Как делить столбиком дробные числа. Умножение и деление в столбик: примеры

§ 107. Сложение десятичных дробей.

Сложение десятичных дробей выполняется так же, как и сложение целых чисел. Убедимся в этом на примерах.

1) 0,132 + 2,354. Подпишем слагаемые одно под другим.

Здесь от сложения 2 тысячных с 4 тысячными получилось 6 тысячных;
от сложения 3 сотых с 5 сотыми получилось 8 сотых;
от сложения 1 десятой с 3 десятыми -4 десятых и
от сложения 0 целых с 2 целыми - 2 целых.

2) 5,065 + 7,83.

Во втором слагаемом нет тысячных долей, поэтому важно не допускать ошибки при подписывании слагаемых друг под другом.

3) 1,2357 + 0,469 + 2,08 + 3,90701.

Здесь при сложении тысячных долей получилась 21 тысячная; мы написали 1 под тысячными, а 2 прибавили к сотым, таким образом, в разряде сотых у нас получились следующие слагаемые: 2 + 3 + 6 + 8 + 0; в сумме они дают 19 сотых, мы подписали 9 под сотыми, а 1 присчитали к десятым и т. д.

Таким образом, при сложении десятичных дробей надо соблюдать следующий порядок: дроби подписывать одна под другой так, чтобы во всех слагаемых одинаковые разряды находились друг под другом и все запятые стояли в одном и том же вертикальном столбце; справа от десятичных знаков некоторых слагаемых приписывают, хотя бы мысленно, такое число нулей, чтобы все слагаемые после запятой имели одинаковое число цифр. Затем выполняют сложение по разрядам, начиная с правой стороны, и в полученной сумме ставят запятую в том же самом вертикальном столбце, в каком она находится в данных слагаемых.

§ 108. Вычитание десятичных дробей.

Вычитание десятичных дробей выполняется так же, как и вычитание целых чисел. Покажем это на примерах.

1) 9,87 - 7,32. Подпишем вычитаемое под уменьшаемым так, чтобы единицы одного разряда находились друг под другом:

2) 16,29 - 4,75. Подпишем вычитаемое под уменьшаемым, как в первом примере:

Чтобы сделать вычитание десятых, надо было занять одну целую единицу от 6 и раздробить её в десятые доли.

3) 14,0213- 5,350712. Подпишем вычитаемое под уменьшаемым:

Вычитание было выполнено следующим образом: так как мы не можем вычесть 2 миллионных из 0, то следует обратиться к ближайшему разряду, стоящему слева, т. е. к стотысячным, но на месте стотысячных тоже стоит нуль, поэтому берём из 3 десятитысячных 1 десятитысячную и раздробляем её в стотысячные, получаем 10 стотысячных, из них 9 стотысячных оставляем в разряде стотысячных, а 1 стотысячную раздробляем в миллионные, получаем 10 миллионных. Таким образом, в трёх последних разрядах у нас получилось: миллионных 10, стотысячных 9, десятитысячных 2. Эти числа для большей ясности и удобства (чтобы не позабыть) записаны сверху над соответствующими дробными разрядами уменьшаемого. Теперь можно приступить к вычитанию. Из 10 миллионных вычитаем 2 миллионных, получаем 8 миллионных; из 9 стотысячных вычитаем 1 стотысячную, получаем 8 стотысячных и т. д.

Таким образом, при вычитании десятичных дробей соблюдается следующий порядок: подписывают вычитаемое под уменьшаемым так, чтобы одинаковые разряды находились друг под другом и все запятые стояли в одном и том же вертикальном столбце; справа приписывают, хотя бы мысленно, в уменьшаемом или вычитаемом столько нулей, чтобы они имели одинаковое число цифр, затем выполняют вычитание по разрядам, начиная с правой стороны, и в полученной разности ставят запятую в том же самом вертикальном столбце, в каком она находится в уменьшаемом и вычитаемом.

§ 109. Умножение десятичных дробей.

Рассмотрим несколько примеров умножения десятичных дробей.

Чтобы найти произведение этих чисел, мы можем рассуждать следующим образом: если множитель увеличить в 10 раз, то оба сомножителя будут целыми числами и мы можем их тогда перемножить по правилам умножения целых чисел. Но мы знаем, что при увеличении одного из сомножителей в несколько раз произведение увеличивается во столько же раз. Значит, число, которое получится от умножения целых сомножителей, т. е. 28 на 23, в 10 раз больше истинного произведения, а чтобы получить истинное произведение, нужно найденное произведение уменьшить в 10 раз. Следовательно, здесь придётся выполнить один раз умножение на 10 и один раз деление на 10, но умножение и деление на 10 выполняется путём перенесения запятой вправо и влево на один знак. Поэтому нужно поступить так: во множителе перенести запятую вправо на один знак, от этого он будет равен 23, затем нужно перемножить полученные целые числа:

Это произведение в 10 раз больше истинного. Следовательно, его надо уменьшить в 10 раз, для чего перенесём запятую на один знак влево. Таким образом, получим

28 2,3 = 64,4.

В целях проверки можно десятичную дробь написать со знаменателем и выполнить действие по правилу умножения обыкновенных дробей, т. е.

2) 12,27 0,021.

Отличие этого примера от предыдущего состоит в том, что здесь оба сомножителя представлены десятичными дробями. Но мы и здесь в процессе умножения не будем обращать внимания на запятые, т. е. временно увеличим множимое в 100 раз, а множитель в 1 000 раз, отчего произведение увеличится в 100 000 раз. Таким образом, умножая 1 227 на 21, получим:

1 227 21 = 25 767.

Принимая во внимание, что полученное произведение в 100 000 раз больше истинного, мы должны теперь уменьшить его в 100 000 раз путём надлежащей постановки в нём запятой, тогда получим:

32,27 0,021 = 0,25767.

Проверим:

Таким образом, чтобы перемножить две десятичные дроби, достаточно, не обращая внимания на запятые, перемножить их как целые числа и в произведении отделить запятой с правой стороны столько десятичных знаков, сколько их было во множимом и во множителе вместе.

