Как появилось понятие о среднем значении? Формула моды и медианы в статистике.

Для характеристики рядов распределения (структуры вариационных рядов), наряду со средней, используются т. н. структурные средние : мода и медиана . Мода и медиана наиболее часто используются в экономической практике.

Мода - варианта, которая наиболее часто встречается в ряду распределения (в данной совокупности).

В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по следующим ценам в рублях:

44; 43; 44; 45; 43; 46; 42; 46;43. Так как чаще всего встречается цена 43 рубля, то она и будет модальной.

При характеристике социальных групп населения по уровню дохода следует использовать модальное значение, нежели среднее. Средняя будет занижать одни показатели и завышать другие - тем самым осредняя (уравнивания) доходы всех слоев населения.

В интервальных вариационных рядах моду определяют приближенно по формуле:

    ХМ0 - нижняя граница модального интервала;

    h Mo - величина (шаг, ширина) модального интервала;

    f 1 - локальная частота интервала, предшествующего модальному;

    f 2 - локальная частота модального интервала;

    f 3 - локальная частота интервала, следующего за модальным.

Распределение населения по уровню среднедушевого месячного дохода

Интервал 1000-3000 в данном распределении будет модальным, т.к. он имеет наибольшую частоту (f=35,5). Тогда по вышеуказанной формуле мода будет равна:

На графике (гистограмме распределения) моду определяют следующим образом: по оси ординат откладывают локальные частоты, а по оси абсцисс -интервалы либо центры интервалов. Выбирают самый высокий столбик, которому соответствует величина признака с наибольшей частотой в ряду распределения.

Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды.

Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значений изучаемого признака). Медиану иногда называют серединной вариантой , т.к. она делит совокупность на две равные части таким образом, чтобы по обе ее стороны находилось одинаковое число единиц совокупности. Если всем единицам ряда присвоить порядковые номера, то порядковый номер медианы будет определяться по формуле (n+1):2 для рядов, где n - нечетное . Если же ряд с четным числом единиц, томедианой будет являться среднее значение между двумя соседними вариантами, определенными по формуле: n:2, (n+1):2, (n:2)+1.

В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда.

Нахождение медианы в интервальных вариационных рядах требует предварительного определения интервала, в котором находится медиана, т.е. медианного интервала – этот интервал характеризуется тем, что его кумулятивная (накопленная) частота равна полусумме или превышает полусумму всех частот ряда.

    X Me -нижняя граница медианного интервала

    h Me -величина медианного интервала;

    S Me-1 -сумма накопленных частот интервала, предшествующего медианному интервалу;

    f Me -локальная частота медианного интервала.

По данным таблицы определим медианное значение среднедушевого дохода. Для этого необходимо определить какой интервал будет медианным. Используем формулу номера медианной единицы ряда, т.е. середины:

Дробное значение N (всегда при четном числе членов) равное 50,5% говорит о том, что середина ряда находится между 50% и 51%, т.е. в третьем интервале. Иными словами: медианным считается интервал, на который впервые приходится более половины суммы накопленных частот. Отсюда медиана:

Для того, чтобы определить графически интервал, в котором находится медиана, по оси ординат откладывают накопленные частоты, а по оси абсцисс - центры интервалов. Из точки на оси ординат, которой соответствует 50.5% суммы накопленных частот, проводят линию параллельно оси абсцисс до пересечения с кумулятой. Из точки пересечения опускают перпендикуляр на ось абсцисс.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M 0

Из соотношения этих показателей следует сделать вывод о правосторонней асимметрии распределения населения по уровню среднедушевого денежного дохода:

Квартиль –это четвертая часть совокупности, определяется как и медиана, только сумму частот необходимо разделить на 4, а при определении квартильного интервала, кумулятивная частота должна быть больше или равна четверти суммы частот совокупности.

Дециль – делит совокупность на десять равных частей. Определяется аналогично как и квартиль, только сумму частот необходимо разделить на 10.

Структурные (позиционные) средние – это средние величины, которые занимают определенное место (позицию) в ранжированном вариационном ряду.

Мода (Mo ) — это значение признака, наиболее часто встречающееся в исследуемой совокупности.

Для дискретных вариационных рядов модой будет значение варианты с наибольшей частотой

Пример . Определить моду по имеющимся данным (табл. 7.5).

Таблица 7.5 – Распределение женской обуви, проданной в обувном магазине N , февраль 2013 г.

