Какая формула у параболы. Уравнение по трем точкам: как найти вершину параболы, формула

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

Проявление параболы в жизни

Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Введем прямоугольную систему координат, где . Пусть осьпроходит через фокусF параболы и перпендикулярен директрисе, а ось проходит посередине между фокусом и директрисой. Обозначим черезрасстояние между фокусом и директрисой. Тогдаа уравнение директрисы.

Число– называетсяфокальным параметромпараболы. Пусть – текущая точка параболы. Пусть– фокальный радиус точки гиперболы.–расстояние от точки до директрисы. Тогда(чертеж 27 .)

Чертеж 27.

По определению параболы . Следовательно,

Возведем уравнение в квадрат, получим:

(15)

где (15) каноническое уравнение параболы, симметричной относительно оси и проходящей через начало координат.

Исследование свойств параболы

1) Вершина параболы:

Уравнению (15) удовлетворяют числа и, следовательно, парабола проходит через начало координат.

2) Симметрия параболы:

Пусть принадлежит параболе, т.е.верное равенство. Точкасимметрична точкеотносительно оси, следовательно, парабола симметрична относительно оси абсцисс.

    Эксцентриситет параболы:

Определение 4.2. Эксцентриситетом параболы называется число , равное единице.

Так как по определению параболы .

4) Касательная параболы:

Касательная к параболе в точке касания определяется уравнением

Где (чертеж 28. )

Чертеж 28.

Изображение параболы

Чертеж 29.

    С использованием ЭСО- Mathcad:

чертеж 30 .)

Чертеж 30 .

a) Построение без использования ИКТ: Для построения параболы задаем прямоугольную систему координат с центром в точке О и единичный отрезок. Отмечаем на оси ОХ фокус ,так как, проводимтакую, что, и директрису параболы. Выполняем построение окружности в точкеи радиусом равным расстоянию от прямойдо директрисы параболы. Окружность пересекает прямуюв точкахи. Строим параболу так, чтобы она проходила через начало координат и через точкии.(чертеж 31 .)

Чертеж 31.

b)С использованием ЭСО- Mathcad:

Полученное уравнение имеет вид: . Для построения линии второго порядка в программеMathcad приводим уравнение к виду: .(чертеж 32 .)

Чертеж 32.

Чтобы обобщить работу по теории линий второго порядка в элементарной математике и для удобства использования информации о линиях при решении задач, заключим все данные о линиях второго порядка в таблицу № 1.

Таблица №1.

Линии второго порядка в элементарной математике

Название линии 2-го порядка

Окружность

Эллипс

Гипербола

Парабола

Характеристические свойства

Уравнение линии

Эксцентриситет

Уравнение касательной в точке (x 0 ; y 0 )

Фокус

Диаметры линий

Где k- угловой коэффициент

Где k угловой коэффициент

Где k угловой коэффициент

        Возможности использования ИКТ в изучении линий второго порядка

Процесс информатизации, охвативший сегодня все стороны жизни современного общества, имеет несколько приоритетных направлений, к которым, безусловно, следует отнести информатизацию образования. Она является первоосновой глобальной рационализации интеллектуальной деятельности человека за счет использования информационно-коммуникационных технологий (ИКТ).

Середина 90-х годов прошлого века и до сегодняшнего дня, характеризуется массовостью и доступностью персональных компьютеров в России, широким использованием телекоммуникаций, что позволяет внедрять разрабатываемые информационные технологии обучения в образовательный процесс, совершенствуя и модернизируя его, улучшая качество знаний, повышая мотивацию к обучению, максимально используя принцип индивидуализации обучения. Информационные технологии обучения являются необходимым инструментом на данном этапе информатизации образования.

Информационные технологии не только облегчают доступ к информации и открывают возможности вариативности учебной деятельности, ее индивидуализации и дифференциации, но и позволяют по-новому организовать взаимодействие всех субъектов обучения, построить образовательную систему, в которой ученик был бы активным и равноправным участником образовательной деятельности.

Формирование новых информационных технологий в рамках предметных уроков стимулируют потребность в создании новых программно-методических комплексов направленных на качественное повышение эффективности урока. Поэтому, для успешного и целенаправленного использования в учебном процессе средств информационных технологий, преподаватели должны знать общее описание принципов функционирования и дидактические возможности программно- прикладных средств, а затем, исходя из своего опыта и рекомендаций, "встраивать" их в учебный процесс.

Изучение математики в настоящее время сопряжено с целым рядом особенностей и трудностей развития школьного образования в нашей стране.

Появился так называемый кризис математического образования. Причины его состоят в следующем:

В изменении приоритетов в обществе и в науке, то есть в настоящее время идет рост приоритета гуманитарных наук;

В сокращении количества уроков математики в школе;

В оторванности содержания математического образования от жизни;

В малом воздействии на чувства и эмоции учащихся.

Сегодня остается открытым вопрос: «Как же наиболее эффективно использовать потенциальные возможности современных информационных и коммуникационных технологий при обучении школьников, в том числе, при обучении математике?».

Компьютер – отличный помощник в изучении такой темы, как “Квадратичная функция”, потому что, используя специальные программы можно строить графики различных функций, исследовать функцию, легко определить координаты точек пересечения, вычислить площади замкнутых фигур и т.д. Например, на уроке алгебры в 9-м классе, посвящённом преобразованию графика (растяжения, сжатия, переносы координатных осей) можно увидеть лишь застывший результат построения, а на экране монитора прослеживается вся динамика последовательных действий учителя и ученика.

Компьютер, как ни одно техническое средство, точно, наглядно и увлекательно открывает перед учеником идеальные математические модели, т.е. то, к чему должен стремиться ребенок в своих практических действиях.

