Исследовать функцию на непрерывность примеры решения. Калькулятор онлайн.Решение пределов

Непрерывность функции в точке. Функция y = f (x ) называется непре-

рывной в точке x 0 , если:

1) эта функция определена в некоторой окрестности точки x 0 ;

2) существует предел lim f (x ) ;

→ x 0

3) этот предел равен значению функции в точке x 0 , т.е. limf (x )= f (x 0 ) .

x→ x0

Последнее условие равносильно условию lim

y = 0 , гдеx = x − x 0 – при-

x→ 0

ращение аргумента, y = f (x 0 +

x )− f (x 0 ) – приращение функции, соответст-

вующее приращению аргумента

x , т.е. функция

f (x ) непрерывна в точкеx 0

тогда и только тогда, когда в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Односторонняя непрерывность. Функцияy = f (x ) называется непрерыв-

ной слева в точкеx 0 , если она определена на некотором полуинтервале(a ;x 0 ]

и lim f (x )= f (x 0 ) .

x→ x0 − 0

Функция y = f (x ) называется непрерывнойсправа в точкеx 0 , если она оп-

ределена на некотором полуинтервале [ x 0 ;a ) и limf (x )= f (x 0 ) .

x→ x0 + 0

Функция y = f (x )

непрерывна в точке x 0

тогда и только тогда, когда она

непрерывна

lim f (x )= limf (x )= limf (x )= f (x 0 ) .

x→ x0 + 0

x→ x0 − 0

x→ x0

Непрерывность функции на множестве. Функция y = f (x ) называется

непрерывной на множестве X , если она является непрерывной в каждой точкеx этого множества. При этом если функция определена в конце некоторого промежутка числовой оси, то под непрерывностью в этой точке понимается непрерывность справа или слева. В частности, функцияy = f (x ) называетсяне-

прерывной на отрезке [ a; b] , если она

1) непрерывна в каждой точке интервала (a ;b ) ;

2) непрерывна справа в точке a ;

3) непрерывна слева в точке b .

Точки разрыва функции. Точкаx 0 , принадлежащая области определения функцииy = f (x ) , или являющаяся граничной точкой этой области, называется

точкой разрыва данной функции , еслиf (x ) не является непрерывной в этой точке.

Точки разрыва подразделяются на точки разрыва первого и второго рода:

1) Если существуют конечные пределы lim f (x )= f (x 0 − 0) и

x→ x0 − 0

f (x )= f (x 0 + 0) , причем не все три числаf (x 0 − 0) ,f (x 0 + 0) ,

f (x 0 ) равны

x→ x0 + 0

между собой, то x 0

называется точкой разрыва I рода.

В частности, если левый и правый пределы функции в точке x 0

равны меж-

собой, но

не равны значению функции в этой точке:

f (x0 − 0) = f(x0 + 0) = A≠ f(x0 ) , то x 0 называется точкой устранимого разрыва.

В этом случае, положив f (x 0 )= A , можно видоизменить функцию в точкеx 0

так, чтобы она стала непрерывной (доопределить функцию по непрерывности ). Разностьf (x 0 + 0)− f (x 0 − 0) называетсяскачком функции в точке x 0 .

Скачок функции в точке устранимого разрыва равен нулю.

2) Точки разрыва, не являющиеся точками разрыва первого рода, называются точками разрыва II рода . В точках разрыва II рода не существует или бесконечен хотя бы один из односторонних пределовf (x 0 − 0) иf (x 0 + 0) .

Свойства функций, непрерывных в точке.

f (x)

и g (x ) непрерывны в точкеx 0 , то функции

f (x )± g (x ) ,

f (x )g (x ) и

f (x)

(где g (x )≠ 0) также непрерывны в точкеx .

g(x)

2) Если функция u (x ) непрерывна в точкеx 0 , а функцияf (u ) непрерывна

в точке u 0 = u (x 0 ) , то сложная функцияf (u (x )) непрерывна в точкеx 0 .

3) Все основные элементарные функции (c , x a ,a x , loga x , sinx , cosx , tgx , ctgx , secx , cosecx , arcsinx , arccosx , arctgx , arcctgx ) непрерывны в каж-

дой точке своих областей определения.

Из свойств 1)–3) следует, что все элементарные функции (функции, полученные из основных элементарных функций с помощью конечного числа арифметических операций и операции композиции) также непрерывны в каждой точке своих областей определения.