По данным табл. 5 видно, что наибольшая частота f max = 28, ей соответствует значение признака x = 37 размер. Следовательно, Mo = 37 размер обуви, т.е. именно этот размер обуви пользовался наибольшим спросом, наиболее часто покупали обувь 37-го размера.

В сначала определяется модальный интервал , т.е. содержащий моду – интервал с наибольшей частотой (в случае интервального распределения с равными интервалами, в случае с неравными интервалами – по наибольшей плотности).

Модой приближенно считается середина модального интервала. Конкретное значение моды для интервального ряда определяется по формуле:

где x Mo – нижняя граница модального интервала;

i Mo – величина модального интервала;

f Mo – частота модального интервала;

f Mo -1 – частота интервала, предшествующего модальному;

f Mo +1 – частота интервала, следующего за модальным.

Пример . Определить моду по имеющимся данным (табл. 7.6).

Таблица 7.6 – Распределение работников по стажу

По данным табл. 6 видно, что наибольшая частота f max = 35, ей соответствует интервал: 6-8 лет (модальный интервал). Определим моду по формуле:

лет.

Следовательно, Mo = 6,8 лет, т.е. большинство работников имеют стаж 6,8 лет.

Название медианы взято из геометрии, где им именуется отрезок, соединяющий одну из вершин треугольника с серединой противоположной стороны и разделяющий, таким образом, сторону треугольника на две равные части.

Медиана () это значение признака, приходящееся на середину ранжированной совокупности. Иначе медиана – это величина, которая делит численность упорядоченного вариационного ряда на две равные части – одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Для ранжированного ряда (т.е.упорядоченного — построенного в порядке возрастания или убывания индивидуальных значений признака) с нечетным числом членов (n= нечет) медианой является варианта, расположенная в центре ряда. Порядковый номер медианы (N Me ) определяется следующим образом:

N Me =(n +1)/ 2.

Пример. В ряду из 51 члена номер медианы (51+1)/2 = 26, т.е. медианой является вариант, стоящий в ряду 26-ым по порядку.

Дляранжированного ряда с четным числом членов (n= чет) – медианой будет средняя арифметическая из двух значений признака, расположенных в середине ряда. Порядковые номера двух центральных вариант определяются следующим образом:

N Me 1 =n/ 2; N Me 2 =(n/ 2)+ 1.

Пример. При n=50; N Me1 = 50/2 = 25; N Me2 = (50/2)+1 = 26, т.е. медианой является средняя из вариант, стоящих в ряду 25-ой и 26-ой по порядку.

В дискретных вариационных рядах медиана находится по накопленной частоте, соответствующей порядковому номеру медианы или впервые его превышающей. Иначе по накопленной частоте равной или впервые превышающей половину суммы всех частот ряда.

Пример . Определить медиану по имеющимся данным (табл. 7.7).

Таблица 7.7 – Распределение женской обуви, проданной в обувном магазине N , февраль 2013 г.

По данным табл. 7 определим порядковый номер медианы: N Me =(67+1)/2=34.

Мода. Медиана. Способы их расчета (стр. 1 из 2)

Накопленная частота, впервые превышающая это значение, S = 41, ей соответствует значение признака x = 37 размер. Следовательно, Me = 37 размер обуви, т.е. половина пар покупается меньше 37-го размера, а другая половина – больше.

В этом примере мода и медиана совпадают, но они могут и не совпадать.

В интервальном вариационном ряду определяются накопленные частоты, по данным о накопленных частотах находят медианный интервал – интервал, в котором накопленная частота составляет половину или впервые превышает половину всей суммы частот. Формула для определения медианы в интервальном ряду распределения имеет следующий вид:

.

где x Me – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f i – сумма частот ряда;

S Me -1 – сумма накопленных частот интервала, предшествующего медианному;

f Me – частота медианного интервала.

Пример . Определить медиану по имеющимся данным (табл. 7.8).

Таблица 7.8 – Распределение работников по стажу

По данным табл. 8 определим порядковый номер медианы: N Me =100 /2=50. Накопленная частота, впервые превышающая это значение, S = 82, ей соответствует интервал 6-8 лет (медианный интервал). В этом примере модальный и медианный интервал совпадают, но они могут и не совпадать. Определим медиану по формуле:

лет

Следовательно, Me = 6,2 года, т.е. половина работников имеют стаж менее 6,2 года, а другая половина – более.

