Градиентный метод первого порядка. Градиентный метод

Как мы уже отметили, задача оптимизации – это задача отыскания таких значений факторов х 1 = х 1* , х 2 = х 2* , …, х k = х k * , при которых функция отклика (у ) достигает экстремального значения у = ext (оптимума).

Известны различные методы решения задачи оптимизации. Одним из наиболее широко применяемых является метод градиента, называемый также методом Бокса-Уилсона и методом крутого восхождения.

Рассмотрим сущность метода градиента на примере двухфакторной функции отклика y = f(x 1 , х 2 ). На рис. 4.3 в фак­торном пространстве изо­бражены кривые равных значений функции отклика (кривые уровня). Точке с координатами х 1 *, х 2 * соответствует экстремаль­ное значение функции от­клика у ext .

Если мы выбе­рем какую-либо точку фак­торного пространства в ка­честве исходной (х 1 0 , х 2 0), то наикратчайший путь к вершине функции откли­ка из этой точки – это путь, по кривой, касательная к которой в каждой точке совпадает с нормалью к кривой уровня, т.е. это путь в направлении гради­ента функции отклика.

Градиент непрерывной однозначной функции y = f (x 1 , х 2) – это вектор, определяемый по направлению градиентом с координатами:

где i, j – единичные векторы в направлении осей координат х 1 и х 2 . Частные производные и характеризуют направление вектора.

Поскольку нам неизвестен вид зависимости y = f (x 1 , х 2), мы не можем найти частные производные , и опреде­лить истинное направление градиента.

Согласно методу градиента в какой-то части факторного пространства выбирается исходная точка (исходные уровни) х 1 0 , х 2 0 . Относительно этих исходных уровней строится сим­метричный двухуровневый план эксперимента. Причем интер­вал варьирования выбирается настолько малым, чтобы ли­нейная модель оказалась адекватной. Известно, что любая кривая на достаточно малом участке может быть аппрокси­мирована линейной моделью.

После построения симметричного двухуровневого плана решается интерполяционная задача, т.е. строится линейная модель:

и проверяется ее адекватность.

Если для выбранного интервала варьирования линейная мо­дель оказалась адекватной, то может быть определено на­правление градиента:

Таким образом, направление градиента функции отклика определяется значениями коэффициентов регрессии. Это означает, что мы будем двигаться в направлении градиента, если из точки с координатами ( ) перейдем в точку с координатами:

где m – положительное число, определяющее величину шага в на­правлении градиента.

Поскольку х 1 0 = 0 и х 2 0 = 0, то .

Определив направление градиента () и выбрав ве­личину шага m , осуществляем опыт на исходном уровне х 1 0 , х 2 0 .


Затем делаем шаг в направлении градиента, т.е. осу­ществляем опыт в точке с координатами . Если значе­ние функции отклика возросло по сравнению с ее значением в исходном уровне, делаем еще шаг в направлении градиен­та, т.е. осуществляем опыт в точке с координатами:

Движение по градиенту продолжаем до тех пор, пока функция отклика не начнет уменьшаться. На рис. 4.3 движение по градиенту соответствует прямой, вы­ходящей из точки (х 1 0 , х 2 0). Она постепенно отклоняется от истинного направления градиента, показанного штриховой линией, вследствие нелинейности функции отклика.

Как только в очередном опыте значение функции отклика уменьшилось, движение по градиенту прекращают, прини­мают опыт с максимальным значением функции отклика за новый исходный уровень, составляют новый симметричный двухуровневый план и снова решают интерполяционную за­дачу.

Построив новую линейную модель , осуществляют регрессионный анализ. Если при этом провер­ка значимости факторов показывает, что хоть один коэф

фи­циент , значит, область экстремума функции откли­ка (область оптимума) еще не достигнута. Определяется новое направление градиента и начинается движение к обла­сти оптимума.

Уточнение направления градиента и движение по гради­енту продолжаются до тех пор, пока в процессе решения очередной интерполяционной задачи проверка значимости факторов не покажет, что все факторы незначимы, т.е. все . Это означает, что область оптимума достигнута. На этом решение оптимизационной задачи прекращают, и принимают опыт с максимальным значением функции отклика за оптимум.

В общем виде последовательность действий, необходимых для решения задачи оптимизации методом градиента, может быть представлена в виде блок-схемы (рис. 4.4).