Свойства функций, непрерывных на отрезке.

1) (теорема о промежуточных значениях) Пусть функция f(x) определе-

на и непрерывна на отрезке [ a ;b ] . Тогда для любого числаC , заключенного

между числами f (a ) иf (b ) , (f (a )< C < f (b )) найдется хотя бы одна точкаx 0 [ a ;b ] , такая, чтоf (x 0 )= C .

2) (теорема Больцано – Коши

рывна на отрезке [ a ;b ] и принимает на его концах значения различных знаков.

Тогда найдется хотя бы одна точка x 0 [ a ;b ] , такая, чтоf (x 0 )= 0 .

3) (1-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке [ a ;b ] . Тогда эта функция ограничена на этом отрезке.

4) (2-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке

[ a ;b ] . Тогда эта функция достигает на отрезке[ a ;b ]

наибольшего

наименьшего

значений, т.е.

существуют

x1 , x2 [ a; b] ,

для любой

точки x [ a ;b ]

справедливы

неравенства

f (x 1 )≤ f (x )≤ f (x 2 ) .

Пример 5.17. Пользуясь определением непрерывности, доказать, что функцияy = 3x 2 + 2x − 5 непрерывна в произвольной точкеx 0 числовой оси.

Решение: 1 способ: Пусть x 0 – произвольная точка числовой оси. Вы-

числим сначала предел функции f (x ) приx → x 0 , применяя теоремы о пределе суммы и произведения функций:

lim f (x )= lim(3x 2 + 2x − 5)= 3(limx )2 + 2 limx − 5= 3x 2

− 5.

x→ x0

x→ x0

x→ x0

x→ x0

Затем вычисляем значение функции в точке x :f (x )= 3x 2

− 5 .

Сравнивая полученные результаты, видим,

lim f (x )= f (x 0 ) , что согласно

x→ x0

определению и означает непрерывность рассматриваемой функции в точке x 0 .

2 способ: Пусть

x – приращение аргумента в точкеx 0 . Найдем соот-

ветствующее

приращение

y = f(x0 + x) − f(x0 ) =

3(x + x )2 + 2(x + x )− 5− (3x 2 + 2x − 5)

6 x x+ (x) 2

2x = (6x + 2)x + (x )2 .

Вычислим теперь предел приращения функции, когда приращение аргу-

стремится

y = lim (6x + 2)

x + (x )2 = (6x + 2) lim

x + (limx )2 = 0 .

x→ 0

x→ 0

x→ 0

x→ 0

Таким образом, lim y = 0 , что и означает по определению непрерывность

x→ 0

функции для любого x 0 R .

Пример 5.18. Найти точки разрыва функцииf (x ) и определить их род. В

случае устранимого разрыва доопределить функцию по непрерывности:

1) f (x ) = 1− x 2 приx < 3;

5x приx ≥ 3

2) f (x )= x 2 + 4 x + 3 ;

x + 1

f (x) =

x4 (x− 2)

f (x )= arctg

(x − 5)

Решение: 1) Областью определения данной функции является вся число-

вая ось (−∞ ;+∞ ) . На интервалах(−∞ ;3) ,(3;+∞ ) функция непрерывна. Разрыв возможен лишь в точкеx = 3 , в которой изменяется аналитическое задание функции.

Найдем односторонние пределы функции в указанной точке:

f (3− 0)= lim (1− x 2 )= 1− 9= 8;

x →3 −0

f (3+ 0)= lim 5x = 15.

x →3 +0

Мы видим, что левый и правый пределы конечны, поэтому x = 3

разрыва I

f (x ) . Скачок функции в

f (3+ 0)− f (3− 0)= 15− 8= 7 .

f (3)= 5 3= 15= f (3+ 0) , поэтому в точке

x = 3

f (x ) непрерывна справа.

2) Функция непрерывна на всей числовой оси, кроме точки x = − 1, в которой она не определена. Преобразуем выражение дляf (x ) , разложив числитель

дроби на множители:

f (x) =

4 x +3

(x + 1)(x + 3)

X + 3 приx ≠ − 1.

x + 1

x + 1

Найдем односторонние пределы функции в точке x = − 1:

f (x )= lim

f (x )= lim(x + 3)= 2 .

x →−1 −0

x →−1 +0

x →−1

Мы выяснили, что левый и правый пределы функции в исследуемой точке существуют, конечны и равны между собой, поэтому x = − 1 – точка устранимо-

прямую y = x + 3 с «выколотой» точкойM (− 1;2) . Чтобы функция стала непре-

рывной, следует положить f (− 1)= f (− 1− 0)= f (− 1+ 0)= 2 .