Мода и медиана находят широкое применение в разных областях экономики. Так, исчисление модальной производительности труда, модальной себестоимости и т.д. дает возможность экономисту судить о преобладающем в данный момент их уровне. Эта характеристика должна быть использована для выявления резервов нашей экономики. Мода имеет значение для решения практических задач. Так, при планировании массового выпуска одежды и обуви устанавливается размер продукции, который пользуется наибольшим спросом (модальный размер). Мода может быть использована в качестве приближенной характеристики уровня изучаемого признака вместо средней арифметической, если распределения частот близко к симметричному и имеет одну неплоскую вершину.

Медиану следует применять в качестве средней величины в тех случаях, где нет достаточной уверенности в однородности изучаемой совокупности. На медиану влияют не столько сами значения, сколько число случаев на том или ином уровне. Следует также отметить, что медиана всегда конкретна (при большом числе наблюдений или в случае нечетного числа членов совокупности), т.к. под Ме подразумевается некоторый действительный реальный элемент совокупности, тогда как арифметическая средняя часто принимает такое значение, которое не может принимать ни одна из единиц совокупности.

Главное свойство Ме в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины: . Это свойство Ме может быть использовано, например, при определении места строительства общественных зданий, т.к. Ме определяет точку, дающую наименьшее расстояние, допустим, детских садов от местожительства родителей, жителей населенного пункта от кинотеатра, при проектировке трамвайных, троллейбусных остановок и т.д.

В системе структурных показателей в качестве показателей особенностей формы распределения выступают варианты, занимающие определенное место в ранжированном вариационном ряду (каждое четвертое, пятое, десятое, двадцать пятое и т.д.). Аналогично с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда.

Квартили – значения признака, делящие ранжированную совокупность на четыре равные части. Различают квартиль нижний (Q 1 ), средний (Q 2 ) и верхний (Q 3 ). Нижний квартиль отделяет 1/4 часть совокупности с наименьшими значениями признака, верхний — 1/4 часть с наибольшими значениями признака. Это означает, что 25% единиц совокупности будут меньше по величине Q 1 ; 25% единиц будут заключены между Q 1 и Q 2 ; 25% – между Q 2 и Q 3 ; остальные 25% превосходят Q 3 . Средним квартилем (Q 2 ) является медиана.

Для расчета квартилей по интервальному ряду используют формулы:

;

.

где x Q1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25%);

x Q3 – нижняя граница интервала, содержащего верхний квартиль (интервал определяется по накопленной частоте, первой превышающей 75%);

S Q 1-1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;

S Q 3-1 – накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль;

f Q1 – частота интервала, содержащего нижний квартиль;

f Q3 – частота интервала, содержащего верхний квартиль.

Децили – это значения вариант, которые делят ранжированный ряд на десять равных частей: 1-ый дециль (d 1 ) делит совокупность в соотношении 1/10 к 9/10, 2-ой дециль (d 2 ) — в соотношении 2/10 к 8/10 и т.д. Вычисляются децили по той же схеме, что и медиана, и квартили:

;

.

Использование в анализе вариационных рядов распределения рассмотренных выше характеристик позволяет глубоко и детально охарактеризовать изучаемую совокупность.

ПОСМОТРЕТЬ ЕЩЕ:

Структурные средние величины

Наряду со степенными средними широкое распространение получили структурные средние.

Структура статистических совокупностей бывает разной. При этом чем симметричнее распределение единиц совокупности, чем качественно однороднее ее состав по изучаемому признаку, тем лучше, надежнее средняя величина признака характеризует изучаемое явление. Но для случаев резкой скошенности (асимметрия) ряда распределения средняя арифметическая уже не так типична. Например, средний размер вклада в сбербанках не представляет особого интереса, так как основная масса вкладов находится ниже этого уровня, а на среднюю оказывают существенное влияние крупные вклады, которых мало и которые не характерны для массы вкладов.

Мода (статистика)

В таких случаях статистика применяет другую систему – систему вспомогательных структурных средних. К их числу относятся мода, медиана, а также квартели, квинтели, децели, перцентели.

Мода (Мо) – наиболее часто встречающаяся величина признака, а в дискретном вариационном ряду – это варианта с наибольшей частотой.

В статистической практике мода используется при изучении доходов населения, покупательского спроса, регистрации цен и при анализе некоторых технико-экономических показателей работы предприятий.

В отдельных случаях именно мода представляет интерес, а не средняя арифметическая. Иногда она применяется вместо арифметической средней, например, для характеристики структуры рядов распределения.

Порядок определения моды зависит от вида ряда распределения. Если варьирующий признак представлен в виде дискретного ряда, то для определения моды не требуется никаких вычислений. В таком ряду модой будет то значение признака, которое обладает наибольшей частотой.

