Где используется теорема фалеса. Теорема Фалеса

Если стороны угла, пересекают прямые параллельные линии которые одну из сторон разделяют на несколько отрезков, то и вторую сторону, прямые так же разделят на равнозначны с другой стороной отрезки.

Теорему Фалеса доказывает следующее: С 1 , С 2 , С 3 - это места где пересекаются прямые параллельные на любой стороне угла. С 2 находится посередине относительно С 1 и С 3 .. Точки D 1 , D 2 , D 3 - это места где пересекаются прямые, которые соответствуют прямым с другой стороной угла. Доказываем, что когда C 1 C 2 = C 2 C з, значит и D 1 D 2 =D 2 D 3 .
Проводим в месте D 2 прямой отрезок КР, параллельный участку C 1 C 3 . В свойствах параллелограмма C 1 C 2 =KD 2 , C 2 C 3 = D 2 P. Если C 1 C 2 =C 2 C 3 , то и KD 2 =D 2 P.

Полученные треугольные фигуры D 2 D 1 K и D 2 D 3 P равняются. И D 2 K=D 2 P по доказательству. Углы с верхней точкой D 2 равняются как вертикальные, а углы D 2 KD 1 и D 2 PD 3 равняются как внутренние накрест лежащие при параллельных C 1 D 1 и C 3 D 3 и разделяющей KP.
Так как D 1 D 2 =D 2 D 3 теорема доказана по равенству сторон треугольника

Заметка:
Если взять не стороны угла, а два прямых отрезка, доказательство будет такое же.
Любые прямые отрезки параллельные друг другу, которые пересекают две рассматриваемые нами прямые и разделяющие одну из них на одинаковые участки, тоже самое делают и со второй.

Рассмотрим несколько примеров

Первый пример

Условием задания требуется разбить прямую СD на п одинаковых отрезков.
Проводим от точки С полу-прямую с, которая не лежит на прямой СD. Отметим на ней одинаковые по величине части. СС 1 , С 1 С 2 , С 2 С 3 .....С п-1 С п. Соединяем С п с D. Проводим прямые от точек С 1 ,С 2 ,....,С п-1 которые будут параллельны относительно С п D. Прямые будут пересекать СD в местах D 1 D 2 D п-1 и разделять прямую СD на п одинаковых отрезков.

Второй пример

На стороне АВ треугольника АВС отмечена точка СК. Отрезок СК пересекает медиану АМ треугольника в точке Р, при этом АК= АР. Требуется найти отношение ВК к РМ.
Проводим через точку М прямой отрезок, параллельный СК, который пересекает АВ в точке D

По теореме Фалеса ВD=КD
По теореме пропорциональных отрезков получаем, что
РМ = КD = ВК/2, следовательно, ВК: РМ = 2:1
Ответ: ВК: РМ = 2:1

Третий пример

В треугольнике АВС, сторона ВС = 8 см. Прямая DE пересекает стороны АВ и ВС параллельно АС. И отсекает на стороне ВС отрезок ЕС = 4см. Доказать, что АD = DВ.

Так как ВС = 8 см и ЕС = 4см, то
ВЕ = ВС-ЕС, следовательно, ВЕ = 8-4 = 4(см)
По теореме Фалеса , так как АС параллельна DE и ЕС = ВЕ то, следовательно, АD = DВ. Что и требовалось доказать.

В женском журнале - онлайн, Вы найдете много интересной информации для себя. Так же есть раздел, посвященный стихам которые написал Сергей Есенин . Заходите не пожалеете!

Тема урока

Цели урока

  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Сформулировать и доказать свойства квадрата, доказать его свойства.
  • Научиться применять свойства фигур при решении задач.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Проверить умение учащихся решать задачи.

План урока

  1. Историческая справка.
  2. Фалес как математик и его труды.
  3. Полезно вспомнить.

Историческая справка

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.


  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том, что вписанный угол, опирающийся на диаметр окружности, является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла.
  • Основы геометрии Фалес постигал в Египте.

Открытия и заслуги ее автора

А известно ли вам, что Фалес Милетский был одним из семи самых известных по тем временам, мудрецом Греции. Он основал Ионийскую школу. Идею, которую продвигал Фалес в этой школе, было единство всего сущего. Мудрец считал, что есть единое начало, от которого произошли все вещи.

