Фракталы в изобразительном искусстве. Фракталы – математика в искусстве ▲

Эволюция фракталов

Упрощенное научное определение фрактала (от латинского fractus — «дробленый,
сломанный,разбитый») — множество, обладающее свойством самоподобия.
Этим понятием также обозначают самоподобную геометрическую фигуру,
каждый фрагмент которой повторяется при уменьшении его масштаба.

Без названия Ван Фу XIV век

Фракталы давно и прочно обосновались в изобразительном искусстве, начиная с канувших
в лету цивилизаций ацтеков, инков и майя, древнеегипетской и древнеримской.
Во-первых, их достаточно сложно избежать при изображении живой природы, где
фракталоподобные формы встречаются сплошь и рядом.

Прощание на реке Шен Чжоу XV век

Одни из наиболее ранних и ярко выраженных образцов фрактальной живописи
— пейзажные традиции древнего и средневекового Китая.

Ван Мэн, Без названия

Шен Чжоу, Без названия

В 20 веке фрактальные структуры получили наибольшее распространение в направлениях
оп-арт (оптическое искусство) и имп¬-арт (от слова impossible — невозможный).
Первое из них выросло в 1950-е годы из абстракционизма, точнее говоря, отпочковалось
от геометрической абстракции. Одним из первопроходцев оп-арта был Виктор Вазарели —
французский художник с венгерскими корнями.


Клонопин


Гуива

А вот на поприще имп-арта, которое выделяют как самостоятельное течение внутри
оптического искусства,прославился нидерландский художник Мауриц Корнелис Эшер.
Он применял в создании работ приемы, основанные на математических принципах.


Бабочки


Все меньше и меньше

Эшер набил руку в изображении «невозможных фигур»: создании оптических иллюзий,
вводящих зрителей в заблуждение и заставляющих напрягаться вестибулярный аппарат.

Бусинка – проект, посвященный бисеру и бисерному рукоделию. Наши пользователи – начинающие бисерщики, которые нуждаются в подсказках и поддержке, и опытные мастера, которые не мыслят своей жизни без творчества. Сообщество будет полезно каждому, у кого в бисерном магазине возникает непреодолимое желание потратить всю зарплату на пакетики вожделенных бусинок, страз, красивых камней и компонентов Swarovski.

Мы научим вас плести совсем простенькие украшения, и поможем разобраться в тонкостях создания настоящих шедевров. У нас вы найдете схемы, мастер-классы, видео-уроки, а также сможете напрямую спросить совета у известных бисерных мастеров.

Вы умеете создавать красивые вещи из бисера, бусин и камней, и у вас солидная школа учеников? Вчера вы купили первый пакетик бисера, и теперь хотите сплести фенечку? А может, вы – руководитель солидного печатного издания, посвященного бисеру? Вы все нужны нам!

Пишите, рассказывайте о себе и своих работах, комментируйте записи, выражайте мнение, делитесь приемами и хитростями при создании очередного шедевра, обменивайтесь впечатлениями. Вместе мы найдем ответы на любые вопросы, связанные с бисером и бисерным искусством.

Презентация на тему: Фракталы в искусстве и архитектуре Подготовил ученик 10 класса Варченков Вадим Валерьевич, руководитель - Стиплина Галина Николаевна Муниципального бюджетного общеобразовательного учреждения «Средняя Общеобразовательная Школа 9» Тел.: , г.Сафоново Смоленской области 2014 Номинация: «Математические модели реальных процессов в природе и обществе»








Фрактал является математическим термином, имеет сложные точные исчисления и строится на точных математических принципах, находит широкое применение в компьютерной графике и построении многих компьютерных процессов. Сейчас, применение фрактала распространяется от математики до искусства, но самым удивительным является то, что копнув глубже, приходишь в выводу, что он отображает самые базисные эзотерические принципы устройства мироздания.