Если значение признака представлены в виде интервального вариационного ряда с равными интервалами, то моду определяют расчетным путем по формуле:

где х Мо – нижняя граница модального интервала,

i Мо – величина модального интервала,

f Мо , f Мо-1 , f Мо+1 – соответственно частоты модального, предмодального (предыдущего) и послемодального (следующего за модальным) интервалов.

Медиана (Ме) – это величина признака, которая находится в середине ранжированного вариационного ряда, где отдельные значения признака (варианты) расположены в порядке их возрастания или убывания (по рангу).

Медиану следует применять в качестве средней величины в тех случаях, где нет достаточной уверенности в однородности изучаемой совокупности. Медиана находит применение в маркетинговой деятельности. Например, размещение элеваторов, заводов первичного виноделия, консервных заводов, сумма расстояний до которых от поставщиков сырья должна быть наименьшей.

Медиана, как и мода, определяется по-разному. Это зависит от строения ряда распределения.
Для определения медианы в дискретных вариационных рядах:

1) находят ее порядковый номер по формуле

N Me =
2) строят ряд накопленных частот

3) находят накопленную частоту, которая равна порядковому номеру медианы или его превышает

4) варианта, соответствующая данной накопленной частоте, является медианой.

Если число членов дискретного ряда нечетное, то медиана находится в середине ряда и делит этот ряд пополам на две равные части по числу членов ряда. Порядковый номер медианы в этом случае вычисляется по формуле:

N Me =(f + 1)2,

где f число членов ряда.

В интервальных рядах сначала определяют медианный интервал. Для этого так же, как и в дискретных рядах, рассчитывают порядковый номер медианы . Накопленной частоте, которая равна номеру медианы или первая его превышает, в интервальном вариационном ряду соответствует медианный интервал. Обозначим эту накопленную частоту S Me . Непосредственно расчет медианы проводят по формуле:

,
где — нижняя граница медианного интервала

— величина медианного интервала

— накопленная частота интервала, предшествующего медианному

— частота медианного интервала

Графическое определение моды и медианы
Моду и медиану в интервальном ряду можно определить графически.

Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 1). Медиана рассчитывается по кумуляте (рис. 2). Для ее определения из точки на шкале накопленных частот (частостей), соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Показатели вариации в статистике.

В процессе статистического анализа может сложиться ситуация, когда значения средних величин совпадают, а совокупности, на основе которых они рассчитаны, состоят из единиц, значения признака у которых достаточно резко различают между собой. В этом случае рассчитывают показатели вариации.

Каталог: downloads -> Sotrudniki
downloads -> Н. Л. Иванова М. Ф. Луканина
downloads -> Лекция для специалистов доу и родителей «Профилактика агрессивного поведения дошкольников»
downloads -> Психологическая профессиональная адаптация личности
downloads -> Департамент образования и науки кемеровской области кемеровский областной психолого-валеологический центр
downloads -> Федеральная служба РФ по контролю за оборотом наркотиков управление по кемеровской области
Sotrudniki -> Боу чувашской Республики спо «чэтк» Минобразования Чувашии
downloads -> Особенности психолого-педагогического сопровождения развития детей дошкольного возраста
downloads -> Мишина М. М. Развитие мышления в зависимости от включенности в семейно-родовые отношения
Sotrudniki -> Формирование профессионально-значимых качеств у обучающихся с нарушениями интеллекта по профессии

КОНТРОЛЬНАЯ РАБОТА

На тему: "Мода. Медиана. Способы их расчета"

Введение

Средние величины и связанные с ними показатели вариации играют в статистике очень большую роль, что обусловлено предметом ее изучения. Поэтому данная тема является одной из центральных в курсе.

Средняя является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.

Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью средних можно сравнивать между собой различные совокупности по варьирующим признакам.

Средние, которые применяются в статистике, относятся к классу степенных средних. Из степенных средних наиболее часто применяется средняя арифметическая, реже – средняя гармоническая; средняя гармоническая применяется только при исчислении средних темпов динамики, а средняя квадратическая – только при исчислении показателей вариации.

Средняя арифметическая есть частное от деления суммы вариант на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности образуется как сумма значений признака у отдельных ее единиц. Средняя арифметическая – наиболее распространенный вид средних, так как она соответствует природе общественных явлений, где объем варьирующих признаков в совокупности чаще всего образуется именно как сумма значений признака у отдельных единиц совокупности.