1) исходные уровни факторов (х j 0) следует выбирать воз­можно ближе к точке оптимума, если есть какая-то априор­ная информация о ее положении;

2) интервалы варьирования (Δх j ) надо выбирать такими, чтобы линейная модель наверняка оказалась адекватной. Границей снизу Δх j при этом является минимальное значе­ние интервала варьирования, при котором функция отклика остается значимой;

3) значение шага (т ) при движении по градиенту выбирают таким образом, чтобы наибольшее из произведений не превышало разности верхнего и нижнего уровней факто­ров в нормированном виде

.

Следовательно, . При меньшем значении т разность функции отклика в исходном уровне и в точке с координа­тами может оказаться незначимой. При большем значении шага возникает опасность проскочить оптимум функ­ции отклика.

Лекция № 8

Градиентные методы решения задач нелинейного программирования. Методы штрафных функций. Приложения нелинейного программирования к задачам исследования операций.

Задачи без ограничений. Градиентным методом можно решать, вообще говоря, любую нелинейную задачу. Однако при этом находится лишь локальный экстремум. Поэтому целесообразнее применять этот метод при решении задач выпуклого программирования, в которых любой локальный экстремум, является одновременно и глобальным (см. теорему 7.6).

Будем рассматривать задачу максимизации нелинейной дифференцируемой функции f (x ). Суть градиентного поиска точки максимума х * весьма проста: надо взять произвольную точку х 0 и с помощью градиента , вычисленного в этой точке, определить направление, в котором f (х ) возрастает с наибольшей скоростью (рис. 7.4),

а затем, сделав небольшой шаг в найденном направлении, перейти в новую точку x i . Потом снова определить наилучшее направление для перехода в очередную точку х 2 и т. д. На рис. 7.4 поисковая траектория представляет собой ломаную х 0 , x 1 , х 2 ... Таким образом, надо построить последовательность точек х 0 , x 1 , х 2 ,...,x k , ... так, чтобы она сходилась к точке максимума х *, т. е. для точек последовательности выполнялись условия

Градиентные методы, как правило, позволяют получать точное решение за бесконечное число шагов и только в некоторых случаях - за конечное. В связи с этим градиентные методы относят к приближенным методам решения.

Движение из точки х k в новую точку x k+1 осуществляется по прямой, проходящей через точку х k и имеющей уравнение

(7.29)

где λ k - числовой параметр, от которого зависит величина шага. Как только значение параметра в уравнении (7.29) выбрано: λ k =λ k 0 , так становится определенной очередная точка на поисковой ломаной.

Градиентные методы отличаются друг от друга способом выбора величины шага - значения λ k 0 параметра λ k . Можно, например, двигаться из точки в точку с постоянным шагом λ k = λ, т. е. при любом k

Если при этом окажется, что , то следует возвратиться в точку и уменьшить значение параметра, например до λ /2.

Иногда величина шага берется пропорциональной модулю градиента.

Если ищется приближенное решение, то поиск можно прекратить, основываясь на следующих соображениях. После каждой серии из определенного числа шагов сравнивают достигнутые значения целевой функции f (x ). Если после очередной серии изменение f (x ) не превышает некоторого наперед заданного малого числа , поиск прекращают и достигнутое значение f (x ) рассматривают как искомый приближенный максимум, а соответствующее ему х принимают за х *.



Если целевая функция f (x ) вогнутая (выпуклая), то необходимым и достаточным условием оптимальности точки х * является равенство нулю градиента функции в этой точке.

Распространенным является вариант градиентного поиска, называемый методом наискорейшего подъема. Суть его в следующем. После определения градиента в точке х к движение вдоль прямой производится до точки х к+ 1 , в которой достигается максимальное значение функции f (х ) в направлении градиента . Затем в этой точке вновь определяется градиент, и движение совершается по прямой в направлении нового градиента до точки х к+ 2 , в которой достигается максимальное в этом направлении значение f (x ). Движение продолжается до тех пор, пока не будет достигнута точка х *, соответствующая наибольшему значению целевой функции f (x ). На рис. 7.5 приведена схема движения к оптимальной точке х * методом наискорейшего подъема. В данном случае направление градиента в точке х k является касательным к линии уровня поверхности f (х ) в точке х к+ 1 , следовательно, градиент в точкех к+ 1 ортогонален градиенту (сравните с рис. 7.4).

Перемещение из точки х k в точку сопровождается возрастанием функции f (x ) на величину

Из выражения (7.30) видно, что приращение является функцией переменной , т. е. . При нахождении максимума функции f (x) в направлении градиента ) необходимо выбирать шаг перемещения (множитель ), обеспечивающий наибольшее возрастание приращению функции, именно функции . Величина , при которой достигается наибольшее значение , может быть определена из необходимого условия экстремума функции :

(7.31)

Найдем выражение для производной, дифференцируя равенство (7.30) по как сложную функцию:

Подставляя этот результат в равенство (7.31), получаем

Это равенство имеет простое геометрическое истолкование: градиент в очередной точке х к+ 1 , ортогонален градиенту в предыдущей точке х к .