Происхождение термина Фракталы – это структуры, состоящие из частей, которые подобны целому. В переводе с латыни, «fractus» обозначает «дроблёный, сломанный, разбитый». Другими словами, это самоподобие целого частному в рамках геометрических фигур. Существует точная наука изучения и составления фракталов – фрактазм.


Сам термин «фрактал» ввел в математику Бенуа Мальденброт в 1975 году, который и принято считать годом рождения фрактазма. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность, либо метрическую размерность, отличную от топологической. И конечно, как любая другая математическая наука, фрактазм насыщен множеством сложнейших теоретических изысканий и формул.


Фракталы в изобразительном искусстве Возвращаясь к прошлому, в искусстве человечества, как и в природе, с легкостью можно найти примеры использования фракталов. Яркими работами в этой системе является рисунок Леонардо да Винчи «Всемирный потоп», гравюры японского художника Кацусики Хокусая и работы Э. Эшера также являются ярким примером фрактальности и список этот можно продолжать бесконечно.


Таким образом, проявления фрактальности вышло за рамки математической теории и нашло свою пристанище во многих сферах жизни, в том числе и ярко представлен в искусстве ХХ века. появляются новые формы искусства, основой которых является фрактальная графика.


Фрактальный экспрессионизм или фракталаж, в удивительных работах Д. Нильсена, фрактальные монотипии от Л.Лившиц, фрактальная абстракция В.Рибаса, фрактальный реализм В. Усеинова и А. Сундукова. Фрактальные картины стали неотъемлемой частью изобразительного искусства, которые участвуют в выставках по всему миру.Фрактал стал одним из популярных и востребованных явлений в пост-модернизме нашего века.




Применение теории фракталов в архитектуре В архитектуре применяются геометрические фракталы. Основными представителями этой группы являются такие объекты, как: кривая Пеано, снежинка Коха, треугольник Серпинского, пыль Кантора, «дракон» Хартера-Хейтуэя и т.д. Все они получены путем повторений определенной последовательности геометрических построений с использованием точек и линий.


Фракталы этой группы самые наглядные. Если проанализировать данные изображения, можно выделить следующие свойства геометрических фракталов: бесконечное множество геометрического фрактала покрывает ограниченную площадь поверхности; бесконечное множество, составляющее фрактал, обладает свойством самоподобия; длины, площади и объемы одних фракталов стремятся к бесконечности, других – равны нулю.




Треугольник Серпинского Следующий способ получить треугольник Серпинского еще больше похож на обычную схему построения геометрических фракталов с помощью замены частей очередной итерации на масштабированный фрагмент. Здесь на каждом шаге составляющие ломаную отрезки заменяются на ломаную из трех звеньев (она сама получается в первой итерации). Откладывать эту ломаную нужно попеременно то вправо, то влево. Видно, что уже восьмая итерация очень близка к фракталу, и чем дальше, тем ближе будет подбираться к нему линия. Этот фрактал описал в 1915 году польский математик Вацлав Серпинский. Чтобы его получить, нужно взять (равносторонний) треугольник с внутренностью, провести в нём средние линии и выкинуть центральный из четырех образовавшихся маленьких треугольников. Дальше эти же действия нужно повторить с каждым из оставшихся трех треугольников, и т. д.


Варианты Треугольника Серпинского Ковер (квадрат, салфетка) Серпинского. Квадратная версия была описана Вацлавом Серпинским в 1916 году. Ему удалось доказать, что любая кривая, которую можно нарисовать на плоскости без самопересечений, гомеоморфна какому-то подмножеству этого дырявого квадрата. Как и треугольник, квадрат можно получить из разных конструкций. Справа изображен классический способ: разделение квадрата на 9 частей и выбрасывание центральной части. Затем то же повторяется для оставшихся 8 квадратов, и т. д


Пирамида Серпинского Один из трехмерных аналогов треугольника Серпинского. Строится аналогично с учетом трехмерности происходящего: 5 копий начальной пирамиды, сжатой в два раза, составляют первую итерацию, ее 5 копий составят вторую итерацию, и т. д. Фрактальная размерность равна log25. У фигуры нулевой объем (на каждом шаге половина объема выбрасывается), но при этом площадь поверхности сохраняется от итерации к итерации, и у фрактала она такая же, как и у начальной пирамиды.