В последнем примере получилось произведение с пятью десятичными знаками. Если такая большая точность не требуется, то делается округление десятичной дроби. При округлении следует пользоваться тем правилом, какое было указано для целых чисел .

§ 110. Умножение при помощи таблиц.

Умножение десятичных дробей можно иногда выполнять при помощи таблиц. Для этой цели можно, например, воспользоваться теми таблицами умножения двузначных чисел, описание которых было дано раньше .

1) Умножим 53 на 1,5.

Будем перемножать 53 на 15. В таблице это произведение равно 795. Мы нашли произведение 53 на 15, но у нас второй множитель был в 10 раз меньше, значит, и произведение нужно уменьшить в 10 раз, т. е.

53 1,5 = 79,5.

2) Умножим 5,3 на 4,7.

Сначала найдём в таблице произведение 53 на 47, это будет 2 491. Но так как мы увеличили множимое и множитель в общей сложности в 100 раз, то и полученное произведение в 100 раз больше, чем следует; поэтому мы должны уменьшить это произведение в 100 раз:

5,3 4,7 = 24,91.

3) Умножим 0,53 на 7,4.

Сначала найдём в таблице произведение 53 на 74; это будет 3 922. Но так как мы увеличили множимое в 100 раз, а множитель в 10 раз, то произведение увеличилось в 1 000 раз; поэтому мы теперь должны его уменьшить в 1 000 раз:

0,53 7,4 = 3,922.

§ 111. Деление десятичных дребей.

Деление десятичных дробей мы рассмотрим в таком порядке:

1. Деление десятичной дроби на целое число,

1. Деление десятичной дроби на целое число.

1) Разделим 2,46 на 2.

Мы разделили на 2 сначала целые, потом десятые доли и, наконец, сотые доли.

2) Разделим 32,46 на 3.

32,46: 3 = 10,82.

Мы разделили 3 десятка на 3, затем стали делить 2 единицы на 3; так как число единиц делимого (2) меньше делителя (3), то пришлось в частном поставить 0; далее, к остатку мы снесли 4 десятых и разделили 24 десятых на 3; получили в частном 8 десятых и, наконец, разделили 6 сотых.

3) Разделим 1,2345 на 5.

1,2345: 5 = 0,2469.

Здесь в частном на первом месте получился нуль целых, так как одна целая не делится на 5.

4) Разделим 13,58 на 4.

Особенность этого примера заключается в том, что когда мы получили в частном 9 сотых, то обнаружился остаток, равный 2 сотым, мы раздробили зтот остаток в тысячные доли, получили 20 тысячных и довели деление до конца.

Правило. Деление десятичной дроби на целое число выполняется так же, как и деление целых чисел, причём получающиеся остатки обращают в десятичные доли, всё более и более мелкие; деление продолжают до тех пор, пока в остатке не получится нуль.

2. Деление десятичной дроби на десятичную дробь.

1) Разделим 2,46 на 0,2.

Мы уже умеем делить десятичную дробь на целое число. Подумаем, нельзя ли и этот новый случай деления свести к предыдущему? В своё время мы рассматривали замечательное свойство частного, состоящее в том, что оно остаётся без изменения при одновременном увеличении или уменьшении делимого и делителя в одинаковое число раз. Мы без труда выполнили бы деление предложенных нам чисел, если бы делитель был целым числом. Для этого достаточно увеличить его в 10 раз, а для получения правильного частного необходимо во столько же раз, т. е. в 10 раз, увеличить и делимое. Тогда деление данных чисел заменится делением таких чисел:

причём никаких поправок в частном делать уже не придётся.

Выполним это деление:

Значит, 2,46: 0,2 = 12,3.

2) Разделим 1,25 на 1,6.

Увеличиваем делитель (1,6) в 10 раз; чтобы частное не изменилось, увеличиваем в 10 раз и делимое; 12 целых не делится на 16, поэтому пишем в частном 0 и делим 125 десятых на 16, получаем в частном 7 десятых и в остатке 13. Раздробляем 13 десятых в сотые путём приписывания нуля и делим 130 сотых на 16 и т. д. Обращаем внимание на следующее:

а) когда в частном не получается целых, то на их месте пишется нуль целых;

б) когда после снесения к остатку цифры делимого получается число, которое не делится на делитель, то в частном пишется нуль;

в) когда после снесения последней цифры делимого деление не оканчивается, то, приписывая к остаткам нули, продолжают деление;

г) если делимое - целое число, то при делении его на десятичную дробь увеличение его осуществляется посредством приписывания к нему нулей.

Таким образом, чтобы разделить число на десятичную дробь, нужно отбросить в делителе запятую, а затем увеличить делимое во столько раз, во сколько увеличился делитель при отбрасывании в нём запятой, после чего выполнить деление по правилу деления десятичной дроби на целое число.

§ 112. Приближённое частное.

В предыдущем параграфе мы рассмотрели деление десятичных дробей, причём во всех решённых нами примерах деление доводилось до конца, т. е. получалось точное частное. Однако в большинстве случаев точное частное не может быть получено, как бы далеко мы ни продолжали деление. Вот один из таких случаев: разделим 53 на 101.

Мы уже получили пять цифр в частном, а деление ещё не окончилось и нет надежды, что оно когда-либо окончится, так как в остатках у нас начинают появляться цифры, которые встречались уже ранее. В частном также будут повторяться числа: очевидно, что вслед за цифрой 7 появится цифра 5, затем 2 и т. д. без конца. В таких случаях прерывают деление и ограничиваются несколькими первыми цифрами частного. Такое частное называется приближённым. Как при этом нужно выполнять деление, мы покажем на примерах.

