова и А. Сундукова. Фрактальные картины стали неотъемлемой частью изобразительного искусства, которые участвуют в выставках по всему миру.Фрактал стал одним из популярных и востребованных явлений в пост-модернизме нашего века.




Применение теории фракталов в архитектуре В архитектуре применяются геометрические фракталы. Основными представителями этой группы являются такие объекты, как: кривая Пеано, снежинка Коха, треугольник Серпинского, пыль Кантора, «дракон» Хартера-Хейтуэя и т.д. Все они получены путем повторений определенной последовательности геометрических построений с использованием точек и линий.


Фракталы этой группы самые наглядные. Если проанализировать данные изображения, можно выделить следующие свойства геометрических фракталов: бесконечное множество геометрического фрактала покрывает ограниченную площадь поверхности; бесконечное множество, составляющее фрактал, обладает свойством самоподобия; длины, площади и объемы одних фракталов стремятся к бесконечности, других – равны нулю.




Треугольник Серпинского Следующий способ получить треугольник Серпинского еще больше похож на обычную схему построения геометрических фракталов с помощью замены частей очередной итерации на масштабированный фрагмент. Здесь на каждом шаге составляющие ломаную отрезки заменяются на ломаную из трех звеньев (она сама получается в первой итерации). Откладывать эту ломаную нужно попеременно то вправо, то влево. Видно, что уже восьмая итерация очень близка к фракталу, и чем дальше, тем ближе будет подбираться к нему линия. Этот фрактал описал в 1915 году польский математик Вацлав Серпинский. Чтобы его получить, нужно взять (равносторонний) треугольник с внутренностью, провести в нём средние линии и выкинуть центральный из четырех образовавшихся маленьких треугольников. Дальше эти же действия нужно повторить с каждым из оставшихся трех треугольников, и т. д.


Варианты Треугольника Серпинского Ковер (квадрат, салфетка) Серпинского. Квадратная версия была описана Вацлавом Серпинским в 1916 году. Ему удалось доказать, что любая кривая, которую можно нарисовать на плоскости без самопересечений, гомеоморфна какому-то подмножеству этого дырявого квадрата. Как и треугольник, квадрат можно получить из разных конструкций. Справа изображен классический способ: разделение квадрата на 9 частей и выбрасывание центральной части. Затем то же повторяется для оставшихся 8 квадратов, и т. д


Пирамида Серпинского Один из трехмерных аналогов треугольника Серпинского. Строится аналогично с учетом трехмерности происходящего: 5 копий начальной пирамиды, сжатой в два раза, составляют первую итерацию, ее 5 копий составят вторую итерацию, и т. д. Фрактальная размерность равна log25. У фигуры нулевой объем (на каждом шаге половина объема выбрасывается), но при этом площадь поверхности сохраняется от итерации к итерации, и у фрактала она такая же, как и у начальной пирамиды.


Губка Менгера Обобщение ковра Серпинского в трехмерное пространство. Чтобы построить губку, нужно бесконечное повторение процедуры: каждый из кубиков, из которых состоит итерация, делится на 27 втрое меньших кубиков, из которых выбрасывают центральный и его 6 соседей. То есть каждый кубик порождает 20 новых, в три раза меньших. Поэтому фрактальная размерность равна log320. Этот фрактал является универсальной кривой: любая кривая в трехмерном пространстве гомеоморфна некоторому подмножеству губки. У губки нулевой объем (так как на каждом шаге он умножается на 20/27), но при этом бесконечно большая площадь.



Эволюция фракталов

Упрощенное научное определение фрактала (от латинского fractus — «дробленый,
сломанный,разбитый») — множество, обладающее свойством самоподобия.
Этим понятием также обозначают самоподобную геометрическую фигуру,
каждый фрагмент которой повторяется при уменьшении его масштаба.

Без названия Ван Фу XIV век

Фракталы давно и прочно обосновались в изобразительном искусстве, начиная с канувших
в лету цивилизаций ацтеков, инков и майя, древнеегипетской и древнеримской.
Во-первых, их достаточно сложно избежать при изображении живой природы, где
фракталоподобные формы встречаются сплошь и рядом.