Губка Менгера Обобщение ковра Серпинского в трехмерное пространство. Чтобы построить губку, нужно бесконечное повторение процедуры: каждый из кубиков, из которых состоит итерация, делится на 27 втрое меньших кубиков, из которых выбрасывают центральный и его 6 соседей. То есть каждый кубик порождает 20 новых, в три раза меньших. Поэтому фрактальная размерность равна log320. Этот фрактал является универсальной кривой: любая кривая в трехмерном пространстве гомеоморфна некоторому подмножеству губки. У губки нулевой объем (так как на каждом шаге он умножается на 20/27), но при этом бесконечно большая площадь.



Морозные узоры на окне, замысловатая и неповторимая форма снежинок, сверкающие молнии в ночном небе завораживают и пленяют своей необыкновенной красотой. Однако мало кто знает, что все это является сложными фрактальными структурами.

Бесконечно самоподобные фигуры, каждый фрагмент которых повторяется при уменьшении масштаба, называются фракталами . Сосудистая система человека, система альвеол животного, извилины морских берегов, облака в небе, контуры деревьев, антенны на крышах домов, клеточная мембрана и звездные галактики - все это удивительное порождение хаотического движения мира есть фракталы.

Первые образцы самоподобных множеств с необычными свойствами появились в XIX веке. Термин «фракталы», который происходит от латинского слова «fractus» - дробный, ломанный, был введен Бенуа Мандельбротом в 1975 году. Таким образом, фрактал представляет собой структуру, состоящую из частей, подобных целому. Именно свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Одновременно с выходом в свет книги «Фрактальная геометрия природы» (1977 год) фракталы получили всемирную известность и популярность.

Т ермин «фрактал» не является математическим понятием и в связи с этим не имеет строгого общепринятого математического определения. Более того, термин фрактал употребляется относительно любых фигур, обладающих какими-либо из нижеперечисленных свойств:

    Нетривиальная структура на всех шкалах. Это свойство отличает фракталы таких регулярных фигур, как окружность, эллипс, график гладкой функции и т.п.

    У величени е масштаба фрактала не приводит к упрощению его структуры, то есть на всех шкалах мы видим одинаково сложную картину, в то время, как при рассмотрении регулярной фигуры в крупном масштабе, она становится подобна фрагменту прямой.

    Самоподобие или приближенное самоподобие.

    Метрическая или дробная метрическая размеренность, значительно превосходящая топологическую .

    Построение возможно лишь с помощью рекурсивной процедуры, то есть определение объекта или действия через себя.

Таким образом, фракталы можно разделить на регулярные и нерегулярные. Первые являются математической абстракции, то есть плодом воображения. К примеру, снежинка Коха или треугольник Серпинского. Вторая разновидность фракталов является результатом природных сил или деятельности человека. Н ерегулярные фракталы, в отличие от регулярных сохраняют способность к самоподобию в ограниченных пределах.

С каждым днем фракталы находят все большее и большее применение в науке и технике - они как нельзя лучше описывают реальный мир. Приводить примеры фрактальных объектов можно бесконечно долго, они повсюду окружают нас. Фрактал как природный объект представляет собой яркий пример вечного непрерывного движения, становления и развития.

Фракталы нашли широкое применение в компьютерной графи ке для построения изображения природных объектов, например, деревьев, кустов, горных массивов, поверхностей морей и прочее. Эффективным и успешным стало использование фракталов в децентрализованных сетях. К примеру, система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Благодаря чему, каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, более того любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, активно применяется в сети Интернет. Таким образом, принцип фрактального сжатия информации обеспечивает максимально устойчивую работу всей сети.