Пусть требуется 25 разделить на 3. Очевидно, что точного частного, выраженного целым числом или десятичной дробью, от такого деления получиться не может. Поэтому мы будем искать приближённое частное:

25: 3 = 8 и остаток 1

Приближённое частное равно 8; оно, конечно, меньше точного частного, потому что имеется остаток 1. Чтобы получить точное частное, нужно к найденному приближённому частному, т. е. к 8, прибавить дробь, которая получится от деления остатка, равного 1, на 3; это будет дробь 1 / 3 . Значит, точное частное выразится смешанным числом 8 1 / 3 . Так как 1 / 3 представляет собой правильную дробь, т. е. дробь, меньшую единицы , то, отбрасывая её, мы допустим погрешность , которая меньше единицы . Частное 8 будет приближённым частным с точностью до единицы с недостатком. Если мы вместо 8 возьмём в частном 9, то тоже допустим погрешность, которая меньше единицы, так как мы прибавим не целую единицу, a 2 / 3 . Такое частное будет приближённым частным с точностью до единицы с избытком.

Возьмём теперь другой пример. Пусть требуется 27 разделить на 8. Так как и здесь не получится точного частного, выраженного целым числом, то мы будем искать приближённое частное:

27: 8 = 3 и остаток 3.

Здесь погрешность равна 3 / 8 , она меньше единицы, значит, приближённое частное (3) найдено с точностью до единицы с недостатком. Продолжим деление: раздробим остаток 3 в десятые доли, получим 30 десятых; разделим их на 8.

Мы получили в частном на месте десятых 3 и в остатке б десятых. Если мы в частном ограничимся числом 3,3, а остаток 6 отбросим, то мы допустим погрешность, меньшую одной десятой. Почему? Потому что точное частное получилось бы тогда, когда мы прибавили бы к 3,3 ещё результат деления 6 десятых на 8; от этого деления получилось бы 6 / 80 , что составляет меньше одной десятой. (Проверьте!) Таким образом, если в частном мы ограничимся десятыми долями, то можно будет сказать, что мы нашли частное с точностью до одной десятой (с недостатком).

Продолжим деление, чтобы найти ещё один десятичный знак. Для этого раздробим 6 десятых в сотые доли и получим 60 сотых; разделим их на 8.

В частном на третьем месте получилось 7 и в остатке 4 сотых; если мы их отбросим, то допустим погрешность, меньшую одной сотой, потому что 4 сотых, делённые на 8, составляют меньше одной сотой. В таких случаях говорят, что частное найдено с точностью до одной сотой (с недостатком).

В примере, который мы сейчас рассматриваем, можно получить точное частное, выраженное десятичной дробью. Для этого достаточно последний остаток, 4 сотых, раздробить в тысячные и выполнить деление на 8.

Однако в огромном большинстве случаев получить точное частное невозможно и приходится ограничиваться его приближёнными значениями. Такой пример мы сейчас и рассмотрим:

40: 7 = 5,71428571...

Точки, поставленные в конце числа, обозначают, что деление не закончено, т. е. равенство приближённое. Обычно приближённое равенство записывают так:

40: 7 = 5,71428571.

Мы взяли частное с восемью десятичными знаками. Но если такая большая точность не требуется, можно ограничиться лишь целой частью частного, т. е. числом 5 (точнее 6); для большей точности можно было бы учесть десятые доли и взять частное равным 5,7; если и эта точность почему-либо недостаточна, то можно остановиться на сотых и взять 5,71, и т. д. Выпишем отдельные частные и назовём их.

Первое приближённое частное с точностью до единицы 6.

Второе » » » до одной десятой 5,7.

Третье » » » до одной сотой 5,71.

Четвёртое » » » до одной тысячной 5,714.

Таким образом, чтобы найти приближённое частное с точностью до какого-нибудь, например, 3-го десятичного знака (т. е. до одной тысячной), прекращают деление, как только находят этот знак. При этом нужно помнить правило, изложенное в § 40 .

§ 113. Простейшие задачи на проценты.

После изучения десятичных дробей мы решим ещё несколько задач на проценты.

Эти задачи подобны тем, какие мы решали в отделе обыкновенных дробей; но теперь сотые доли мы будем записывать в форме десятичных дробей, т. е. без явно обозначенного знаменателя.

Прежде всего нужно уметь легко переходить от обыкновенной дроби к десятичной со знаменателем 100. Для этого надо числитель разделить на знаменатель:

В приводимой ниже таблице показано, каким образом число со значком % (процент) заменяется десятичной дробью со знаменателем 100:

Рассмотрим теперь несколько задач.

1. Нахождение процентов данного числа.

Задача 1. В одном селе проживает всего 1 600 человек. Число детей школьного возраста составляет 25% от общего числа жителей. Сколько детей школьного возраста в этом селе?

В этой задаче нужно найти 25%, или 0,25, от 1 600. Задача решается умножением:

1 600 0,25 = 400 (детей).

Следовательно, 25% от 1 600 составляют 400.

Для ясного понимания этой задачи полезно напомнить, что на каждую сотню населения приходится 25 детей школьного возраста. Следовательно, чтобы найти число всех детей школьного возраста, можно сначала узнать, сколько сотен в числе 1 600 (16), а затем 25 умножить на число сотен (25 х 16 = 400). Этим путём можно проверить справедливость решения.

Задача 2. Сберегательные кассы дают вкладчикам ежегодно 2% дохода. Сколько дохода за год получит вкладчик, положивший в кассу: а) 200 руб.? б) 500 руб.? в) 750 руб.? г)1000руб.?

Во всех четырёх случаях для решения задачи нужно будет вычислить 0,02 от указанных сумм, т. е. каждое из данных чисел придётся умножить на 0,02. Сделаем это:

а) 200 0,02 = 4 (руб.),

б) 500 0,02 = 10 (руб.),

в) 750 0,02 = 15 (руб.),

г) 1 000 0,02 = 20 (руб.).

Каждый из этих случаев может быть проверен следующими соображениями. Сберегательные кассы дают вкладчикам 2% дохода, т. е. 0,02 от положенной на сбережение суммы. Если бы сумма равнялась 100 руб., то 0,02 от неё составляли бы 2 руб. Значит, каждая сотня приносит вкладчику 2 руб. дохода. Поэтому в каждом из рассмотренных случаев достаточно сообразить, сколько в данном числе сотен, и на это число сотен умножать 2 руб. В примере а) сотен 2, значит,

2 2 = 4 (руб.).