Таким образом, доопределив f (x ) по непрерывности в точкеx = − 1, мы получили функциюf * (x )= x + 3 с областью определения(−∞ ;+∞ ) .

3) Данная функция определена и непрерывна для всех x , кроме точек

x = 0 ,x = 2 , в которых знаменатель дроби обращается в ноль.

Рассмотрим точку x = 0:

Поскольку в достаточно малой окрестности нуля функция принимает толь-

ко отрицательные значения, то f (− 0)= lim

= −∞ = f (+0)

Т.е. точка

(x − 2)

x →−0

x = 0 является точкой разрыва II рода функции

f (x ) .

Рассмотрим теперь точку x = 2:

Функция принимает отрицательные значения вблизи слева от рассматри-

ваемой точки и положительные – справа, поэтому

f (2− 0)=

= −∞,

x4 (x− 2)

x →2 −0

f (2+ 0)= lim

= +∞ . Как и в предыдущем случае, в точкеx = 2

(x − 2)

x →2 +0

ция не имеет ни левого, ни правого конечного пределов, т.е. терпит в этой точке разрыв II рода.

x = 5 .

f (5− 0)= lim arctg

π ,f (5+ 0)= lim arctg

x = 5

(x − 5)

(x − 5)

x →5 −0

x →5 +0

ка разрыва

f (5+ 0)− f (5− 0)=

π − (−

π )= π (см. рис. 5.2).

Задачи для самостоятельного решения

5.174. Пользуясь лишь определением, доказать непрерывность функцииf (x ) в

каждой точке x 0 R :

а) f(x) = c= const;

б) f (x )= x ;

в) f (x )= x 3 ;

г) f (x )= 5x 2 − 4x + 1;

д) f (x )= sinx .

5.175. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

является непрерывной на

1 при x < 0

всей числовой оси. Построить график этой функции.

5.176. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

не является непрерывной

0 при x < 0

в точке x = 0 , но непрерывна справа в этой точке. Построить график функцииf (x ) .

рывной в точке x =

Но непрерывна слева в этой точке. Построить график

функции f (x ) .

5.178. Построить графики функций

а) y =

x + 1

б) y= x+

x + 1

x + 1

x + 1

Какие из условий непрерывности в точках разрыва этих функций выполнены, и какие не выполнены?

5.179. Указать точку разрыва функции

sin x

При x ≠ 0

при x = 0

Какие из условий непрерывности в этой точке выполнены, и какие не выполнены?

Практическая работа №3

Исследование функции на непрерывность

Цель работы: Развивать и совершенствовать умение определять непрерывность функции, находить точки разрыва функции, закрепить навык вычисления пределов

Средства обучения: учебник Математика стр.62-71, раздаточный материал, рабочая тетрадь по математике.

Форма проведения: фронтальная.

Справочный материал

Определение : Функция f (x ) называется непрерывной в т. х0 если:

1)существует значение функции в точке f (x 0)

2)существует конечный предел в точке х0

3)предел равен значению функции в точке х0

Определение : Функция непрерывна на промежутке, если она непрерывна во всех точках этого промежутка.

Определение : Если в какой-либо точке х0 функция у = f (x ) не является непрерывной, то точка х0 называется точкой разрыва этой функции, а функция у = f (x ) называется разрывной в этой точке.

Точки разрыва 1 рода

Точка х=1 точка устранимого разрыва

=1

=-1

Точки разрыва 2 рода

Порядок работы:

Задание 1.

а) у=х2+3 в точке х=-2

Решение:

y (-2)=(-2)2+3=7

, функция непрерывна в точке х=-2

б) у=в точке х=2

Решение:

, функция непрерывна в точке х=2

Задание 2.

решение

Функция неопределенна в точке х=2, следовательно функция в этой точке не является непрерывной и терпит разрыв. Построим график функции:

Найдём односторонние пределы в точке х=2:

https://pandia.ru/text/79/377/images/image027_20.gif" width="93" height="29 src=">, т. к. односторонние пределы конечны и равны, то точка х=2 точка разрыва 1 рода (точка устранимого разрыва)

решение

Построим график функции:

https://pandia.ru/text/79/377/images/image030_17.gif" width="89" height="29 src=">.gif" width="36" height="41">

решение

Функция неопределенна в точке х=-1, следовательно функция в этой точке не является непрерывной и терпит разрыв. Построим график функции:

Найдём односторонние пределы в точке х=-1:

https://pandia.ru/text/79/377/images/image035_13.gif" width="111" height="41 src="> т. к. нет ни одного конечного предела, то точка х=-1 точка разрыва 2 рода.