По своему определяющему свойству средняя гармоническая должна применяться тогда, когда общий объем признака образуется как сумма обратных значений вариант. Ее применяют тогда, когда в зависимости от имеющего материала веса приходиться не умножать, а делить на варианты или, что то же самое, умножать на обратное их значение. Средняя гармоническая в этих случаях – это величина обратная средней арифметической из обратных значений признака.

К средней гармонической следует прибегать в тех случаях, когда в качестве весов применяются не единицы совокупности – носители признака, а произведения этих единиц на значение признака.

1. Определение моды и медианы в статистике

Средние арифметическая и гармоническая являются обобщающими характеристиками совокупности по тому или иному варьирующему признаку. Вспомогательными описательными характеристиками распределения варьирующего признака являются мода и медиана.

Модой в статистике называется величина признака (варианта), которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.

Мода и медиана в отличии от степенных средних являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака.

5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах

Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров, размер ботинок, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.

Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников банка составила 650000 руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 700000 руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.

Нахождение моды и медианы в дискретном вариационном ряду

Найти моду и медиану в вариационном ряду, где значения признака заданы определенными числами, не представляет большой трудности. Рассмотрим таблицу 1. с распределение семей по числу детей.

Таблица 1. Распределение семей по числу детей

Очевидно, в этом примере модой будет семья, имеющая двоих детей, так как этому значению варианты соответствует наибольшее число семей. Могут быть распределения, где все варианты встречаются одинаково часто, в этом случае моды нет или, иначе, можно сказать, что все варианты одинаково модальны. В других случаях не одна, а две варианты могут быть наибольшей частоты. Тогда будет две моды, распределение будет бимодальным. Бимодальные распределения могут указывать на качественную неоднородность совокупности по исследуемому признаку.

Чтобы найти медиану в дискретном вариационном ряд, нужно сумму частот разделить пополам и к полученному результату добавить ½. Так, в распределении 185 семьи по числу детей медианой будет: 185/2 + ½ = 93, т.е. 93-я варианта, которая делит упорядоченный ряд пополам. Каково же значение 93-ей варианты? Для того чтобы это выяснить, нужно накапливать частоты, начиная, от наименьшей варианты. Сумма частот 1-й и 2-й вариант равна 40. Ясно, что здесь 93 варианты нет. Если прибавить к 40 частоту 3-й варианты, то получим сумму, равную 40 + 75 = 115. Следовательно, 93-я варианта соответствует третьему значению варьирующего признака, и медианой будет семья, имеющая двоих детей.

Мода и медиана в данном примере совпали. Если бы у нас была четная сумма частот (например, 184), то, применяя указанную выше формулу, получим номер медианной варианты, 184/2 + ½ =92,5. Поскольку варианты с дробным номером не существует, полученный результат указывает, что медиана находится посередине между 92 и 93 вариантами.

3. Расчет моды и медианы в интервальном вариационном ряду

Описательный характер моды и медианы связан с тем, что в них не погашаются индивидуальные отклонения. Они всегда соответствуют определенной варианте. Поэтому мода и медиана не требуют для своего нахождения расчетов, если известны все значения признака. Однако в интервальном вариационном ряду для нахождения приближенного значения моды и медианы в пределах определенного интервала прибегают к расчетам.

Для расчета определенного значения модальной величины признака, заключенного в интервале, применяют формулу:

М о = Х Мо + i Мо *(f Мо – f Мо-1)/((f Мо – f Мо-1) + (f Мо – f Мо+1)),

Где Х Мо – минимальная граница модального интервала;

i Мо – величина модального интервала;

f Мо – частота модального интервала;

f Мо-1 – частота интервала, предшествующего модальному;

f Мо+1 – частота интервала, следующего за модальным.

Покажем расчет моды на примере, приведенном в таблице 2.

Таблица 2. Распределение рабочих предприятия по выполнению норм выработки

Чтобы найти моду, первоначально определим модальный интервал данного ряда. Из примера видно, что наибольшая частота соответствует интервалу, где варианта лежит в пределах от 100 до 105. Это и есть модальный интервал. Величина модального интервала равна 5.

Подставляя числовые значения из таблицы 2. в указанную выше формулу, получим:

М о = 100 + 5 * (104 -12)/((104 – 12) + (104 – 98)) = 108,8

Смысл этой формулы заключается в следующем: величину той части модального интервала, которую нужно добавить к его минимальной границе, определяют в зависимости от величины частот предшествующего и последующего интервалов. В данном случае к 100 прибавляем 8,8, т.е. больше половины интервала, потому что частота предшествующего интервала меньше частоты последующего интервала.