Огромной заслугой Фалеса Милетского является создание научной геометрии. Этот великий учений сумел с египетского искусства измерения создать дедуктивную геометрию, базой которой есть общие основания.

Кроме огромных познаний в геометрии, Фалес еще и неплохо разбирался в астрономии. Эму первому удалось предсказать полное затмение Солнца. А ведь это происходило не в современном мире, а в далеком 585 году, еще до нашей эры.

Фалес Милетский был тем человеком, который сообразил, что север можно точно определить по созвездию Малой Медведицы. Но и это не было его последним открытием, так как он сумел в точности определить продолжительность года, разбить его на триста шестьдесят пять дней, а также установил время равноденствий.

Фалес на самом деле был всесторонне развитым и мудрым человеком. Кроме того, что он славился как прекрасный математик, физик, астроном, он еще и как настоящий метеоролог, смог довольно точно предсказать урожай оливок.

Но самое примечательное то, что Фалес никогда не ограничивался в своих познаниях только научно-теоретической областью, а всегда пытался закрепить доказательства своих теорий на практике. И самое интересное, то, что великий мудрец не сосредотачивался на какой-то одной области своих познаний, его интерес имел различные направленности.

Имя Фалеса стало нарицательным для мудреца уже тогда. Его важность и значимость для Греции была так велика, как для России имя Ломоносова. Конечно, его мудрость можно толковать по-разному. Но точно можно сказать, что ему были присущи и изобретательность, и практическая смекалка, и в какой-то степени отрешенность.

Фалес Милетский был отличным математиком, философом, астрономом, любил путешествовать, был купцом и предпринимателем, занимался торговлей, а также был неплохим инженером, дипломатом, провидцем и активно участвовал в политической жизни.

Он даже умудрился с помощью посоха и тени определить высоту пирамиды. А было это так. В один погожий солнечный день Фалес поставил свой посох на границе, где заканчивалась тень от пирамиды. Далее он дождался, когда длинна от тени его посоха сравнялась с его высотой, и замерил длину тени пирамиды. Вот так, казалось бы просто Фалес определил высоту пирамиды и доказал, что длина одной тени имеет отношение к длине другой тени, также, как и высота пирамиды относится к высоте посоха. Чем и поразил самого фараона Амасиса.

Благодаря Фалесу все известные в то время знания были переведены в область научного интереса. Он смог донести результаты до уровня, пригодного для научного потребления, выделив определенный комплекс понятий. И возможно с помощью Фалеса началось последующее развитие античной философии.

Теорема Фалеса играет одну важных ролей в математике. Она была известна не только в Древнем Египте и Вавилоне, но и в других странах и являлась почвой для развития математики. Да и в повседневной жизни, при строительстве зданий, сооружений, дорог и т.д., без теоремы Фалеса не обойтись.

Теорема Фалеса в культуре

Теорема Фалеса прославилась не только в математике, но ее приобщили еще и к культуре. Однажды аргентинская музыкальная группа Les Luthiers (исп.) на суд зрителей представила песню, которую посвятила известной теореме. Участники Les Luthiers в своем видеоклипе специально для этой песни предоставили доказательства для прямой теоремы для пропорциональных отрезков.

Вопросы

  1. Какие прямые называются параллельными?
  2. Где практически применяется теорема Фалеса?
  3. О чем гласит теорема Фалеса?

Список использованных источников

  1. Энциклопедия для детей. Т.11. Математика/Глав.ред.М.Д.Аксенова.-м.:Аванта+,2001.
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»
Предмети > Математика > Математика 8 класс

Эта гробница мала, но слава над ней необъятна.
В ней перед тобою сокрыт многоразумный Фалес.

Надпись на гробнице Фалеса Милетского

Представьте себе такую картину. 600 г. до н.э. Египет. Перед вами огромнейшая египетская пирамида. Чтобы удивить фараона и остаться у него в фаворитах вам нужно измерить высоту этой пирамиды. В распоряжении у вас… ничего. Можно пасть в отчаяние, а можно поступить, как Фалес Милетский : использовать теорему подобия треугольников. Да, оказывается, все достаточно просто. Фалес Милетский подождал пока длина его тени и его рост совпадут, а затем с помощью теоремы о подобии треугольников нашел длину тени пирамиды, которая соответственно, была равна тени, отбрасываемой пирамидой.