В примере г) сотен 10, значит,

2 10 = 20 (руб.).

2. Нахождение числа по его процентам.

Задача 1. Весной школа выпустила 54 ученика, что составляет 6% от общего числа учащихся. Сколько всего учащихся было в школе в истекшем учебном году?

Уясним сначала смысл этой задачи. Школа выпустила 54 ученика, что составляет 6% от общего числа обучавшихся, или, иными словами, 6 сотых (0,06) от всех учеников школы. Значит, нам известна часть учащихся, выраженная числом (54) и дробью (0,06), а по этой дроби мы должны найти всё число. Таким образом, перед нами обыкновенная задача на нахождение числа по его дроби (§90 п.6). Задачи такого типа решаются делением:

Значит, в школе всего было 900 учащихся.

Такие задачи полезно проверять решением обратной задачи, т. е. после решения задачи следует, хотя бы в уме, решить задачу первого типа (нахождение процентов данного числа): принять найденное число (900) за данное и найти от него указанный в решённой задаче процент, а именно:

900 0,06 = 54.

Задача 2. Семья расходует на питание в течение месяца 780 руб., что составляет 65% месячного заработка отца. Определить его месячный заработок.

Эта задача имеет такой же смысл, что и предыдущая. В ней даётся часть месячного заработка, выраженная в рублях (780 руб.), и указывается, что эта часть составляет 65%, или 0,65, от всего заработка. А искомым является весь заработок:

780: 0,65 = 1 200.

Следовательно, искомый заработок составляет 1200 руб.

3. Нахождение процентного отношения чисел.

Задача 1. В школьной библиотеке всего 6 000 книг. Среди них 1 200 книг по математике. Сколько процентов математические книги составляют от числа всех книг, имеющихся в библиотеке?

Мы уже рассматривали (§97) такого рода задачи и пришли к выводу, что для вычисления процентного отношения двух чисел нужно найти отношение этих чисел и умножить его на 100.

В нашей задаче нужно найти процентное отношение чисел 1 200 и 6 000.

Найдём сначала их отношение, а затем умножим его на 100:

Таким образом, процентное отношение чисел 1 200 и 6 000 равно 20. Иными словами, математические книги составляют 20% от общего числа всех книг.

Для проверки решим обратную задачу: найти 20% от 6 000:

6 000 0,2 = 1 200.

Задача 2. Завод должен получить 200 т угля. Уже привезли 80 т. Сколько процентов угля доставлено на завод?

В этой задаче спрашивается, сколько процентов одно число (80) составляет от другого (200). Отношение этих чисел будет 80 / 200 . Умножим его на 100:

Значит, доставлено 40% угля.

Найдите первую цифру частного (результата деления). Для этого разделите первую цифру делимого на делитель. Результат напишите под делителем.

  • В нашем примере первой цифрой делимого является цифра 3. Разделите 3 на 12. Так 3 меньше 12, то результатом деления будет 0. Запишите 0 под делителем – это первая цифра частного.
  • Умножьте полученный результат на делитель. Напишите результат умножения под первой цифрой делимого, так как эту цифру вы только что разделили на делитель.

    • В нашем примере 0 × 12 = 0, поэтому напишите 0 под 3.
  • Вычтите результат умножения из первой цифры делимого. Запишите ответ на новой строке.

    • В нашем примере: 3 - 0 = 3. Напишите 3 непосредственно под 0.
  • Спустите вниз вторую цифру делимого. Для этого запишите следующую цифру делимого рядом с результатом вычитания.

    • В нашем примере делимым является число 30. Вторая цифра делимого – это 0. Спустите ее вниз, записав 0 возле 3 (результат вычитания). Вы получите число 30.
  • Полученный результат разделите на делитель. Вы найдете вторую цифру частного. Для этого разделите число, расположенное на самой нижней строке, на делитель.

    • В нашем примере разделите 30 на 12. 30 ÷ 12 = 2 плюс некоторый остаток (так как 12 х 2 = 24). Напишите 2 после 0 под делителем – это вторая цифра частного.
    • Если вы не можете найти подходящую цифру, перебирайте цифры до тех пор, пока результат умножения какой-либо цифры на делитель не окажется меньше и ближе всего к числу, расположенное последним в столбике. В нашем примере рассмотрим цифру 3. Умножьте ее на делитель: 12 х 3 = 36. Так как 36 больше 30, то цифра 3 не подходит. Теперь рассмотрим цифру 2. 12 х 2 = 24. 24 меньше 30, поэтому цифра 2 является верным решением.
  • Повторите описанные выше шаги, чтобы найти следующую цифру. Описанный алгоритм используется в любой задаче на деление в столбик.

    • Умножьте вторую цифру частного на делитель: 2 х 12 = 24.
    • Напишите результат умножения (24) под последним числом в столбике (30).
    • Вычтите меньшее число из большего. В нашем примере: 30 - 24 = 6. Запишите полученный результат (6) на новой строке.
  • Если в делимом остались цифры, которые можно спустить вниз, продолжите процесс вычисления. В противном случае перейдите к следующему шагу.

    • В нашем примере вы спустили вниз последнюю цифру делимого (0). Поэтому переходите к следующему шагу.
  • В случае необходимости воспользуйтесь десятичной запятой, чтобы расширить делимое. Если делимое делится на делитель нацело, то на последней строке вы получите цифру 0. Это означает, что задача решена, а ответ (в виде целого числа) записан под делителем. Но если в самом низу столбика находится любая цифра, отличная от 0, необходимо расширить делимое, поставив десятичную запятую и приписав 0. Напомним, что это не меняет значения делимого.

    • В нашем примере на последней строке находится цифра 6. Поэтому справа от 30 (делимое) напишите десятичную запятую, а затем напишите 0. Также десятичную запятую поставьте после найденных цифр частного, которые вы записываете под делителем (после этой запятой пока ничего не пишите!).
  • Повторите описанные действия, чтобы найти следующую цифру. Главное не забудьте поставить десятичную запятую как после делимого, так и после найденных цифр частного. В остальном процесс аналогичен процессу, описанному выше.