Задание для самостоятельного выполнения

Задание 3. Исходя из определения непрерывной функции, докажите непрерывность данных функций в указанных точках

а) у=2х2+1 в точке х=1

б) у=в точке х=-1

Задание 4. Исследуйте функции на непрерывность. Найдите точки разрыва и определите их тип.

Контрольные вопросы:

Понятие непрерывности функции в точке. Непрерывность функции на промежутке. Типы точек разрыва функции. Примеры.

Подведение итогов работы: Анализ выполненных заданий.

Критерии оценки:

«5» -верное выполнение заданий 3(а, б), 4(а, б,в)

«4»- верное выполнение любых 4-х примеров части самостоятельно.

«3»- выполнение заданий 1(а, б), 2(а, б,в)

Основные источники :

Григорьев. М., Академия, 2013.

Богомолов: учеб. Для сузов. -М.: Дрофа, 2009. -395с.

Дополнительные источники

Бугров С. М. Дифференциальное и интегральное исчисление. Высшая школа 1990

Математический анализ в вопросах и задачах. Высшая школа 1987

Говоров П. Т. Сборник конкурсных задач по математике. Академия 2000

Высшая математика в упражнениях и задачах. Академия 2001

Пехлецкий И. Д .Математика. Академия 2001

Сборник задач по математике: Учебное пособие для средних специальных учебных заведений. Академия 2004

Непрерывность функции. Точки разрыва.

Идет бычок, качается, вздыхает на ходу:
– Ох, доска кончается, сейчас я упаду!

На данном уроке мы разберём понятие непрерывности функции, классификацию точек разрыва и распространённую практическую задачу исследования функции на непрерывность . Из самого названия темы многие интуитивно догадываются, о чём пойдёт речь, и думают, что материал довольно простой. Это правда. Но именно несложные задачи чаще всего наказывают за пренебрежение и поверхностный подход к их решению. Поэтому рекомендую очень внимательно изучить статью и уловить все тонкости и технические приёмы.

Что нужно знать и уметь? Не очень-то и много. Для качественного усвоения урока необходимо понимать, что такое предел функции . Читателям с низким уровнем подготовки достаточно осмыслить статью Пределы функций. Примеры решений и посмотреть геометрический смысл предела в методичке Графики и свойства элементарных функций . Также желательно ознакомиться с геометрическими преобразованиями графиков , поскольку практика в большинстве случаев предполагает построение чертежа. Перспективы оптимистичны для всех, и даже полный чайник сумеет самостоятельно справиться с задачей в ближайший час-другой!

Непрерывность функции. Точки разрыва и их классификация

Понятие непрерывности функции

Рассмотрим некоторую функцию , непрерывную на всей числовой прямой:

Или, говоря лаконичнее, наша функция непрерывна на (множестве действительных чисел).

Каков «обывательский» критерий непрерывности? Очевидно, что график непрерывной функции можно начертить, не отрывая карандаша от бумаги.

При этом следует чётко отличать два простых понятия: область определения функции и непрерывность функции . В общем случае это не одно и то же . Например:

Данная функция определена на всей числовой прямой, то есть для каждого значения «икс» существует своё значение «игрека» . В частности, если , то . Заметьте, что другая точка выколота, ведь по определению функции, значению аргумента должно соответствовать единственное значение функции. Таким образом, область определения нашей функции: .

Однако эта функция не является непрерывной на ! Совершенно очевидно, что в точке она терпит разрыв . Термин тоже вполне вразумителен и нагляден, действительно, карандаш здесь по любому придётся оторвать от бумаги. Немного позже мы рассмотрим классификацию точек разрыва.

Непрерывность функции в точке и на интервале

В той или иной математической задаче речь может идти о непрерывности функции в точке, непрерывности функции на интервале, полуинтервале или непрерывности функции на отрезке. То есть, не существует «просто непрерывности» – функция может быть непрерывной ГДЕ-ТО. И основополагающим «кирпичиком» всего остального является непрерывность функции в точке .