Исчислим теперь медиану. Для нахождения медианы в интервальном вариационном ряду определяем сначала интервал, в котором она находится (медианный интервал). Таким интервалом будет такой, комулятивная частота которого равна или превышает половину суммы частот. Комулятивные частоты образуются путем постепенного суммирования частот, начиная от интервала с наименьшим значением признака. Половина суммы частот у нас равна 250 (500:2). Следовательно, согласно таблицы 3. медианным интервалом будет интервал со значением заработной платы от 350000 руб. до 400000 руб.

Таблица 3. Расчет медианы в интервальном вариационном ряду

До этого интервала сумма накопленных частот составила 160. Следовательно, чтобы получить значение медианы, необходимо прибавить еще 90 единиц (250 – 160).

При определении значения медианы предполагают, что значение единиц в границах интервала распределяется равномерно. Следовательно, если 115 единиц, находящихся в этом интервале, распределяются равномерно в интервале, равном 50, то 90 единицам будет соответствовать следующая его величина:

Мода в статистике

Медиана (статистика)

Медиана (статистика) , в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него.

В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:

  • Среднее значение — среднее арифметическое, которое вычисляется сложением множества чисел с последующим делением полученной суммы на их количество.
    Например , средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.
  • Медиана — число, которое является серединой множества чисел: половина чисел имеют значения большие, чем медиана, а половина чисел — меньшие.
    Например , медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.
  • Мода — число, наиболее часто встречающееся в данном множестве чисел.

    Например , модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

Cреднее арифметическое значение (далее по тексту — среднее), пожалуй, наиболее популярный статистический параметр. Этим понятием пользуются повсеместно — начиная от поговорки «средняя температура по больнице» и кончая серьезными научными трудами. Однако, как ни странно, среднее значение — коварное понятие, часто вводящее в заблуждение, вместо того чтобы придавать четкость изложению и вносить ясность.

Если говорить о научной работе, то статистический анализ данных применяется почти во всех прикладных науках, даже и в гуманитарных (например, психологии). Среднее значение вычисляется для признаков, измеряемых в так называемых непрерывных шкалах. Такими признаками являются, например, концентрации веществ в сыворотке крови, рост, вес, возраст. Среднее арифметическое можно легко вычислить, и этому учат еще в средней школе. Однако (в соответствии с положениями математической статистики) среднее значение является адекватной мерой центральной тенденции в выборке только в случае нормального (гауссова) распределения признака (рис. 1). Рис. 1. Нормальное (гауссово) распределение признака в выборке. Среднее (М) и медиана (Ме) совпадают

В случае же отклонения распределения от нормального закона среднее значение использовать некорректно, так как оно является слишком чувствительным параметром к так называемым «выбросам» — нехарактерным для изучаемой выборки, слишком большим или слишком малым значением (рис. 2). В этом случае для характеристики центральной тенденции в выборке должен применяться другой параметр — медиана. Медиана — это значение признака, справа и слева от которого находится равное число наблюдений (по 50%). Этот параметр (в отличие от среднего значения) устойчив к «выбросам». Заметим также, что медиана может использоваться и в случае нормального распределения — в этом случае медиана совпадает со средним значением.

Рис. 2. Распределение признака в выборке, отличное от нормального. Среднее (м) и медиана (МЕ) не совпадают

Для того, чтобы узнать, является ли распределение признака в выборке нормальным (гауссовым) или нет, т. е. для того, чтобы узнать, какой из параметров следует применять (среднее значение или медиану), существуют специальные статистические тесты.

Приведем пример. Скорость оседания эритроцитов в группе пациентов, недавно перенесших пневмонию, — 3, 5, 5, 7, 11, 12, 16, 16, 21, 42, 58. Среднее значение для этой выборки равно 17,8, медиана — 12. Распределение (по тесту Шапиро—Уилка) нормальным не является (рис. 3), поэтому использовать надо медиану. Рис. 3. Пример

Как ни странно, но в некоторых областях экономики сторонний наблюдатель не может заметить хоть какого-то следа корректного применения математической статистики. Так, нам постоянно говорят о средней зарплате (например, в НИИ), и эти числа обычно удивляют не только рядовых сотрудников, но и руководителей подразделений (ныне называемых «менеджерами среднего звена»). Мы удивляемся, что средняя зарплата в Москве — 40 тыс. руб., но, конечно, понимаем, что нас «усреднили» с олигархами. Вот пример из жизни научных работников: зарплаты сотрудников лаборатории (тыс. руб.) — 3, 5, 5, 7, 11, 12, 16, 16, 21, 42, 58. Среднее значение — 17,8, медиана — 12. Согласитесь, что это разные числа!