    • В нашем примере спустите вниз 0 (который вы написали после десятичной запятой). Вы получите число 60. Теперь разделите это число на делитель: 60 ÷ 12 = 5. Напишите 5 после 2 (и после десятичной запятой) под делителем. Это третья цифра частного. Таким образом, окончательный ответ: 2,5 (нулем перед 2 можно пренебречь).
  • В этой статье мы разберем такое важное действие с десятичными дробями, как деление. Сначала сформулируем общие принципы, затем разберем, как правильно выполнять деление десятичных дробей столбиком как на другие дроби, так и на натуральные числа. Далее мы разберем деление обыкновенных дробей на десятичные и наоборот, а в конце посмотрим, как правильно выполнять деление дробей, заканчивающихся на 0 , 1 , 0 , 01 , 100 , 10 и др.

    Здесь мы возьмем только случаи с положительными дробями. Если же перед дробью стоит минус, то для действия с ней нужно изучить материал о делении рациональных и действительных чисел.

    Yandex.RTB R-A-339285-1

    Все десятичные дроби, как конечные, так и периодические, представляют из себя всего лишь особую форму записи обыкновенных дробей. Следовательно, на них распространяются те же принципы, что и на соответствующие им обыкновенные дроби. Таким образом, весь процесс деления десятичных дробей мы сводим к замене их на обыкновенные с последующим вычислением уже известными нам способами. Возьмем конкретный пример.

    Пример 1

    Разделите 1 , 2 на 0 , 48 .

    Решение

    Запишем десятичные дроби в виде обыкновенных. У нас получится:

    1 , 2 = 12 10 = 6 5

    0 , 48 = 48 100 = 12 25 .

    Таким образом, нам надо разделить 6 5 на 12 25 . Считаем:

    1 , 2: 0 , 48 = 6 2: 12 25 = 6 5 · 25 12 = 6 · 25 5 · 12 = 5 2

    Из получившейся в итоге неправильной дроби можно выделить целую часть и получить смешанное число 2 1 2 , а можно представить ее в виде десятичной дроби, чтобы она соответствовала исходным цифрам: 5 2 = 2 , 5 . О том, как это сделать, мы уже писали ранее.

    Ответ: 1 , 2: 0 , 48 = 2 , 5 .

    Пример 2

    Посчитайте, сколько будет 0 , (504) 0 , 56 .

    Решение

    Для начала нам нужно перевести периодическую десятичную дробь в обыкновенную.

    0 , (504) = 0 , 504 1 - 0 , 001 = 0 , 504 0 , 999 = 504 999 = 56 111

    После этого конечную десятичную дробь также переведем в другой вид: 0 , 56 = 56 100 . Теперь у нас есть два числа, с которыми нам будет легко провести необходимые вычисления:

    0 , (504) : 1 , 11 = 56 111: 56 100 = 56 111 · 100 56 = 100 111

    У нас получился результат, который мы также можем перевести в десятичный вид. Для этого разделим числитель на знаменатель, используя метод столбика:

    Ответ: 0 , (504) : 0 , 56 = 0 , (900) .

    Если же в примере на деление нам встретились непериодические десятичные дроби, то мы будем действовать немного иначе. Мы не можем их привести к привычным обыкновенным дробям, поэтому при делении приходится предварительно округлять их до определенного разряда. Это действие должно быть выполнено как с делимым, так и с делителем: имеющуюся конечную или периодическую дробь в интересах точности мы тоже будем округлять.

    Пример 3

    Найдите, сколько будет 0 , 779 … / 1 , 5602 .

    Решение

    Первым делом мы округляем обе дроби до сотых. Так мы переходим от бесконечных непериодических дробей к конечным десятичным:

    0 , 779 … ≈ 0 , 78

    1 , 5602 ≈ 1 , 56

    Можем продолжить подсчеты и получить примерный результат: 0 , 779 … : 1 , 5602 ≈ 0 , 78: 1 , 56 = 78 100: 156 100 = 78 100 · 100 156 = 78 156 = 1 2 = 0 , 5 .

    Точность результата будет зависеть от степени округления.

    Ответ: 0 , 779 … : 1 , 5602 ≈ 0 , 5 .

    Как разделить натуральное число на десятичную дробь и наоборот

    Подход к делению в этом случае практически аналогичен: конечные и периодические дроби заменяем обыкновенными, а бесконечные непериодические округляем. Возьмем для начала пример деления с натуральным числом и десятичной дробью.

    Пример 4

    Разделите 2 , 5 на 45 .

    Решение

    Приведем 2 , 5 к виду обыкновенной дроби: 255 10 = 51 2 . Далее нам надо просто разделить ее на натуральное число. Делать это мы уже умеем:

    25 , 5: 45 = 51 2: 45 = 51 2 · 1 45 = 17 30

    Если перевести результат в десятичную запись, то мы получим 0 , 5 (6) .

    Ответ: 25 , 5: 45 = 0 , 5 (6) .

    Метод деления столбиком хорош не только для натуральных чисел. По аналогии мы можем использовать его и для дробей. Ниже мы укажем последовательность действий, которую нужно для этого осуществить.

    Определение 1

    Для деления столбиком десятичных дробей на натуральные числа необходимо:

    1. Добавить к десятичной дроби справа несколько нулей (для деления мы можем добавлять любое их количество, которое нам необходимо).

    2. Разделить столбиком десятичную дробь на натуральное число, используя алгоритм. Когда деление целой части дроби подойдет к концу, мы ставим запятую в получившемся частном и считаем дальше.

    Результатом такого деления может стать как конечная, так и бесконечная периодическая десятичная дробь. Это зависит от остатка: если он нулевой, то результат окажется конечным, а если остатки начнут повторяться, то ответом будет периодическая дробь.

    Возьмем для примера несколько задач и попробуем выполнить эти шаги уже с конкретными числами.