Теория математического анализа даёт определение непрерывности функции в точке с помощью «дельта» и «эпсилон» окрестностей, но на практике в ходу другое определение, которому мы и уделим самое пристальное внимание.

Сначала вспомним односторонние пределы , ворвавшиеся в нашу жизнь на первом уроке о графиках функций . Рассмотрим будничную ситуацию:

Если приближаться по оси к точке слева (красная стрелка), то соответствующие значения «игреков» будут идти по оси к точке (малиновая стрелка). Математически данный факт фиксируется с помощью левостороннего предела :

Обратите внимание на запись (читается «икс стремится к ка слева»). «Добавка» «минус ноль» символизирует , по сути это и обозначает, что мы подходим к числу с левой стороны.

Аналогично, если приближаться к точке «ка» справа (синяя стрелка), то «игреки» придут к тому же значению , но уже по зелёной стрелке, и правосторонний предел оформится следующим образом:

«Добавка» символизирует , и запись читается так: «икс стремится к ка справа».

Если односторонние пределы конечны и равны (как в нашем случае): , то будем говорить, что существует ОБЩИЙ предел . Всё просто, общий предел – это наш «обычный» предел функции , равный конечному числу.

Заметьте, что если функция не определена при (выколите чёрную точку на ветке графика), то перечисленные выкладки остаются справедливыми. Как уже неоднократно отмечалось, в частности, в статье о бесконечно малых функциях , выражения означают, что «икс» бесконечно близко приближается к точке , при этом НЕ ИМЕЕТ ЗНАЧЕНИЯ , определена ли сама функция в данной точке или нет. Хороший пример встретится в следующем параграфе, когда анализу подвергнется функция .

Определение : функция непрерывна в точке , если предел функции в данной точке равен значению функции в этой точке: .

Определение детализируется в следующих условиях:

1) Функция должна быть определена в точке , то есть должно существовать значение .

2) Должен существовать общий предел функции . Как отмечалось выше, это подразумевает существование и равенство односторонних пределов: .

3) Предел функции в данной точке должен быть равен значению функции в этой точке: .

Если нарушено хотя бы одно из трёх условий, то функция теряет свойство непрерывности в точке .

Непрерывность функции на интервале формулируется остроумно и очень просто: функция непрерывна на интервале , если она непрерывна в каждой точке данного интервала.

В частности, многие функции непрерывны на бесконечном интервале , то есть на множестве действительных чисел . Это линейная функция, многочлены, экспонента, синус, косинус и др. И вообще, любая элементарная функция непрерывна на своей области определения , так, например, логарифмическая функция непрерывна на интервале . Надеюсь, к данному моменту вы достаточно хорошо представляете, как выглядят графики основных функций. Более подробную информацию об их непрерывности можно почерпнуть у доброго человека по фамилии Фихтенгольц.

С непрерывностью функции на отрезке и полуинтервалах тоже всё несложно, но об этом уместнее рассказать на уроке о нахождении минимального и максимального значений функции на отрезке , а пока голову забивать не будем.

Классификация точек разрыва

Увлекательная жизнь функций богата всякими особенными точками, и точки разрыва лишь одна из страничек их биографии.

Примечание : на всякий случай остановлюсь на элементарном моменте: точка разрыва – это всегда отдельно взятая точка – не бывает «несколько точек разрыва подряд», то есть, нет такого понятия, как «интервал разрывов».

Данные точки в свою очередь подразделяются на две большие группы: разрывы первого рода и разрывы второго рода . У каждого типа разрыва есть свои характерные особенности, которые мы рассмотрим прямо сейчас:

Точка разрыва первого рода

Если в точке нарушено условие непрерывности и односторонние пределы конечны , то она называется точкой разрыва первого рода .

Начнём с самого оптимистичного случая. По первоначальной задумке урока я хотел рассказать теорию «в общем виде», но чтобы продемонстрировать реальность материала, остановился на варианте с конкретными действующими лицами.

Уныло, как фото молодожёнов на фоне Вечного огня, но нижеследующий кадр общепринят. Изобразим на чертеже график функции :


Данная функция непрерывна на всей числовой прямой, кроме точки . И в самом деле, знаменатель же не может быть равен нулю. Однако в соответствии со смыслом предела – мы можем бесконечно близко приближаться к «нулю» и слева и справа, то есть, односторонние пределы существуют и, очевидно, совпадают:
(Условие №2 непрерывности выполнено).