Прощание на реке Шен Чжоу XV век

Одни из наиболее ранних и ярко выраженных образцов фрактальной живописи
— пейзажные традиции древнего и средневекового Китая.

Ван Мэн, Без названия

Шен Чжоу, Без названия

В 20 веке фрактальные структуры получили наибольшее распространение в направлениях
оп-арт (оптическое искусство) и имп¬-арт (от слова impossible — невозможный).
Первое из них выросло в 1950-е годы из абстракционизма, точнее говоря, отпочковалось
от геометрической абстракции. Одним из первопроходцев оп-арта был Виктор Вазарели —
французский художник с венгерскими корнями.


Клонопин


Гуива

А вот на поприще имп-арта, которое выделяют как самостоятельное течение внутри
оптического искусства,прославился нидерландский художник Мауриц Корнелис Эшер.
Он применял в создании работ приемы, основанные на математических принципах.


Бабочки


Все меньше и меньше

Эшер набил руку в изображении «невозможных фигур»: создании оптических иллюзий,
вводящих зрителей в заблуждение и заставляющих напрягаться вестибулярный аппарат.

Морозные узоры на окне, замысловатая и неповторимая форма снежинок, сверкающие молнии в ночном небе завораживают и пленяют своей необыкновенной красотой. Однако мало кто знает, что все это является сложными фрактальными структурами.

Бесконечно самоподобные фигуры, каждый фрагмент которых повторяется при уменьшении масштаба, называются фракталами . Сосудистая система человека, система альвеол животного, извилины морских берегов, облака в небе, контуры деревьев, антенны на крышах домов, клеточная мембрана и звездные галактики - все это удивительное порождение хаотического движения мира есть фракталы.

Первые образцы самоподобных множеств с необычными свойствами появились в XIX веке. Термин «фракталы», который происходит от латинского слова «fractus» - дробный, ломанный, был введен Бенуа Мандельбротом в 1975 году. Таким образом, фрактал представляет собой структуру, состоящую из частей, подобных целому. Именно свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Одновременно с выходом в свет книги «Фрактальная геометрия природы» (1977 год) фракталы получили всемирную известность и популярность.

Т ермин «фрактал» не является математическим понятием и в связи с этим не имеет строгого общепринятого математического определения. Более того, термин фрактал употребляется относительно любых фигур, обладающих какими-либо из нижеперечисленных свойств:

    Нетривиальная структура на всех шкалах. Это свойство отличает фракталы таких регулярных фигур, как окружность, эллипс, график гладкой функции и т.п.

    У величени е масштаба фрактала не приводит к упрощению его структуры, то есть на всех шкалах мы видим одинаково сложную картину, в то время, как при рассмотрении регулярной фигуры в крупном масштабе, она становится подобна фрагменту прямой.

    Самоподобие или приближенное самоподобие.

    Метрическая или дробная метрическая размеренность, значительно превосходящая топологическую .

    Построение возможно лишь с помощью рекурсивной процедуры, то есть определение объекта или действия через себя.

Таким образом, фракталы можно разделить на регулярные и нерегулярные. Первые являются математической абстракции, то есть плодом воображения. К примеру, снежинка Коха или треугольник Серпинского. Вторая разновидность фракталов является результатом природных сил или деятельности человека. Н ерегулярные фракталы, в отличие от регулярных сохраняют способность к самоподобию в ограниченных пределах.

С каждым днем фракталы находят все большее и большее применение в науке и технике - они как нельзя лучше описывают реальный мир. Приводить примеры фрактальных объектов можно бесконечно долго, они повсюду окружают нас. Фрактал как природный объект представляет собой яркий пример вечного непрерывного движения, становления и развития.

Фракталы нашли широкое применение в компьютерной графи ке для построения изображения природных объектов, например, деревьев, кустов, горных массивов, поверхностей морей и прочее. Эффективным и успешным стало использование фракталов в децентрализованных сетях. К примеру, система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Благодаря чему, каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, более того любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, активно применяется в сети Интернет. Таким образом, принцип фрактального сжатия информации обеспечивает максимально устойчивую работу всей сети.