построены линии уровня этой поверхности. С этой целью уравнение приведено к виду (x 1 -1) 2 +(x 2 -2) 2 =5-0,5f , из которого ясно, что линиями пересечения параболоида с плоскостями, параллельными плоскости x 1 Оx 2 (линиями уровня), являются окружности радиусом . При f =-150, -100, -50 их радиусы равны соответственно , а общий центр находится в точке (1; 2). Находим градиент данной функции:

I шаг . Вычисляем:

На рис. 7.6 с началом в точке х 0 =(5; 10) построен вектор 1/16, указывающий направление наискорейшего возрастания функции в точке х 0 . На этом направлении расположена следующая точка . В этой точке .

Используя условие (7.32), получаем

или 1-4=0, откуда =1/4. Так как , то найденное значение является точкой максимума . Находим x 1 =(5-16/4; 10-32/4)=(1; 2).

II шаг . Начальная точка для второго шага x 1 =(1; 2). Вычисляем =(-4∙1 +4; -4∙2+8)=(0; 0). Следовательно, х 1 =(1; 2) является стационарной точкой. Но поскольку данная функция вогнутая, то в найденной точке (1; 2) достигается глобальный максимум.

Задача с линейными ограничениями. Сразу же отметим, что если целевая функция f (х ) в задаче с ограничениями имеет единственный экстремум и он находится внутри допустимой области, то для поиска экстремальной точки х * применяется изложенная выше методика без каких-либо изменений.

Рассмотрим задачу выпуклого программирования с линейными ограничениями:

(7.34)

Предполагается, что f (х ) является вогнутой функцией и имеет непрерывные частные производные в каждой точке допустимой области.

Начнем с геометрической иллюстрации процесса решения задачи (рис. 7.7). Пусть начальная точка х 0 расположена внутри допустимой области. Из точки х 0 можно двигаться в направлении градиента , пока f (x ) не достигнет максимума. В нашем случае f (x ) все время возрастает, поэтому остановиться надо в точке х , на граничной прямой. Как видно из рисунка, дальше двигаться в направлении градиента нельзя, так как выйдем из допустимой области. Поэтому надо найти другое направление перемещения, которое, с одной стороны, не выводит из допустимой области, а с другой - обеспечивает наибольшее возрастание f (x ). Такое направление определит вектор , составляющий с вектором наименьший острый угол по сравнению с любым другим вектором, выходящим из точки x i и лежащим в допустимой области. Аналитически такой вектор найдется из условия максимизации скалярного произведения . В данном случае вектор указывающий наивыгоднейшее направление, совпадает с граничной прямой.


Таким образом, на следующем шаге двигаться надо по граничной прямой до тех пор, пока возрастает f (x ); в нашем случае - до точки х 2 . Из рисунка видно, что далее следует перемещаться в направлении вектора , который находится из условия максимизации скалярного произведения , т. е. по граничной прямой. Движение заканчивается в точке х 3 , поскольку в этой точке завершается оптимизационный поиск, ибо в ней функция f (х ) имеет локальный максимум. Ввиду вогнутости в этой точке f (х ) достигает также глобального максимума в допустимой области. Градиент в точке максимума х 3 =х * составляет тупой угол с любым вектором из допустимой области, проходящим через х 3 , поэтому скалярное произведение будет отрицательным для любого допустимого r k , кроме r 3 , направленного по граничной прямой. Для него скалярное произведение =0, так как и взаимно перпендикулярны (граничная прямая касается линии уровня поверхности f (х ), проходящей через точку максимума х *). Это равенство и служит аналитическим признаком того, что в точке х 3 функция f (x ) достигла максимума.

Рассмотрим теперь аналитическое решение задачи (7.33) - (7.35). Если оптимизационный поиск начинается с точки, лежащей в допустимой области (все ограничения задачи выполняются как строгие неравенства), то перемещаться следует по направлению градиента так, как установлено выше. Однако теперь выбор λ k в уравнении (7.29) усложняется требованием, чтобы очередная точка оставалась в допустимой области. Это означает, что ее координаты должны удовлетворять ограничениям (7.34), (7.35), т. е. должны выполняться неравенства:

(7.36)

Решая систему линейных неравенств (7.36), находим отрезок допустимых значений параметра λ k , при которых точка х k +1 будет принадлежать допустимой области.