Конечно, нельзя исключить, что замалчивание свойств среднего — лукавство, так как руководству всегда выгоднее представить ситуацию с зарплатой сотрудников лучше, чем она есть на самом деле.

Не пора ли научному сообществу призвать наших руководителей прекратить некорректное использование математической статистики?

Ольга Реброва,
докт. мед. наук, вице-президент
МОО «Общество специалистов доказательной медицины»

Функция МЕДИАНА в Excel используется для анализа диапазона числовых значений и возвращает число, которое является серединой исследуемого множества (медианой). То есть, данная функция условно разделяет множество чисел на два подмножества, первое из которых содержит числа меньше медианы, а второе – больше. Медиана является одним из нескольких методов определения центральной тенденции исследуемого диапазона.

Примеры использования функции МЕДИАНА в Excel

При исследовании возрастных групп студентов использовались данные случайно выбранной группы учащихся в ВУЗе. Задача – определить срединный возраст студентов.

Исходные данные:

Формула для расчета:


Описание аргумента:

  • B3:B15 – диапазон исследуемых возрастов.

Полученный результат:

То есть в группе есть студенты, возраст которых меньше 21 года и больше этого значения.



Сравнение функций МЕДИАНА и СРЗНАЧ для вычисления среднего значения

Во время вечернего обхода в больнице каждому больному была замерена температура тела. Продемонстрировать целесообразность использования параметра медиана вместо среднего значения для исследования ряда полученных значений.

Исходные данные:

Формула для нахождения среднего значения:

Формула для нахождения медианы:

Как видно из показателя среднего значения, в среднем температура у пациентов выше нормы, однако это не соответствует действительности. Медиана показывает, что как минимум у половины пациентов наблюдается нормальная температура тела, не превышающая показатель 36,6.

Внимание! Еще одним методом определения центральной тенденции является мода (наиболее часто встречающееся значение в исследуемом диапазоне). Чтобы определить центральную тенденцию в Excel следует использовать функцию МОДА. Обратите внимание: в данном примере значения медианы и моды совпадают:

То есть срединная величина, делящая одно множество на подмножества меньших и больших значений также является и наиболее часто встречающимся значением в множестве. Как видно, у большинства пациентов температура составляет 36,6.

Пример расчета медианы при статистическом анализе в Excel

Пример 3. В магазине работают 3 продавца. По результатам последних 10 дней необходимо определить работника, которому будет выдана премия. При выборе лучшего работника учитывается степень эффективности его работы, а не число проданных товаров.

Исходная таблица данных:


Для характеристики эффективности будем использовать сразу три показателя: среднее значение, медиана и мода. Определим их для каждого работника с использованием формул СРЗНАЧ, МЕДИАНА и МОДА соответственно:


Для определения степени разброса данных используем величину, которая является суммарным значением модуля разницы среднего значения и моды, среднего значения и медианы соответственно. То есть коэффициент x=|av-med|+|av-mod|, где:

  • av – среднее значение;
  • med – медиана;
  • mod – мода.

Рассчитаем значение коэффициента x для первого продавца:

Аналогично проведем расчеты для остальных продавцов. Полученные результаты:


Определим продавца, которому будет выдана премия:

Примечание: функция НАИМЕНЬШИЙ возвращает первое минимальное значение из рассматриваемого диапазона значений коэффициента x.


Коэффициент x является некоторой количественной характеристикой стабильности работы продавцов, которую ввел экономист магазина. С его помощью удалось определить диапазон с наименьшими отклонениями значений. Этот способ демонстрирует, как можно использовать сразу три метода определения центральной тенденции для получения наиболее достоверных результатов.

Особенности использования функции МЕДИАНА в Excel

Функция имеет следующий синтаксис:

МЕДИАНА(число1; [число2];...)

Описание аргументов:

  • число1 – обязательный аргумент, характеризующий первое числовое значение, содержащееся в исследуемом диапазоне;
  • [число2] – необязательный второй (и последующие аргументы, всего до 255 аргументов), характеризующий второе и последующие значения исследуемого диапазона.