Весьма перспективным является использование фрактальной геометрии при проектировании «фрактальных антенн».
В настоящее время фракталы стали активно использоваться в нанотехнологиях. Особенно популярны фракталы стали у трейдеров. С их помощью экономисты производят анализ курса фондовых бирж, вальных и торговых рынков. В нефтехимии фракталы применяются для создания пористых материалов. В биологии фракталы используются для моделирования развития популяций, а также для описания систем внтренних органов. Даже в литературе фракталы нашли свою нишу. Среди художественных произведений были найдены произведения с текстуальной, структурной и семантической фрактальной природой.

/БДЭ математика/

Множество Жюлиа (в честь французского математика Гастона Жюлиа (1893-1978), который вместе с Пьером Фату первым занаялся изучением фракталов. В 1970-х годах его работы популяризировал Бенуа Мандельброт )

Геометрические фракталы

История фракталов в XIX веке началось именно с изучения геометрических фракталов. Фракталы ярко отражают свойство самоподобия. Наиболее наглядными примерами геометрических фракталов являются:

Кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины. Эта кривая не имеет касательной ни в одной точке.
Множество Кантора - неплотное несчётное совершенное множество.
Губка Менгера - это аналог множества Кантора с тем лишь отличием, что построен этот фрактал в трехмерном пространстве.
Треугольник или ковер Серпинского также является аналогом множества Кантора на плоскоти.
Фракталы Вейерштрасса и Ван дер Вардена представляют собой недифференцируемую непрерывную функцию.
Траектория броуновский частицы также не дифференцируема.
Кривая Пеано - это непрерывная кривая, которая проходит через все точки квадрата.
Дерево Пифагора.

Рассмотрим триадную кривую Коха.
Для построение кривой существует простая рекурсивная процедура образования фракта кривых на плоскости. В первую очередь необходимо задать произвольную ломаную с конечным числом звеньев, так называемым генератором. Далее каждое звено заменяется образующим элементом, точнее ломаной, подобной генератору. В результате такой замены образуется новое поколение кривой Коха. В первом поколении кривая состоит из четырех прямолинейных звеньев, длина каждого из которых равна 1/3. Чтобы получить третье поколение кривой выполняют тот же алгоритм - каждое звено заменяется на уменьшенный образующий элемент. Таким образом, для получения каждого последующего поколения, все звенья предыдущего заменяются уменьшенным образующим элементов. Тогда, кривая n-го поколения при любом конечном n называется предфракталом. В случае, когда n стремится к бесконечности кривая Коха становится фрактальным объектом.

Обратимся к другому способу построения фрактального объекта. Для его создания необходимо изменить правила построение: пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменяем единичный отрезок на образующий элемент таким образом, чтобы угол был сверху. То есть, при такой замене происходит смещение середины звена. Последующие поколения строятся по правилу: первое слева звено заменяется на образующий элемент тким образом, чтобы середина звена смещалась влево от направления движения. Далее замена звеньев чередуется. Предельная фрактальная кривая, построенная по такому правилу, называется драконом Хартера-Хейтуэя.

В компьютерной графике геометрические фраткалы используются для моделирования изображений деревьев, кустов, горных массивов, береговой линии. Двухмерные геометрические фракталы широко используются для создания объемных текстур.



Окончив университет, Мандельброт переехал в США, где окончил Калифорнийский технологический институт. По возвращении во Францию, он получил докторскую степень в Университете Парижа в 1952 году. В 1958 году Мандельброт окончательно поселился в США, где приступил к работе в научно-исследовательском центре IBM в Йорктауне
. Он работал в области лингвистики, теории игр, экономики, аэронавтики, географии, физиологии, астрономии, физики.

Фракта́л (лат. fractus - дроблёный) - термин, введённый Бенуа Мандельбротом в 1975 году. До сих пор нет строгого математического определения фрактальных множеств.
О н смог обобщить и систематезировать «неприятные» множества и построить красивую и интуитивно понятную теорию. Он открыл удивительный мир фракталов, красота и глубина которых порой поражают воображение, вызывают восторг у ученых, хужожников, философов… Работа Мандельброта была стимулирована передовыми компьютерными технологиями, которые позволили генерировать, визуализировать и исследовать различные множества.

Японский физик Ясунари Ватанаба создал компьютерную программу, рисующую прекрасные фрактальные орнаменты. Календарь из 12 месяцев был представлен на международной конферении "Математика и искусство" в Суздале.




Top