    Пример 5

    Вычислите, сколько будет 65 , 14 4 .

    Решение

    Используем метод столбика. Для этого допишем к дроби два нуля и получим десятичную дробь 65 , 1400 , которая будет равна исходной. Теперь пишем столбик для деления на 4:

    Полученное число и будет нужным нам результатом деления целой части. Ставим запятую, отделяя ее, и продолжаем:

    Мы добрались до нулевого остатка, следовательно, процесс деления завершен.

    Ответ: 65 , 14: 4 = 16 , 285 .

    Пример 6

    Разделите 164 , 5 на 27 .

    Решение

    Делим сначала дробную часть и получаем:

    Отделяем полученную цифру запятой и продолжаем делить:

    Мы видим, что остатки стали периодически повторяться, и в частном стали чередоваться цифры девять, два и пять. На этом мы остановимся и запишем ответ в виде периодической дроби 6 , 0 (925) .

    Ответ: 164 , 5: 27 = 6 , 0 (925) .

    Такое деление можно свести к уже описанному выше процессу нахождения частного десятичной дроби и натурального числа. Для этого нам потребуется умножить делимое и делитель на 10 , 100 и др. так, чтобы делитель превратился в натуральное число. Дальше выполняем описанную выше последовательность действий. Такой подход возможен благодаря свойствам деления и умножения. В буквенном виде мы записывали их так:

    a: b = (a · 10) : (b · 10) , a: b = (a · 100) : (b · 100) и так далее.

    Сформулируем правило:

    Определение 2

    Для деления одной конечной десятичной дроби на другую необходимо:

    1. Перенести запятую в делимом и делителе вправо на то количество знаков, которое необходимо для превращения делителя в натуральное число. Если в делимом не хватит знаков, допишем в него нули с правой стороны.

    2. После этого делим дробь столбиком на получившееся натуральное число.

    Разберем конкретную задачу.

    Пример 7

    Разделите 7 , 287 на 2 , 1 .

    Решение: Чтобы делитель стал натуральным числом, нам надо перенести запятую на один знак вправо. Так мы перешли к делению десятичной дроби 72 , 87 на 21 . Запишем полученные числа столбиком и вычислим

    Ответ: 7 , 287: 2 , 1 = 3 , 47

    Пример 8

    Вычислите 16 , 3 0 , 021 .

    Решение

    Нам придется переносить запятую на три знака. В делителе для этого не хватит цифр, значит, нужно воспользоваться дополнительными нулями. Считаем, что получится в итоге:

    Видим периодическое повторение остатков 4 , 19 , 1 , 10 , 16 , 13 . В частном повторяются 1 , 9 , 0 , 4 , 7 и 5 . Тогда наш результат является периодической десятичной дробью 776 , (190476) .

    Ответ: 16 , 3: 0 , 021 = 776 , (190476) ​​​​​​

    Описанный нами метод позволяет делать и наоборот, то есть делить натуральное число на конечную десятичную дробь. Посмотрим, как это делается.

    Пример 9

    Подсчитайте, сколько будет 3 5 , 4 .

    Решение

    Очевидно, что нам придется перенести запятую вправо на один знак. После этого мы можем приступить к делению 30 , 0 на 54 . Запишем данные столбиком и вычислим результат:

    Повторение остатка дает нам в итоге число 0 , (5) , которое является периодической десятичной дробью.

    Ответ: 3: 5 , 4 = 0 , (5) .

    Как разделить десятичные дроби на 1000, 100, 10 и др.

    Согласно уже изученным правилам деления обыкновенных дробей, деление дроби на десятки, сотни, тысячи аналогично ее умножению на 1 / 1000 , 1 / 100 , 1 / 10 и др. Получается, чтобы выполнить деление, в данном случае достаточно просто перенести запятую на нужное количество цифр. Если значений в числе не хватит для переноса, нужно дописать нужное количество нулей.

    Пример 10

    Так, 56 , 21: 10 = 5 , 621 , а 0 , 32: 100 000 = 0 , 0000032 .

    В случае с бесконечными десятичными дробями мы поступаем таким же образом.

    Пример 11

    Например, 3 , (56) : 1 000 = 0 , 003 (56) и 593 , 374 … : 100 = 5 , 93374 … .

    Как разделить десятичные дроби на 0,001, 0,01, 0,1 и др.

    Воспользовавшись тем же правилом, мы можем так же разделить дроби на указанные значения. Это действие будет аналогично умножению на 1000 , 100 , 10 соответственно. Для этого мы переносим запятую на одну, две или три цифры в зависимости от условий задачи и дописываем нули, если цифр в числе окажется недостаточно.

    Пример 12

    К примеру, 5 , 739: 0 , 1 = 57 , 39 и 0 , 21: 0 , 00001 = 21 000 .

    Это правило действует и в случае с бесконечными десятичными дробями. Советуем только быть внимательными с периодом дроби, которая получается в ответе.

    Так, 7 , 5 (716) : 0 , 01 = 757 , (167) , поскольку после того, как мы перенесли запятую в записи десятичной дроби 7 , 5716716716 … на два знака вправо, у нас получилось 757 , 167167 … .

    Если же у нас в примере непериодические дроби, то все обстоит проще: 394 , 38283 … : 0 , 001 = 394382 , 83 … .

    Как разделить смешанное число или обыкновенную дробь на десятичную и наоборот

    Это действие мы также сводим к операциям с обыкновенными дробями. Для этого надо заменить десятичные числа соответствующими обыкновенными дробями, а смешанное число записать в виде неправильной дроби.

    Если мы делим непериодическую дробь на обыкновенную либо на смешанное число, нужно поступить наоборот, заменив обыкновенную дробь или смешанное число соответствующей им десятичной дробью.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Прямоугольника?

    Решение. Так как 2,88 дм2 = 288 см2, а 0,8 дм = 8 см, то длина прямоугольника равна 288: 8, то есть 36 см = 3,6 дм. Мы нашли такое число 3,6,что 3,6 0,8 = 2,88. Оно является частным от деления 2,88 на 0,8.