Значение λ k * , определяемое в результате решения уравнения (7.32):

При котором f (x ) имеет локальный максимум по λ k в направлении, должно принадлежать отрезку . Если же найденное значение λ k выходит за пределы указанного отрезка, то в качестве λ k * принимается . В этом случае очередная точка поисковой траектории оказывается на граничной гиперплоскости, соответствующей тому неравенству системы (7.36), по которому при решении системы получена правая конечная точка . отрезка допустимых значений параметра λ k .

Если оптимизационный поиск начат с точки, лежащей на граничной гиперплоскости, или очередная точка поисковой траектории оказалась на граничной гиперплоскости, то для продолжения движения к точке максимума прежде всего необходимо найти наилучшее направление движения С этой целью следует решить вспомогательную задачу математического программирования, а именно- максимизировать функцию

при ограничениях

для тех t , при которых

где .

В результате решения задачи (7.37) - (7.40) будет найден вектор , составляющий с градиентом наименьший острый угол.

Условие (7.39) говорит о том, что точка принадлежит границе допустимой области, а условие (7.38) означает, что перемещение из по вектору будет направлено внутрь допустимой области или по ее границе. Условие нормализации (7.40) необходимо для ограничения величины , так как в противном случае значение целевой функции (7.37) можно сделать сколь угодно большим Известны различные формы условий нормализации, и в зависимости от этого задача (7.37) - (7.40) может быть линейной или нелинейной.

После определения направления находится значение λ k * для следующей точки поисковой траектории. При этом используется необходимое условие экстремума в форме, аналогичной уравнению (7.32), но с заменой на вектор , т. е.

(7.41)

Оптимизационный поиск прекращается, когда достигнута точка x k * , в которой .

Пример 7.5. Максимизировать функцию при ограничениях

Решение. Для наглядного представления процесса оптимизации будем сопровождать его графической иллюстрацией. На рис 7.8 изображено несколько линий уровня данной поверхности и допустимая область ОАВС, в которой следует найти точку х *, доставляющую максимум данной функции (см. пример 7 4).

Начнем оптимизационный поиск, например с точки х 0 =(4, 2,5), лежащей на граничной прямой АВ x 1 +4x 2 =14. При этом f (х 0)=4,55.

Найдем значение градиента

в точке x 0 . Кроме того, и по рисунку видно, что через допустимую область проходят линии уровня с пометками более высокими, чем f (x 0)=4,55. Словом, надо искать направление r 0 =(r 01 , r 02) перемещения в следующую точку x 1 более близкую к оптимальной. С этой целью решаем задачу (7.37) - (7.40) максимизации функции при ограничениях


Поскольку точка х 0 располагается только на одной (первой) граничной прямой (i =1) x 1 +4x 2 =14, то условие (7.38) записывается в форме равенства.

Система ограничительных уравнений этой задачи имеет только два решения (-0,9700; 0,2425) и (0,9700;-0,2425) Непосредственной подстановкой их в функцию T 0 устанавливаем, что максимум Т 0 отличен от нуля и достигается при решении (-0,9700; 0,2425) Таким образом, перемещаться из х 0 нужно по направлению вектора r 0 =(0,9700; 0,2425), т е по граничной прямой ВА.

Для определения координат следующей точки x 1 =(x 11 ; x 12)

(7.42)

необходимо найти значение параметра , при котором функция f (x ) в точке x

откуда =2,0618. При этом =-0,3999<0. Значит,=2,0618. По формуле (7.42) находим координаты новой точки х 1 (2; 3).

Если продолжить оптимизационный поиск, то при решении очередной вспомогательной задачи (7.37)- (7.40) будет установлено, что Т 1 =, а это говорит о том, что точка x 1 является точкой максимума х* целевой функции в допустимой области. Это же видно и из рисунка в точке x 1 одна из линий уровня касается границы допустимой области. Следовательно, точка x 1 является точкой максимума х*. При этом f max =f (x *)=5,4.