Весьма перспективным является использование фрактальной геометрии при проектировании «фрактальных антенн».
В настоящее время фракталы стали активно использоваться в нанотехнологиях. Особенно популярны фракталы стали у трейдеров. С их помощью экономисты производят анализ курса фондовых бирж, вальных и торговых рынков. В нефтехимии фракталы применяются для создания пористых материалов. В биологии фракталы используются для моделирования развития популяций, а также для описания систем внтренних органов. Даже в литературе фракталы нашли свою нишу. Среди художественных произведений были найдены произведения с текстуальной, структурной и семантической фрактальной природой.

/БДЭ математика/

Множество Жюлиа (в честь французского математика Гастона Жюлиа (1893-1978), который вместе с Пьером Фату первым занаялся изучением фракталов. В 1970-х годах его работы популяризировал Бенуа Мандельброт )

Геометрические фракталы

История фракталов в XIX веке началось именно с изучения геометрических фракталов. Фракталы ярко отражают свойство самоподобия. Наиболее наглядными примерами геометрических фракталов являются:

Кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины. Эта кривая не имеет касательной ни в одной точке.
Множество Кантора - неплотное несчётное совершенное множество.
Губка Менгера - это аналог множества Кантора с тем лишь отличием, что построен этот фрактал в трехмерном пространстве.
Треугольник или ковер Серпинского также является аналогом множества Кантора на плоскоти.
Фракталы Вейерштрасса и Ван дер Вардена представляют собой недифференцируемую непрерывную функцию.
Траектория броуновский частицы также не дифференцируема.
Кривая Пеано - это непрерывная кривая, которая проходит через все точки квадрата.
Дерево Пифагора.

Рассмотрим триадную кривую Коха.
Для построение кривой существует простая рекурсивная процедура образования фракта кривых на плоскости. В первую очередь необходимо задать произвольную ломаную с конечным числом звеньев, так называемым генератором. Далее каждое звено заменяется образующим элементом, точнее ломаной, подобной генератору. В результате такой замены образуется новое поколение кривой Коха. В первом поколении кривая состоит из четырех прямолинейных звеньев, длина каждого из которых равна 1/3. Чтобы получить третье поколение кривой выполняют тот же алгоритм - каждое звено заменяется на уменьшенный образующий элемент. Таким образом, для получения каждого последующего поколения, все звенья предыдущего заменяются уменьшенным образующим элементов. Тогда, кривая n-го поколения при любом конечном n называется предфракталом. В случае, когда n стремится к бесконечности кривая Коха становится фрактальным объектом.

Обратимся к другому способу построения фрактального объекта. Для его создания необходимо изменить правила построение: пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменяем единичный отрезок на образующий элемент таким образом, чтобы угол был сверху. То есть, при такой замене происходит смещение середины звена. Последующие поколения строятся по правилу: первое слева звено заменяется на образующий элемент тким образом, чтобы середина звена смещалась влево от направления движения. Далее замена звеньев чередуется. Предельная фрактальная кривая, построенная по такому правилу, называется драконом Хартера-Хейтуэя.

В компьютерной графике геометрические фраткалы используются для моделирования изображений деревьев, кустов, горных массивов, береговой линии. Двухмерные геометрические фракталы широко используются для создания объемных текстур.



Окончив университет, Мандельброт переехал в США, где окончил Калифорнийский технологический институт. По возвращении во Францию, он получил докторскую степень в Университете Парижа в 1952 году. В 1958 году Мандельброт окончательно поселился в США, где приступил к работе в научно-исследовательском центре IBM в Йорктауне
. Он работал в области лингвистики, теории игр, экономики, аэронавтики, географии, физиологии, астрономии, физики.

Фракта́л (лат. fractus - дроблёный) - термин, введённый Бенуа Мандельбротом в 1975 году. До сих пор нет строгого математического определения фрактальных множеств.
О н смог обобщить и систематезировать «неприятные» множества и построить красивую и интуитивно понятную теорию. Он открыл удивительный мир фракталов, красота и глубина которых порой поражают воображение, вызывают восторг у ученых, хужожников, философов… Работа Мандельброта была стимулирована передовыми компьютерными технологиями, которые позволили генерировать, визуализировать и исследовать различные множества.