    Пишут: 2,88: 0,8 = 3,6.

    Ответ 3,6 можно получить, не переводя дециметры в сантиметры. Для этого надо умножить делитель 0,8 и делимое 2,88 на 10 (то есть перенести в них запятую на одну цифру вправо) и разделить 28,8 на 8. Снова получим: 28,8: 8 = 3,6.

    Чтобы разделить число на десятичную дробь , надо:

    1) в делимом и делителе перенести запятую вправо на столько цифр, сколько их после запятой в делителе;
    2) после этого выполнить деление на натуральное число.

    Пример 1. Разделим 12,096 на 2,24. Перенесем в делимом и делителе запятую на 2 цифры вправо. Получим числа 1209,6 и 224. Так как 1209,6: 224 = 5,4, то и 12,096: 2,24 = 5,4.

    Пример 2. Разделим 4,5 на 0,125. Здесь надо перенести в делимом и делителе запятую на 3 цифры вправо. Так как в делимом только одна цифра после запятой, то припишем к нему справа два нуля. После переноса запятой получаем числа 4500 и 125. Так как 4500: 125 = 36, то и 4,5: 0,125 = 36.

    Из примеров 1 и 2 видно, что при делении числа на неправильную дробь это число уменьшается или не изменяется, а при делении на правильную десятичную дробь оно увеличивается: 12,096 > 5,4, а 4,5 < 36.

    Разделим 2,467 на 0,01. После переноса запятой в делимом и делителе на 2 цифры вправо получаем, что частное равно 246,7: 1, то есть 246,7.

    Значит, и 2,467: 0,01 = 246,7. Отсюда получаем правило:

    Чтобы разделить десятичную дробь на 0,1; 0,01; 0,001, надо перенести в ней запятую вправо на столько цифр, сколько в делителе стоит нулей перед единицей (то есть умножить ее на 10, 100, 1000).

    Если цифр не хватает, надо сначала приписать в конце дроби несколько нулей.

    Например, 56,87: 0,0001 = 56,8700: 0,0001 = 568 700.

    Сформулируйте правило деления десятичной дроби: на десятичную дробь; на 0,1; 0,01; 0,001.
    Умножением на какое число можно заменить деление на 0,01?

    1443. Найдите частное и выполните проверку умножением:

    а) 0,8: 0,5; б) 3,51: 2,7; в) 14,335: 0,61.

    1444. Найдите частное и выполните проверку делением:

    а) 0,096: 0,12; б) 0,126: 0,9; в) 42,105: 3,5.

    а) 7,56: 0,6; ж) 6,944: 3,2; н) 14,976: 0,72;
    б) 0,161: 0,7; з) 0,0456: 3,8; о) 168,392: 5,6;
    в) 0,468: 0,09; и) 0,182: 1,3; п) 24,576: 4,8;
    г) 0,00261: 0,03; к) 131,67: 5,7; р) 16,51: 1,27;
    д) 0,824: 0,8; л) 189,54: 0,78; с) 46,08: 0,384;
    е) 10,5: 3,5; м) 636: 0,12; т) 22,256: 20,8.

    1446. Запишите выражения:

    а) 10 - 2,4x = 3,16; д) 4,2р - р = 5,12;
    б) (у + 26,1) 2,3 = 70,84; е) 8,2t - 4,4t = 38,38;
    в) (z - 1,2) : 0,6 = 21,1; ж) (10,49 - s) : 4,02 = 0,805;
    г) 3,5m + т = 9,9; з) 9k - 8,67k = 0,6699.

    1460. В двух цистернах было 119,88 т бензина. В первой цистерне бензина было больше, чем во второй, в 1,7 раза. Сколько бензина было в каждой цистерне?

    1461. С трех участков собрали 87,36 т капусты. При этом с первого участка собрали в 1,4 раза больше, а со второго в 1,8 раза больше, чем с третьего участка. Сколько тонн капусты собрали с каждого участка?

    1462. Кенгуру ниже жирафа в 2,4 раза, а жираф выше кенгуру на 2,52 м. Какова высота жирафа и какова высота кенгуру?

    1463. Два пешехода находились на расстоянии 4,6 км друг от друга. Они пошли навстречу друг другу и встретились через 0,8 ч. Найдите скорость каждого пешехода, если скорость одного из них в 1,3 раза больше скорости другого.

    1464. Выполните действия:

    а) (130,2 - 30,8) : 2,8 - 21,84:
    б) 8,16: (1,32 + 3,48) - 0,345;
    в) 3,712: (7 - 3,8) + 1,3 (2,74 + 0,66);
    г) (3,4: 1,7 + 0,57: 1,9) 4,9 + 0,0825: 2,75;
    д) (4,44: 3,7 - 0,56: 2,8) : 0,25 - 0,8;
    е) 10,79: 8,3 0,7 - 0,46 3,15: 6,9.

    1465. Представьте обыкновенную дробь в виде десятичной и найдите значение выражения :


    1466. Вычислите устно:

    а) 25,5: 5; б) 9 0,2; в) 0,3: 2; г) 6,7 - 2,3;
    1,5: 3; 1 0,1; 2:5; 6- 0,02;
    4,7: 10; 16 0,01; 17,17: 17; 3,08 + 0,2;
    0,48: 4; 24 0,3; 25,5: 25; 2,54 + 0,06;
    0,9:100; 0,5 26; 0,8:16; 8,2-2,2.

    1467. Найдите произведение:

    а) 0,1 0,1; г) 0,4 0,4; ж) 0,7 0,001;
    б) 1,3 1,4; д) 0,06 0,8; з) 100 0,09;
    в) 0,3 0,4; е) 0,01 100; и) 0,3 0,3 0,3.

    1468. Найдите: 0,4 числа 30; 0,5 числа 18; 0,1 числа 6,5; 2,5 числа 40; 0,12 числа 100; 0,01 числа 1000.

    1469. Каково значение выражения 5683,25а при а = 10; 0,1; 0,01; 100; 0,001; 1000; 0,00001?