Задача с нелинейными ограничениями. Если в задачах с линейными ограничениями движение по граничным прямым оказывается возможным и даже целесообразным, то при нелинейных ограничениях, определяющих выпуклую область, любое как угодно малое перемещение из граничной точки может сразу вывести за пределы области допустимых решений, и возникнет необходимость в возвращении в допустимую область (рис. 7.9). Подобная ситуация характерна для задач, в которых экстремум функции f (x ) достигается на границе области. В связи с этим применяются различные

способы перемещения, обеспечивающие построение последовательности точек, расположенных вблизи границы и внутри допустимой области, или зигзагообразное движение вдоль границы с пересечением последней. Как видно из рисунка, возврат из точки x 1 в допустимую область следует осуществлять вдоль градиента той граничной функции , которая оказалась нарушенной. Это обеспечит отклонение очередной точки х 2 в сторону точки экстремума х*. Признаком экстремума в подобном случае будет коллинеарность векторов и .

Метод релаксации

Алгоритм метода заключается в отыскании осевого направления, вдоль которого целевая функция уменьшается наиболее сильно (при поиске минимума). Рассмотрим задачу безусловной оптимизации

Для определения осевого направления в начальной точке поиска из области определяются производные , , по всем независимым переменным. Осевому направлению соответствует наибольшая по модулю производная .

Пусть – осевое направление, т.е. .

Если знак производной отрицательный, функция убывает в направлении оси, если положительный – в обратном направлении:

В точке вычисляют . По направлению убывания функции производится один шаг, определяется и в случае улучшения критерия шаги продолжаются до тех пор, пока не будет найдено минимальное значение по выбранному направлению. В этой точке вновь определяются производные по всем переменным, за исключением тех, по которой осуществляется спуск. Снова находится осевое направление наиболее быстрого убывания , по которому производятся дальнейшие шаги и т.д.

Эту процедуру повторяют до тех пор, пока не достигается оптимальная точка, при движении из которой по любому осевому направлению дальнейшего убывания не происходит. На практике критерием окончания поиска служит условие

которое при превращается в точное условие равенства нулю производных в точке экстремума. Естественно условие (3.7) может быть использовано только в том случае, если оптимум лежит внутри допустимой области изменения независимых переменных . Если же оптимум попадает на границу области , критерий типа (3.7) непригоден и вместо него следует применять положительности всех производных по допустимым осевым направлениям.

Алгоритм спуска для выбранного осевого направления может быть записан так

(3.8)

где -значение варьируемой переменной на каждом шаге спуска;

Величина k+1 шага, которая может изменяться в зависимости от номера шага:

– функция знака z;

Вектор точки, в которой последний раз производилось вычисление производных ;



Знак “+” в алгоритме (3.8) принимается при поиске max I, а знак “-” – при поиске min I.Чем меньше шаг h., тем больше количество вычислений на пути движения к оптимуму. Но при слишком большой величине h вблизи оптимума может возникнуть зацикливание процесса поиска. Вблизи оптимума необходимо, чтобы выполнялось условие h

Простейший алгоритм изменения шага h состоит в следующем. В начале спуска задается шаг , равный например, 10% от диапазона d; изменения с этим шагом производится спуск по выбранному направлению до тез пор, пока выполняется условие для двух последующих вычислений

При нарушении условия на каком-либо шаге направление спуска на оси изменяется на обратное и спуск продолжается из последней точки с уменьшенной вдвое величиной шага.

Формальная запись этого алгоритма следующая:

(3.9)

В результате использования такой стратегии ша спуска будет уменьшатся в районе оптимума по данному направлению и поиск по направлению можно прекратить, когда станет меньше E.

Затем отыскивается новое осевое направление начальный шаг для дальнейшего спуска, обычно меньший пройденного вдоль предыдущего осевого направления. Характер движения в оптимуме в данном методе показан на рисунке 3.4.

Рисунок 3.5 – Траектория движения к оптимуму в методе релаксации

Улучшение алгоритма поиска по данному методу может быть достигнуто путем применения методов однопараметрической оптимизации. При этом может быть предложена схема решения задачи:

Шаг 1. – осевое направление,

; , если ;

Шаг 2. – новое осевое направление;

Метод градиента

В этом методе используется градиент функции . Градиентом функции в точке называется вектор, проекциями которого на координатные оси являются частные производные функции по координатам (рис. 6.5)

Рисунок 3.6 – Градиент функции

.

Направление градиента – это направление наиболее быстрого возрастания функции (наиболее крутого “склона” поверхности отклика). Противоположное ему направление (направление антиградиента) – это направление наибыстрейшего убывания (направление наискорейшего “спуска” величин ).

Проекция градиента на плоскость переменных перпендикулярна касательной к линии уровня , т.е. градиент ортогонален к линиям постоянного уровня целевой функции (рис. 3.6).

Рисунок 3.7 – Траектория движения к оптимуму в методе

градиента

В отличие от метода релаксации в методе градиента шаги совершаются в направлении наибыстрейшего уменьшения (увеличения) функции .