Примечания 1:

  1. При расчетах удобнее передавать сразу весь диапазон исследуемых значений вместо последовательного ввода аргументов.
  2. В качестве аргументов принимаются данные числового типа, имена, содержащие числа, данные ссылочного типа и массивы (например, =МЕДИАНА({1;2;3;5;7;10})).
  3. При расчете медианы учитываются ячейки, содержащие пустые значения или логические ИСТИНА, ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно. Например, результат выполнения функции с логическими значениями в аргументах (ИСТИНА;ЛОЖЬ) эквивалентен результату выполнения с аргументами (1;0) и равен 0,5.
  4. Если один или несколько аргументов функции принимают текстовые значения, которые не могут быть преобразованы в числовые, или содержат коды ошибок, результатом выполнения функции будет код ошибки #ЗНАЧ!.
  5. Для определения медианы выборки могут быть использованы другие функции Excel: ПРОЦЕНТИЛЬ.ВКЛ, КВАРТИЛЬ.ВКЛ, НАИБОЛЬШИЙ Примеры использования:
  • =ПРОЦЕНТИЛЬ.ВКЛ(A1:A10;0,5), поскольку по определению медиана – 50-я процентиль.
  • =КВАРТИЛЬ.ВКЛ(A1:A10;2), так как медиана – 2-я квартиль.
  • =НАИБОЛЬШИЙ(A1:A9;СЧЁТ(A1:A9)/2), но только если количество чисел в диапазоне является нечетным числом.

Примечания 2:

  1. Если в исследуемом диапазоне все числа распределены симметрично относительно среднего значения, среднее арифметическое и медиана для данного диапазона будут эквивалентны.
  2. При больших отклонениях данных в диапазоне («разбросе» значений) медиана лучше отражает тенденцию распределения значений, чем среднее арифметическое. Отличным примером является использование медианы для определения реального уровня зарплат у населения государства, в котором чиновники получают на порядок больше обычных граждан.
  3. Диапазон исследуемых значений может содержать:
  • Нечетное количество чисел. В этом случае медианой будет являться единственное число, разделяющее диапазон на два подмножества больших и меньших значений соответственно;
  • Четное количество чисел. Тогда медиана вычисляется как среднее арифметическое для двух числовых значений, разделяющих множество на два указанных выше подмножества.

Медиана (Me) – значение признака, приходящееся на середину ранжированного ряда, т.е. делящее ряд распределения на две равные части.

а) для ряда одиночных значений:

Если нечетное кол-во вариант, то серединное значение в ранжированном ряду

Если четное , то сред.арифмет. из 2х смежных серединных значений в ранжиров. ряду

б) В дискретном ряду распределения определяется номер медианы по формуле:

Номер медианы показывает то значение показателя, которое и является медианой.

в) В интервальном ряду распределения медиана рассчитывается по следующей формуле:

x - нижняя граница медианного интервала;

i - величина интервала;

f - численность медианного интервала;

S - сумма накопленных частот интервалов, предшествующих медианному.

31. Мода и ее практическое значение

Мода (Mo) – величина признака, наиболее часто встречающаяся в совокупности, т.е. имеющая наибольшую численность в ряду распределения.

а) В дискретном ряду распределения мода определяется визуально.

б) В интервальном ряду распределения визуально можно определить только интервал, в котором заключена мода, который называется модальным интервалом(тот, который имеет наибольшую частоту).

Мода будет равна:

x - нижняя граница модального интервала;

i - величина интервала;

f - численность модального интервала;

Если все значения вариационного ряда имеют одинаковую частоту, то говорят, что этот вариационный ряд не имеет моды. Если две не соседних варианты имеют одинаковую доминирующую частоту, то такой вариационный ряд называют бимодальным ; если таких вариант больше двух, то ряд – полимодальный .

32. Показатели вариации и способы их расчета

Вариации – колеблемость, многообразие, изменяемость величины признака у единиц совокупности.

Показатели вариации делятся на абсолютные и относительные.

К абсолютным показателям относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным – коэффициенты осцилляции, коэффициенты вариации и относительное линейное отклонение.

Размах вариации – простейший показатель, разность между максимальным и минимальным значениями признака.

Недостатком является то, что он оценивает только границы варьирования признака и не отражает его колеблемость внутри этих границ.

Среднее линейное отклонение отражает все колебания варьирующего признака и представляет собой среднюю арифметическую из абсолютных значений отклонений вариант от средней величины, т.к. сумма отклонений значений признака от средней равно 0, то все отклонения берутся по модулю.

Простая
Взвешенная

Дисперсия – средний квадрат отклонений значений признака от их средней величины.

Простая:
Взвешенная:

Среднее квадратическое отклонение . Оно определяется как квадратный корень из дисперсии и имеет ту же размерность, что и изучаемый признак.

Простая:
Взвешенная:
.

Относительные показатели




Top