Но функция не определена в точке , следовательно, нарушено Условие №1 непрерывности, и функция терпит разрыв в данной точке.

Разрыв такого вида (с существующим общим пределом ) называют устранимым разрывом . Почему устранимым? Потому что функцию можно доопределить в точке разрыва:

Странно выглядит? Возможно. Но такая запись функции ничему не противоречит! Теперь разрыв устранён и все счастливы:


Выполним формальную проверку:

2) – общий предел существует;
3)

Таким образом, все три условия выполнены, и функция непрерывна в точке по определению непрерывности функции в точке.

Впрочем, ненавистники матана могут доопределить функцию нехорошим способом, например :


Любопытно, что здесь выполнены первые два условия непрерывности:
1) – функция определена в данной точке;
2) – общий предел существует.

Но третий рубеж не пройден: , то есть предел функции в точке не равен значению данной функции в данной точке.

Таким образом, в точке функция терпит разрыв.

Второй, более грустный случай носит название разрыва первого рода со скачком . А грусть навевают односторонние пределы, которые конечны и различны . Пример изображён на втором чертеже урока. Такой разрыв возникает, как правило, в кусочно-заданных функциях , о которых уже упоминалось в статье о преобразованиях графиков .

Рассмотрим кусочную функцию и выполним её чертёж. Как построить график? Очень просто. На полуинтервале чертим фрагмент параболы (зеленый цвет), на интервале – отрезок прямой (красный цвет) и на полуинтервале – прямую (синий цвет).

При этом в силу неравенства значение определено для квадратичной функции (зелёная точка), и в силу неравенства , значение определено для линейной функции (синяя точка):

В самом-самом тяжёлом случае следует прибегнуть к поточечному построению каждого куска графика (см. первый урок о графиках функций ).

Сейчас нас будет интересовать только точка . Исследуем её на непрерывность:

2) Вычислим односторонние пределы.

Слева у нас красный отрезок прямой, поэтому левосторонний предел:

Справа – синяя прямая, и правосторонний предел:

В результате получены конечные числа , причем они не равны . Поскольку односторонние пределы конечны и различны : , то наша функция терпит разрыв первого рода со скачком .

Логично, что разрыв не устраним – функцию действительно не доопределить и «не склеить», как в предыдущем примере.

Точки разрыва второго рода

Обычно к данной категории хитро относят все остальные случаи разрыва. Всё перечислять не буду, поскольку на практике в 99%-ти процентах задач вам встретится бесконечный разрыв – когда левосторонний или правосторонний, а чаще, оба предела бесконечны.

И, конечно же, самая напрашивающаяся картинка – гипербола в точке ноль. Здесь оба односторонних предела бесконечны: , следовательно, функция терпит разрыв второго рода в точке .

Я стараюсь наполнять свои статьи максимально разнообразным содержанием, поэтому давайте посмотрим на график функции , который ещё не встречался:

по стандартной схеме:

1) Функция не определена в данной точке, поскольку знаменатель обращается в ноль.

Конечно, можно сразу сделать вывод о том, что функция терпит разрыв в точке , но хорошо бы классифицировать характер разрыва, что часто требуется по условию. Для этого:



Напоминаю, что под записью понимается бесконечно малое отрицательное число , а под записью – бесконечно малое положительное число .

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке . Ось ординат является вертикальной асимптотой для графика.

Не редка ситуация, когда оба односторонних предела существуют, но бесконечен только один из них, например:

Это график функции .

Исследуем на непрерывность точку :

1) Функция не определена в данной точке.

2) Вычислим односторонние пределы:

О методике вычисления таких односторонних пределов поговорим в двух последних примерах лекции, хотя многие читатели всё уже увидели и догадались.

Левосторонний предел конечен и равен нулю (в саму точку мы «не заходим»), но правосторонний предел бесконечен и оранжевая ветка графика бесконечно близко приближается к своей вертикальной асимптоте , заданной уравнением (чёрный пунктир).

Таким образом, функция терпит разрыв второго рода в точке .

Как и для разрыва 1-го рода, в самой точке разрыва функция может быть определена. Например, для кусочной функции смело ставим чёрную жирную точку в начале координат. Справа же – ветка гиперболы, и правосторонний предел бесконечен. Думаю, почти все представили, как выглядит этот график.

То, чего все с нетерпением ждали:

Как исследовать функцию на непрерывность?

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.