Поиск оптимума производится в два этапа. На первом этапе находятся значения частных производных по всем переменным , которые определяют направление градиента в рассматриваемой точке. На втором этапе осуществляется шаг в направлении градиента при поиске максимума или в противоположном направлении – при поиске минимума.

Если аналитическое выражение неизвестно, то направление градиента определяется поиском на объекте пробных движений. Пусть начальная точка. Дается приращение величина , при этом . Определяют приращение и производную

Аналогично определяют производные по остальным переменным. После нахождения составляющих градиента пробные движения прекращаются и начинаются рабочие шаги по выбранному направлению. Причем величина шага тем больше, чем больше абсолютная величина вектора .

При выполнении шага одновременно изменяются значения всех независимых переменных. Каждая из них получает приращение, пропорциональное соответствующей составляющей градиента

, (3.10)

или в векторной форме

, (3.11)

где – положительная константа;

“+” – при поиске max I;

“-” – при поиске min I.

Алгоритм градиентного поиска при нормировании градиента (деление на модуль) применяется в виде

; (3.12)

(3.13)

Определяет величину шага по направлению градиента.

Алгоритм (3.10) обладает тем достоинством, что при приближении к оптимуму длина шага автоматически уменьшается. А при алгоритме (3.12) стратегию изменения можно строить независимо от абсолютной величины коэффициента.

В методе градиента каждый разделяется один рабочий шаг, после которого вновь вычисляются производные, определяется новое направление градиента и процесс поиска продолжается (рис. 3.5).

Если размер шага выбран слишком малым, то движение к оптимуму будет слишком долгим из-за необходимости вычисления в очень многих точках. Если же шаг выбран слишком большим, в район оптимума может возникнуть зацикливание.

Процесс поиска продолжается до тех пор, пока , , не станут близки к нулю или пока не будет достигнута граница области задания переменных.

В алгоритме с автоматическим уточнением шага величину уточняют так, чтобы изменение направления градиента в соседних точках и

Критерии окончания поиска оптимума:

; (3.16)

; (3.17)

где – норма вектора.

Поиск завершается при выполнении одного из условий (3.14) – (3.17).

Недостатком градиентного поиска (так же и рассмотренных выше методов) является то, что при его использовании можно обнаружить только локальный экстремум функции . Для отыскания других локальных экстремумов необходимо производить поиск из других начальных точек.

Градиентный метод первого порядка

Градиентные методы оптимизации

Градиентные методы оптимизации относятся к численным методам поискового типа. Они универсальны, хорошо приспособлены для работы с современными цифровыми вычислительными машинами и в большинстве случаев весьма эффективны при поиске экстремального значения нелинейных функций с ограничениями и без них, а также тогда, когда аналитический вид функции вообще неизвестен. Вследствие этого градиентные, или поисковые, методы широко применяются на практике.

Сущность указанных методов заключается в определении значений независимых переменных, дающих наибольшие изменения целевой функции. Обычно для этого двигаются вдоль градиента, ортогонального к контурной поверхности в данной точке.

Различные поисковые методы в основном отличаются один от другого способом определения направления движения к оптимуму, размером шага и продолжительностью поиска вдоль найденного направления, критериями окончания поиска, простотой алгоритмизации и применимостью для различных ЭВМ. Техника поиска экстремума основана на расчетах, которые позволяют определить направление наиболее быстрого изменения оптимизируемого критерия.

Если критерий задан уравнением

то его градиент в точке (x 1 , x 2 ,…, x n) определяется вектором:

Частная производная пропорциональна косинусу угла, образуемого вектором градиента с i-й осью координат. При этом

Наряду с определением направления градиентного вектора основным вопросом, решаемым при использовании градиентных методов, является выбор шага движения по градиенту. Величина шага в направлении gradF в значительной степени зависит от вида поверхности. Если шаг слишком мал, потребуются продолжительные расчеты; если слишком велик, можно проскочить оптимум. Размер шага должен удовлетворять условию, при котором все шаги от базисной точки лежат в том же самом направлении, что и градиент в базисной точке. Размеры шага по каждой переменной x i вычисляются из значений частных производных в базовой (начальной) точке:

где К - константа, определяющая размеры шага и одинаковая для всех i-х направлений. Только в базовой точке градиент строго ортогонален к поверхности. Если же шаги слишком велики в каждом i-м направлении, вектор из базисной точки не будет ортогонален к поверхности в новой точке.

Если выбор шага был удовлетворительным, производная в следующей точке существенно близка к производной в базисной точке.