Кто же такой этот Фалес Милетский ? Человек, который обрел славу одного из «семи мудрецов» древности? Фалес Милетский – древнегреческий философ, который отличился успехами в области астрономии, а также математики и физики. Годы его жизни были установлены только приблизительно: 625-645 гг до н.э.

Среди доказательств знания Фалесом астрономии можно привести следующий пример. 28 мая 585 г до н.э. предсказание Милетским солнечного затмения помогло прекратить длившуюся уже 6 лет войну между Лидией и Мидией. Это явление настолько испугало мидян, что они согласились на невыгодные для себя условия заключения мира с лидийцами.

Довольно широко известна легенда, которая характеризует Фалеса как находчивого человека. Фалесу часто приходилось слышать нелестные отзывы о его бедности. Однажды он решил доказать то, что и философы могут при желании жить в достатке. Еще зимой Фалес по наблюдению за звездами определил, что летом будет хороший урожай маслин. Тогда же он нанял маслодавильни в Милете и на Хиосе. Это обошлось ему довольно дешево, так как зимой спрос на них практически отсутствует. Когда же маслины дали богатый урожай, свои маслодавильни Фалес начал сдавать внаем. Собранное большое количество денег таким методом расценивалось как доказательство того, что философы могут зарабатывать своим умом, но их призвание выше таких земных проблем. Эта легенда, кстати, повторялась самим Аристотелем.

Что же касается геометрии, то многое из его «открытий» было позаимствовано у египтян. И все же этот перенос знаний в Грецию считается одной из основных заслуг Фалеса Милетского.

Достижениями Фалеса считаются формулировка и доказательство следующих теорем:

  • вертикальные углы равны;
  • равными треугольниками признаются те, у которых сторона и два прилегающих угла соответственно равны;
  • углы при основании равнобедренного треугольника равны;
  • диаметр делит круг пополам;
  • вписанный угол, опирающийся на диаметр, является прямым.

Именем Фалеса названа еще одна теорема, которая полезна при решении геометрических задач. Существует ее обобщенный и частный вид, обратная теорема, формулировки также могут немного отличаться в зависимости от источника, но смысл их всех остается одним. Рассмотрим эту теорему.

Если параллельные прямые пересекают стороны угла и отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Допустим, точки А 1 , А 2 , А 3 – точки пересечения параллельных прямых с одной из сторон угла, а В 1 , В 2 , В 3 – точки пересечения параллельных прямых с другой стороной угла. Необходимо доказать, что если А 1 А 2 = А 2 А 3 , то и В 1 В 2 = В 2 В 3 .

Через точку В 2 проведем прямую, параллельную прямой А 1 А 2 . Обозначим новую прямую С 1 С 2 . Рассмотрим параллелограммы A 1 C 1 B 2 A 2 и A 2 B 2 C 2 A 3 .

Свойства параллелограмма позволяют нам утверждать, что A1A2 = C 1 B 2 и A 2 A 3 = B 2 C 2 . А так как по нашему условию А 1 А 2 = А 2 А 3 , то и C 1 B 2 = В 2 С 2 .

И, наконец, рассмотрим треугольники Δ C 1 B 2 B 1 и Δ C 2 B 2 B 3 .

C 1 B 2 = B 2 C 2 (доказано выше).

А это значит, что Δ C 1 B 2 B 1 и Δ C 2 B 2 B 3 будут равны по второму признаку равенства треугольников (по стороне и прилегающим углам).

Таким образом, теорема Фалеса доказана.

Использование данной теоремы значительно облегчит и ускорит решение геометрических задач. Успехов в освоении этой занимательной науки математики!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Теорема планиметрии о параллельных и секущих.

Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Формулировки [ | ]

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

Более общая формулировка, также называемая теорема о пропорциональных отрезках

Параллельные прямые отсекают на секущих пропорциональные отрезки :

A 1 A 2 B 1 B 2 = A 2 A 3 B 2 B 3 = A 1 A 3 B 1 B 3 . {\displaystyle {\frac {A_{1}A_{2}}{B_{1}B_{2}}}={\frac {A_{2}A_{3}}{B_{2}B_{3}}}={\frac {A_{1}A_{3}}{B_{1}B_{3}}}.}

Замечания [ | ]

  • Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Доказательство в случае секущих

Рассмотрим вариант с несвязанными парами отрезков: пусть угол пересекают прямые A A 1 | | B B 1 | | C C 1 | | D D 1 {\displaystyle AA_{1}||BB_{1}||CC_{1}||DD_{1}} и при этом A B = C D {\displaystyle AB=CD} .