2) Вычислим односторонние пределы:

Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» – некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа – кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.

Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Ещё раз заметьте, что при нахождении пределов не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно – из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции .

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I) Исследуем на непрерывность точку

1)



Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

– односторонние пределы конечны и равны, значит, существует общий предел.

3) – предел функции в точке равен значению данной функции в данной точке.

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой – обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами – будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно – функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4 подобных примеров:

I) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Вычислим односторонние пределы:

, значит, общий предел существует.

На всякий пожарный напомню тривиальный факт: предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь – предел единицы равен самой единице.

– общий предел существует.

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция . Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование.

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Непрерывность и построение графиков кусочно-заданных функций – сложная тема. Учиться строить графики лучше непосредственно на практическом занятии. Здесь в основном показано исследование на непрерывность.

Известно, что элементарная функция (см. с. 16) непрерывна во всех точках, в которых определена. Поэтому нарушение непрерывности у элементарных функций возможно только в точках двух типов:

а) в точках, где функция «переопределяется»;

б) в точках, где функция не существует.

Соответственно только такие точки и проверяются при исследовании на непрерывность, что показано в примерах.

Для неэлементарных функций исследование сложнее. Например, функция (целая часть числа) определена на всей числовой оси, но терпит разрыв при каждом целомx . Подобные вопросы выходят за рамки пособия.

Перед изучением материала следует повторить по лекции или учебнику, какими (какого рода) бывают точки разрыва.

Исследование кусочно-заданных функций на непрерывность

Функция задана кусочно , если она на разных участках области определения задаётся разными формулами.

Основная идея при исследовании таких функций – выяснить, задана ли функция в тех точках, в которых переопределяется, и как. Затем проверяется, совпадают ли значения функции слева и справа от таких точек.

Пример 1. Покажем, что функция
непрерывна.

Функция
элементарна и потому непрерывна в тех точках, в которых определена. Но, очевидно, она определена во всех точках. Следовательно, во всех точках она и непрерывна, в том числе при
, как требует условие.

То же справедливо для функции
, и при
она непрерывна.

В таких случаях непрерывность может нарушаться только там, где функция переопределяется. В нашем примере это точка
. Проверим её, для чего найдём пределы слева и справа:

Пределы слева и справа совпадают. Остаётся узнать:

а) определена ли функция в самой точке
;

б) если да, то совпадает ли
со значениями пределов слева и справа.

По условию, если
, то
. Поэтому
.

Видим, что (все равны числу 2). Это означает, что в точке
функция непрерывна . Итак, функция непрерывна на всей оси, включая точку
.

Замечания к решению

а) При вычислениях не играло роли, подставляем мы в конкретную формулу число
или
. Обычно это важно, когда получается деление на бесконечно малую величину, поскольку влияет на знак бесконечности. Здесь же
и
отвечают только завыбор функции;

б) как правило, обозначения
и
равноправны, то же касается обозначений
и
(и справедливо для любой точки, а не только для
). Дальше для краткости применяются обозначения вида
;

в) когда пределы слева и справа равны, для проверки на непрерывность фактически остаётся посмотреть, будет ли одно из неравенств нестрогим . В примере таковым оказалось 2-е неравенство.

Пример 2. Исследуем на непрерывность функцию
.

По тем же причинам, что в примере 1, непрерывность может нарушаться только в точке
. Проверим:

Пределы слева и справа равны, но в самой точке
функция не определена (неравенства строгие). Это означает, что
– точкаустранимого разрыва .

«Устранимый разрыв» означает, что достаточно или сделать любое из неравенств нестрогим, или придумать для отдельной точки
функцию, значение которой при
равно –5, или просто указать, что
, чтобы вся функция
стала непрерывной.

Ответ: точка
– точка устранимого разрыва.

Замечание 1. В литературе устранимый разрыв обычно считается частным случаем разрыва 1-го рода, однако студентами чаще понимается как отдельный тип разрыва. Во избежание разночтений будем придерживаться 1-й точки зрения, а «неустранимый» разрыв 1-го рода оговаривать особо.

Пример 3. Проверим, непрерывна ли функция

В точке

Пределы слева и справа различны:
. Независимо от того, определена ли функция при
(да) и если да, то чему равна (равна 2), точка
точка неустранимого разрыва 1-го рода .

В точке
происходитконечный скачок (от 1 к 2).

Ответ: точка

Замечание 2. Вместо
и
обычно пишут
и
соответственно.