Для линейных функций градиентное направление не зависит от положения на поверхности, для которой оно вычисляется. Если поверхность имеет вид

и компонента градиента в i-м направлении равна

Для нелинейной функции направление градиентного вектора зависит от точки на поверхности, в которой он вычисляется.

Несмотря на существующие различия между градиентными методами, последовательность операций при поиске оптимума в большинстве случаев одинакова и сводится к следующему:

а) выбирается базисная точка;

б) определяется направление движения от базисной точки;

в) находится размер шага;

г) определяется следующая точка поиска;

д) значение целевой функции в данной точке сравнивается с ее значением в предыдущей точке;

е) вновь определяется направление движения и процедура повторяется до достижения оптимального значения.

Алгоритм и программа распознавания образов

Применимость градиентных алгоритмов к классификации образов основана на том, функция штрафа (целевая функция) выбирается таким образом, чтобы она достигала минимальное значение при выполнении условия...

Анодирование алюминия как объект автоматизированного проектирования

Рассмотрим процесс анодирования алюминия AD1 в растворе серной кислоты с добавлением соли сульфата меди. Данные находятся в таблицах 1,2,3,4 соответственно при плотности электролита 1.2,1.23,1.26 и 1.29 кг/м3...

Задачи нелинейного программирования

Метод расчета мехатронной системы привода телескопа на основе равновесно-оптимальной балансировки

Модели и методы конечномерной оптимизации

Оптимизация производства по выпуску продукции на предприятии Nature Republic

Чтобы получить более полную характеристику достоинств и недостатков проектируемого объекта, нужно ввести больше критериев качества в рассмотрение. Как результат, задачи проектирования сложных систем всегда многокритериальные...

Задача поиска экстремума функции одной переменной возникает при оптимизации целевой функции, зависящей от одной скалярной переменной. Такие задачи входят составной частью во многие итерационные методы решения задач многомерной оптимизации...

Основные методы решения задач нелинейного программирования

В настоящее время разработано огромное число методов многомерной оптимизации, охватывающие почти все возможные случаи. Здесь рассматривается лишь несколько основных, считающихся классическими...

Программная модель поиска глобального минимума нелинейных "овражных" функций двух переменных

Ненулевой антиградиент - f(x0) указывает направление, небольшое перемещение вдоль которого из х0 приводит к значению функции f меньшему, чем f(x0). Это замечательное свойство лежит в основе градиентных методов...

Профессиональная CAM-система трехмерного моделирования литейных процессов

Методы условной оптимизации Вначале рассмотрим методы поиска min f (x1,…,xn) при условиях (2.1). Постановка задачи: Найти вектор, доставляющий минимум функции f (x1,x2,…,xn) при условиях, j=1,2,…,m. Другими словами, см. рисунок 2.20, требуется найти точку...

Психологическая интуиция искусственных нейронных сетей

Как было показано в предыдущем параграфе данной главы, решение основных задач восстановления зависимостей достигается при помощи процедуры оптимизации функционала качества...

Разработка интернет ресурса для магазина "Военная одежда"

Создание веб-приложений с использованием современных ORM-фреймворков

В качестве средств оптимизации будут рассмотрены: 1) предварительная загрузка (fetch=FetchType.EAGER) 2) пакетная выборка 3) JPQL запросы с использованием JOIN FETCH Все они рассматривались ранее в разд. 4, однако стоит остановиться на каждом из них еще раз...

Метод Гаусса-Зейделя

Метод заключается в поочерёдном нахождении частных экстремумов целевой функции по каждому фактору. При этом на каждом этапе стабилизируют (k-1) факторов и варьируют только один i-ый фактор

Порядок расчёта: в локальной области факторного пространства на основании предварительных опытов выбирают точку, соответствующую наилучшему результату процесса, и из неё начинают движение к оптимуму. Шаг движения по каждому фактору задаётся исследователем. Вначале фиксируют все факторы на одном уровне и изменяют один фактор до тех пор, пока будет увеличение (уменьшение) функции отклика (Y), затем изменяют другой фактор при стабилизации остальных и т. д. до тех пор пока не получат желаемый результат (Y). Главное правильно выбрать шаг движения по каждому фактору.

Этот способ наиболее прост, нагляден, но движение к оптимуму длительно и метод редко приводит в оптимальную точку. В настоящее время он иногда применяется при машинном эксперименте.

Эти методы обеспечивают движение к оптимуму по прямой перпендикулярной к линиям равного отклика, т. е. в направлении градиента функции отклика.