Доказательство в случае параллельных прямых

Проведем прямую BC . Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC , а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC . Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD .

Вариации и обобщения [ | ]

Обратная теорема [ | ]

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

В обратной теореме Фалеса важно, что равные отрезки начинаются от вершины

Таким образом (см. рис.) из того, что C B 1 C A 1 = B 1 B 2 A 1 A 2 = … {\displaystyle {\frac {CB_{1}}{CA_{1}}}={\frac {B_{1}B_{2}}{A_{1}A_{2}}}=\ldots } , следует, что A 1 B 1 | | A 2 B 2 | | … {\displaystyle A_{1}B_{1}||A_{2}B_{2}||\ldots } .

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Этой теоремой пользуются в навигации: столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется направление с одного судна на другое.

Лемма Соллертинского [ | ]

Следующее утверждение, двойственно к лемме Соллертинского :

Пусть f {\displaystyle f} - проективное соответствие между точками прямой l {\displaystyle l} и прямой m {\displaystyle m} . Тогда множество прямых будет множеством касательных к некоторому коническому сечению (возможно, вырожденному).

В случае теоремы Фалеса коникой будет бесконечно удалённая точка, соответствующая направлению параллельных прямых.

Это утверждение, в свою очередь, является предельным случаем следующего утверждения:

Пусть f {\displaystyle f} - проективное преобразование коники. Тогда огибающей множества прямых X f (X) {\displaystyle Xf(X)} будет коника (возможно, вырожденная).

| ]

О параллельных и секущих.

Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Формулировки

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

Более общая формулировка, также называемая теорема о пропорциональных отрезках

Параллельные прямые отсекают на секущих пропорциональные отрезки :

A 1 A 2 B 1 B 2 = A 2 A 3 B 2 B 3 = A 1 A 3 B 1 B 3 . {\displaystyle {\frac {A_{1}A_{2}}{B_{1}B_{2}}}={\frac {A_{2}A_{3}}{B_{2}B_{3}}}={\frac {A_{1}A_{3}}{B_{1}B_{3}}}.}

Замечания

  • В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также не важно, где находятся отрезки на секущих.
  • Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Доказательство в случае секущих

Рассмотрим вариант с несвязанными парами отрезков: пусть угол пересекают прямые A A 1 | | B B 1 | | C C 1 | | D D 1 {\displaystyle AA_{1}||BB_{1}||CC_{1}||DD_{1}} и при этом A B = C D {\displaystyle AB=CD} .

Доказательство в случае параллельных прямых

Проведем прямую BC . Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC , а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC . Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD .

Вариации и обобщения

Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

В обратной теореме Фалеса важно, что равные отрезки начинаются от вершины

Таким образом (см. рис.) из того, что C B 1 C A 1 = B 1 B 2 A 1 A 2 = … {\displaystyle {\frac {CB_{1}}{CA_{1}}}={\frac {B_{1}B_{2}}{A_{1}A_{2}}}=\ldots } , следует, что A 1 B 1 | | A 2 B 2 | | … {\displaystyle A_{1}B_{1}||A_{2}B_{2}||\ldots } .

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Этой теоремой пользуются в навигации: столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется направление с одного судна на другое.

Лемма Соллертинского

Следующее утверждение, двойственно к лемме Соллертинского :

Пусть f {\displaystyle f} - проективное соответствие между точками прямой l {\displaystyle l} и прямой m {\displaystyle m} . Тогда множество прямых будет множеством касательных к некоторому коническому сечению (возможно, вырожденному).

В случае теоремы Фалеса коникой будет бесконечно удалённая точка, соответствующая направлению параллельных прямых.

Это утверждение, в свою очередь, является предельным случаем следующего утверждения:

Пусть f {\displaystyle f} - проективное преобразование коники. Тогда огибающей множества прямых X f (X) {\displaystyle Xf(X)} будет коника (возможно, вырожденная).



 Top