    1470. Подумайте, какие из чисел могут быть точными, какие - приближенными:

    а) в классе 32 ученика;
    б) расстояние от Москвы до Киева 900 км;
    в) у параллелепипеда 12 ребер;
    г) длина стола 1,3 м;
    д) население Москвы 8 млн человек;
    е) в пакете 0,5 кг муки;
    ж) площадь острова Куба 105 000 км2;
    з) в школьной библиотеке 10 000 книг;
    и) одна пядь равна 4 вершкам, а вершок равен 4,45 см (вершок
    длина фаланги указательного пальца).

    1471. Найдите три решения неравенства:

    а) 1,2 < х < 1,6; в) 0,001 < х < 0,002;
    б) 2,1 < х< 2,3; г) 0,01 <х< 0,011.

    1472. Сравните, не вычисляя, значения выражений:

    а) 24 0,15 и (24 - 15) : 100;

    б) 0,084 0,5 и (84 5) : 10 000.
    Объясните полученный ответ.

    1473. Округлите числа:

    1474. Выполните деление:

    а) 22,7: 10; 23,3: 10; 3,14: 10; 9,6: 10;
    б) 304: 100; 42,5: 100; 2,5: 100; 0,9: 100; 0,03: 100;
    в) 143,4: 12; 1,488: 124 ; 0,3417: 34; 159,9: 235; 65,32: 568.

    1475. Велосипедист выехал из села со скоростью 12 км/ч. Через 2 ч в противоположном направлении из того же села выехал другой велосипедист,
    причем скорость второго в 1,25 раза больше скорости первого. Какое расстояние будет между ними через 3,3 ч после выезда второго велосипедиста?

    1476. Собственная скорость лодки 8,5 км/ч, а скорость течения 1,3 км/ч. Какое расстояние пройдет лодка по течению за 3,5 ч? Какое расстояние пройдет лодка против течения за 5,6 ч?

    1477. Завод изготовил 3,75 тыс. деталей и продал их по цене 950 р. за штуку. Расходы завода на изготовление одной детали составили 637,5 р. Найдите прибыль, полученную заводом от продажи этих деталей.

    1478. Ширина прямоугольного параллелепипеда 7,2 см, что составляет Найдите объем этого параллелепипеда и округлите ответ до целых.

    1479. Папа Карло пообещал каждый день давать Пьеро по 4 сольдо, а Буратино в первый день 1 сольдо, а в каждый следующий день на 1 сольдо больше, если он будет вести себя хорошо. Буратино обиделся: он решил, что, как бы ни старался, никогда не сможет получить в сумме столько же сольдо, сколько Пьеро. Подумайте, прав ли Буратино.

    1480. На 3 шкафа и 9 книжных полок пошло 231 м досок, причем на шкаф идет в 4 раза больше материала, чем на полку. Сколько метров досок идет на шкаф и сколько - на полку?

    1481. Решите задачу:
    1) Первое число равно 6,3 и составляет второго числа. Третье число составляет второго. Найдите второе и третье числа.

    2) Первое число 8,1. Второе число составляет от первого числа и от третьего числа. Найдите второе и третье числа.

    1482. Найдите значение выражения:

    1) (7 - 5,38) 2,5;

    2) (8 - 6,46) 1,5.

    1483. Найдите значение частного:

    а) 17,01: 6,3; г) 1,4245: 3,5; ж) 0,02976: 0,024;
    б) 1,598: 4,7; д) 193,2: 8,4; з) 11,59: 3,05;
    в) 39,156: 7,8; е) 0,045: 0,18; и) 74,256: 18,2.

    1484. Путь от дома до школы равен 1,1 км. Девочка проходит этот путь за 0,25 ч. С какой скоростью идет девочка?

    1485. В двухкомнатной квартире площадь одной комнаты 20,64 м 2 , а площадь другой комнаты в 2,4 раза меньше. Найдите площадь этих двух комнат вместе.

    1486. Двигатель за 7,5 ч расходует 111 л горючего. Сколько литров горючего израсходует двигатель за 1,8 ч?
    1487. Металлическая деталь объемом в 3,5 дм3 имеет массу 27,3 кг. Другая деталь из этого же металла имеет массу 10,92 кг. Каков объем второй детали?

    1488. В цистерну через две трубы налили 2,28 т бензина. Через первую трубу поступало 3,6 т бензина в час, и она была открыта 0,4 ч. Через вторую трубу поступало за час на 0,8 т бензина меньше, чем через первую. Сколько времени была открыта вторая труба?

    1489. Решите уравнение:

    а) 2,136: (1,9 - х) = 7,12; в) 0,2t + 1,7t - 0,54 = 0,22;
    б) 4,2 (0,8 + y) = 8,82; г) 5,6г - 2z - 0,7z + 2,65 = 7.

    1490. Товар массой в 13,3 т распределили на три автомашины. На первую автомашину погрузили в 1,3 раза больше, а на вторую - в 1,5 раза больше, чем на третью автомашину. Сколько тонн товара погрузили на каждую автомашину?

    1491. Два пешехода вышли одновременно из одного места в противоположных направлениях. Через 0,8 ч расстояние между ними стало равным 6,8 км. Скорость одного пешехода была в 1,5 раза больше скорости другого. Найдите скорость каждого пешехода.

    1492. Выполните действия:

    а) (21,2544: 0,9 + 1,02 3,2) : 5,6;
    б) 4,36: (3,15 + 2,3) + (0,792 - 0,78) 350;
    в) (3,91: 2,3 5,4 - 4,03) 2,4;
    г) 6,93: (0,028 + 0,36 4,2) - 3,5.

    1493. В школу пришел врач и принес для прививки 0,25 кг сыворотки. Скольким ребятам он может сделать уколы, если для каждого укола нужно 0,002 кг сыворотки?

    1494. В магазин завезли 2,8 т пряников. До обеда было продано этих пряников. Сколько тонн пряников осталось еще продать?

    1495. От куска ткани отрезали 5,6 м. Сколько метров ткани было в куске, если отрезали этого куска?

    Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений



    
    Top