Градиентные методы имеют несколько разновидностей, различающихся правилами выбора ступеней варьирования и рабочих шагов на каждом этапе движения к экстремуму.

Сущность всех методов состоит в следующем: первоначально на основании предварительных опытов выбирают базовую точку. Затем на каждом этапе вокруг очередной базовой точки организуют пробные эксперименты, по результатам которых оценивают новое направление градиента, после чего в этом направлении совершают один рабочий шаг.

Метод градиента (обычный) осуществляется по следующей схеме:

а) выбирают базовую точку;

б) выбирают шаги движения по каждому фактору;

в) определяют координаты пробных точек;

г) проводят эксперименты в пробных точках. В результате получают значения параметра оптимизации (Y) в каждой точке.

д) по результатам опытов вычисляют оценки составляющих вектор-градиента в т. М для каждого i-го фактора:


где H i -шаг движения по X i .

X i – координаты предыдущей рабочей точки.

ж) координаты этой рабочей точки принимают за новую базовую точку, вокруг которой проводят эксперименты в пробных точках. Вычисляют градиент и т. д., пока не достигнут желаемого параметра оптимизации (Y). Корректировка направления движения производится после каждого шага.

Достоинства метода: простота, более высокая скорость движения к оптимуму.

Недостатки: большая чувствительность к помехам. Если кривая имеет сложную форму, метод может не привести к оптимуму. Если кривая отклика пологая - метод малоэффективен. Метод не даёт информации о взаимодействии факторов.

а) Метод крутого восхождения (Бокса - Уилсона).

б) Принятие решений после крутого восхождения.

в) Симплексный метод оптимизации.

г) Достоинства и недостатки методов.

5.7.3 Метод крутого восхождения (Бокса- Уилсона)

Этот метод является синтезом лучших черт градиентных методов, метода Гаусса-Зейделя и методов ПФЭ и ДФЭ – как средства получения математической модели процесса. Решение задачи оптимизации данным методом выполняется так, чтобы шаговое движение осуществлялось в направлении наискорейшего возрастания (убывания) параметра оптимизации. Корректировка направления движения (в отличие от градиентных методов) производится не после каждого шага, а по достижению частного экстремума целевой функции. Далее в точках частного экстремума ставится новый факторный эксперимент, составляется новая математическая модель и вновь повторяется крутое восхождение до достижения глобального оптимума. Движение по градиенту начинают из нулевой точки(центра плана).

Метод крутого восхождения предполагает движение к оптимуму по градиенту.

Где i,j,k-единичные векторы в направлении соответствующих координатных осей.

Порядок расчёта .

Исходными данными является математическая модель процесса, полученная любым способом (ПФЭ, ДФЭ и т.д.).

Расчеты проводят в следующем порядке:

а) уравнение регрессии лучше перевести в натуральный вид по формулам кодирования переменных:

где x i -кодированное значение переменной x i ;

X i - натуральное значение переменной x i ;

X i Ц -центральный уровень фактора в натуральном виде;

l i -интервал варьирования фактора x i в натуральном виде.

б) вычисляют шаги движения к оптимуму по каждому фактору.

Для этого вычисляют произведения коэффициентов уравнения регрессии в натуральном виде на соответствующие интервалы варьирования

B i *.l I ,

Затем выбирают из полученных произведений максимальное по модулю,а соответствующий этому произведению фактор принимают за базовый фактор(B a l a). Для базового фактора следует установить шаг движения, который рекомендуется задавать меньшим или равным интервалу варьирования базового фактоpa


Знак шага движения l a ’ должен совпадать со знаком коэффициента уравнения регрессии, соответствующего базовому фактору (B a). Величина шагов для других факторов вычисляется пропорционально базовому по формуле:

Знаки шагов движения также должны совпадать со знаками соответствующих коэффициентов уравнения регрессии.

в) вычисляют функцию отклика в центре плана, т. е. при значениях факторов равных центральному уровню факторов, т. к. движение к оптимуму начинают из центра плана.

Далее производят вычисление параметра оптимизации, увеличивая значения факторов на величину соответствующего шага движения, если хотят получить Y max . В противном случае, если необходимо получить Y min , значения факторов уменьшают на величину шага движения.

Процедуру повторяют, последовательно увеличивая количество шагов до тех пор, пока не достигнут желаемого значения параметра оптимизации (Y). Каждый из факторов после g шагов будет иметь значение:

Если Y® max X i =X i ц +gl i ` ’

если Y® min .X i =X i ц -gl i ` . (5.36)




Top