Возможен вопрос: чем отличаются функции

и
,

а также их графики? Правильный ответ:

а) 2-я функция не определена в точке
;

б) на графике 1-й функции точка
«закрашена», на графике 2-й – нет («выколотая точка»).

Точка
, где обрывается график
, не закрашена на обоих графиках.

Сложнее исследовать функции, по-разному определённые на трёх участках.

Пример 4. Непрерывна ли функция
?

Так же, как в примерах 1 – 3, каждая из функций
,
инепрерывна на всей числовой оси, в том числе – на участке, на котором задана. Разрыв возможен только в точке
или (и) в точке
, где функция переопределяется.

Задача распадается на 2 подзадачи: исследовать на непрерывность функции

и
,

причём точка
не представляет интереса для функции
, а точка
– для функции
.

1-й шаг. Проверяем точку
и функцию
(индекс не пишем):

Пределы совпадают. По условию,
(если пределы слева и справа равны, то фактически функция непрерывна, когда одно и из неравенств нестрогое). Итак, в точке
функция непрерывна.

2-й шаг. Проверяем точку
и функцию
:

Поскольку
, точка
– точка разрыва 1-го рода, и значение
(и то, есть ли оно вообще) уже не играет роли.

Ответ: функция непрерывна во всех точках, кроме точки
, где имеет место неустранимый разрыв 1-го рода – скачок от 6 к 4.

Пример 5. Найти точки разрыва функции
.

Действуем по той же схеме, что в примере 4.

1-й шаг. Проверяем точку
:

а)
, поскольку слева от
функция постоянна и равна 0;

б) (
– чётная функция).

Пределы совпадают, но при
функция по условию не определена, и получается, что
– точка устранимого разрыва.

2-й шаг. Проверяем точку
:

а)
;

б)
– значение функции не зависит от переменной.

Пределы различны: , точка
– точка неустранимого разрыва 1-го рода.

Ответ:
– точка устранимого разрыва,
– точка неустранимого разрыва 1-го рода, в остальных точках функция непрерывна.

Пример 6. Непрерывна ли функция
?

Функция
определена при
, поэтому условие
превращается в условие
.

С другой стороны, функция
определена при
, т.е. при
. Значит, условие
превращается в условие
.

Получается, что должно выполняться условие
, и область определения всей функции – отрезок
.

Сами по себе функции
и
элементарны и потому непрерывны во всех точках, в которых определены – в частности, и при
.

Остаётся проверить, что происходит в точке
:

а)
;

Поскольку
, смотрим, определена ли функция в точке
. Да, 1-е неравенство – нестрогое относительно
, и этого достаточно.

Ответ: функция определена на отрезке
и непрерывна на нём.

Более сложные случаи, когда одна из составляющих функций неэлементарна или не определена в какой-либо точке своего отрезка, выходят за рамки пособия.

НФ1. Постройте графики функций. Обратите внимание, определена ли функция в той точке, в которой переопределяется, и если да – каково значение функции (слово «если » в определении функции для краткости пропущено):

1) а)
б)
в)
г)

2) а)
б)
в)
г)

3) а)
б)
в)
г)

4) а)
б)
в)
г)

Пример 7. Пусть
. Тогда на участке
строим горизонтальную прямую
, а на участке
строим горизонтальную прямую
. При этом точка с координатами
«выколота», а точка
«закрашена». В точке
получается разрыв 1-го рода («скачок»), и
.

НФ2. Исследуйтена непрерывность функции, по-разному определённые на 3-х интервалах. Постройте графики:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

Пример 8. Пусть
. На участке
строим прямую
, для чего находим
и
. Соединяем точки
и
отрезком. Сами точки не включаем, поскольку при
и
функция по условию не определена.

На участке
и
обводим осьOX (на ней
), однако точки
и
«выколоты». В точке
получаем устранимый разрыв, а в точке
– разрыв 1-го рода («скачок»).

НФ3. Постройте графики функций и убедитесь в их непрерывности:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

НФ4. Убедитесь в непрерывности функций и постройте их графики:

1) а)
б)
в)

2 а)
б)
в)

3) а)
б)
в)

НФ5. Постройте графики функций. Обратите внимание на непрерывность:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ6. Постройте графики разрывных функций. Обратите внимание на значение функции в той точке, где функция переопределяется (и существует ли оно):

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ7. То же задание, что и в НФ6:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)




Top