Японский физик Ясунари Ватанаба создал компьютерную программу, рисующую прекрасные фрактальные орнаменты. Календарь из 12 месяцев был представлен на международной конферении "Математика и искусство" в Суздале.

В век цифровых технологий компьютерной графикой никого не удивишь. Однако, про такое направление как фрактальная графика слышали далеко не все. Что же такое фрактальная графика? Что такое фрактал и как его нарисовать?

Принцип фрактала

Прежде чем ответить на эти вопросы, давайте немного заглянем в историю. Термин «фрактал» появился в 1975 году благодаря математику, создателю фрактальной геометрии Бенуа Мандельброту. Он внёс огромный вклад в понимание этого явления в природе и жизни. Много интересной информации на эту тему можно найти в его известной книге «Фрактальная геометрия природы».

А теперь рассмотрим что же такое фрактал? Если вкратце, то фрактал — это повторяющееся самоподобие. Происходит это слово от латинского fractus - что значит дроблёный, разбитый. То есть фигура, состоящая из частей, которые похожи на неё — и есть фрактал.

Если брать примеры из природы, то фракталами являются снежинки, извилистая линия побережья, кроны деревьев. Свойства фрактала очень хорошо демонстрирует снежинка. Мельчайшие кристаллики из которых она состоит, повторяются и образуют такие же кристаллы, но уже большего размера. То же самое можно увидеть и в деревьях. Из ветки крупного размера вырастает такая же ветка, но уже меньшего размера, а из этой ветки растет ещё меньшая веточка и т. д. То есть одинаковые по форме ветви повторяются, уменьшаясь в размерах. А это и есть фрактал — повторяющееся самоподобие.

Кстати, если мы захотим увеличить картинку с фрактальной структурой, то это будет «бегом по кругу», так как фрактал станет увеличиваться бесконечно. Мы будем видеть ту же самую картинку, несмотря на увеличение. Бесконечность при увеличении или уменьшении является удивительным свойством фракталов.

Как строится фрактал?

Чтобы нарисовать фрактал, воспользуемся треугольником Серпинского. Предложенный польским математиком Вацлавом Серпинским ещё в 1915 году, этот фрактал стал широко известен и замечательно иллюстрирует принцип построения фракталов. Вот схема его построения:

В качестве основной фигуры здесь используется равносторонний треугольник. Отмечаем середину на каждой из его сторон. Затем соединяем линиями эти три точки. В результате, внутри нашего треугольника образуются ещё три треугольника, но уже меньшего размера. Далее повторяем дробление каждого из этих трёх треугольников. Получаем уже девять новых фигур, затем — двадцать семь… И так до бесконечности. И всё это множество находится внутри первоначального треугольника. Поэтому при приближении картинки в электронном виде возникает ощущение бесконечности.

Фрактальная графика

Итак, что же из себя представляет фрактальная графика? Мы неслучайно рассмотрели суть фрактала и принцип его построения, потому что на этом и основывается фрактальная графика. Чтобы создать такое графическое изображение художники используют специальные редакторы. Фрактальное изображение в них формируется из объектов-родителей и объектов-наследников и рассчитывается посредством математических формул. Поэтому графические файлы в этих программах весят немного (в отличие от растровой графики). В качестве примера редактора фрактальной графики, можно назвать ChaosPro. Это бесплатный генератор фракталов, работающий в режиме реального времени. Вот ряд интересных изображений сгенерированных в ChaosPro:

Посредством фрактальной геометрии можно генерировать поверхность воды, облака, горы. Можно с помощью нескольких коэффициентов рассчитать поверхности сложной формы. Таким способом создаются удивительные абстрактные картины, похожие на фантастический инопланетный мир. Свойства фракталов можно использовать и в технической компьютерной графике. Но если отвлечься от практического применения и сосредоточиться на красоте фрактальной графики, то разве это не фантастическое творчество, достойное быть самостоятельным направлением в изобразительном искусстве и просто радовать глаз?




Top