Сколько трудностей приходится испытывать учителю математики для того, чтобы убедить учеников в том, что касательная к графику квадратичной функции в точке касания практически сливается с графиком функции. На компьютере этот факт продемонстрировать очень просто- достаточно сузить интервал по оси Ох и обнаружить, что в очень маленькой окрестности точки касания график функции и касательная совпадают. Все эти действия происходят на глазах у учеников. Этот пример дает толчок к активным размышлениям на уроке. Использование компьютера возможно как в ходе объяснения нового материала на уроке, так и на этапе контроля. При помощи этих программ, например «My Test», ученик самостоятельно может проверить свой уровень знаний по теории, выполнить теоретико-практические задания. Программы удобны своей универсальностью. Они могут быть использованы и для самоконтроля, и для контроля со стороны учителя.

Разумная интеграция математики и компьютерных технологий позволит богаче и глубже взглянуть на процесс решения задачи, ход осмысления математических закономерностей. Кроме того, компьютер поможет сформировать графическую, математическую и мыслительную культуру учеников, а также с помощью компьютера можно подготовить дидактические материалы: карточки, листы опроса, тесты и др. При этом давать возможность ребятам самостоятельно разрабатывать тесты по теме, в ходе чего развивается интерес и творческий подход.

Таким образом, есть необходимость в применении по возможности компьютера на уроках математики более широко, чем есть. Использование информационных технологий будет способствовать повышению качества знаний, расширит горизонты изучения квадратичной функции, а значит, поможет найти новые перспективы для поддержания интереса учащихся к предмету и к теме, а значит и к лучшему, более внимательному отношению к нему. Сегодня современные информационные технологии становятся важнейшим инструментом модернизации школы в целом – от управления до воспитания и обеспечения доступности образования.

Определение 1

Парабола - это кривая, образованная геометрическим множеством точек, находящихся на одинаковом расстоянии от некой точки $F$, называемой фокусом и не лежащей ни на этой кривой, ни на прямой $d$.

То есть отношение расстояний от произвольной точки на параболе до фокуса и от этой же точки до директрисы всегда равно единице, это отношение называется эксцентриситетом.

Термин “эксцентриситет” также используется для гипербол и эллипсов.

Основные термины из канонического уравнения параболы

Точка $F$ называется фокусом параболы, а прямая $d$ - её директрисой.

Осью симметрии параболы называется прямая, проходящая через вершину параболы $O$ и её фокус $F$, так, что она образует прямой угол с директрисой $d$.

Вершиной параболы называется точка, расстояние от которой до директрисы минимальное. Эта точка делит расстояние от фокуса до директрисы пополам.

Что из себя представляет каноническое уравнение параболы

Определение 2

Каноническое уравнение параболы довольно простое, его несложно запомнить и оно имеет следующий вид:

$y^2 = 2px$, где число $p$ должно быть больше нуля.

Число $p$ из уравнения носит название "фокальный параметр".

Данное уравнение параболы, вернее именно эта наиболее часто применяемая в высшей математике формула, применимо в том случае, когда ось параболы совпадает с осью $OX$, то есть парабола располагается как будто на боку.

Парабола, описанная уравнением $x^2 = 2py$ - это парабола, ось которой совпадает с осью $OY$, к таким параболам мы привыкли в школе.

А парабола, которая имеет минус перед второй частью уравнения ($y^2 = - 2px$), развёрнута на 180° по отношению к каноничной параболе.

Парабола является частным случаем кривой 2-ого порядка, соответственно, в общем виде уравнение для параболы выглядит точно также как для всех таких кривых и подходит для всех случаев, а не только когда парабола параллельна $OX$.

При этом дискриминант, вычисляющийся по формуле $B^2 – 4AC$ равен нулю, а само уравнение выглядит так: $Ax^2 + B \cdot x \cdot y + C\cdot y^2 + D\cdot x + E\cdot y + F = 0$

Вывод с помощью графика канонического уравнения для параболы

Рисунок 1. График и вывод канонического уравнения параболы

Из определения, приведённого выше в данной статье, составим уравнение для параболы с верхушкой, расположенной на пересечении координатных осей.

Используя имеющийся график, определим по нему $x$ и $y$ точки $F$ из определения параболической кривой, данного выше, $x = \frac{p}{2}$ и $y = 0$.

Для начала составим уравнение для прямой $d$ и запишем его: $x = - \frac{p}{2}$.

Для произвольной точки M, лежащей на нашей кривой, согласно определению, справедливо следующее соотношение:

$FM$ = $ММ_d$ (1), где $М_d$ - точка пересечения перпендикуляра, опущенного из точки $M$ c директрисой $d$.

Икс и игрек для этой точки равны $\frac{p}{2}$ $y$ соответственно.

Запишем уравнение (1) в координатной форме:

$\sqrt{(x - \frac{p}{2})^2 + y^2 }= x + \frac{p}{2}$

Теперь для того чтобы избавиться от корня необходимо возвести обе части уравнения в квадрат:

$(x - \frac{p}{2})^2 + y^2 = x^2 +px^2 + \frac{p^2}{4}$

После упрощения получаем каноническое уравнение параболы: $y^2 = px$.

Парабола, описываемая с помощью квадратичной функции

Уравнение, описывающее параболу с верхушкой, расположенной где угодно на графике и необязательно совпадающей с пересечением осей координат, выглядит так:

$y = ax^2 + bx + c$.

Чтобы вычислить $x$ и $y$ для вершины такой параболы, необходимо воспользоваться следующими формулами:

$x_A = - \frac{b}{2a}$

$y_A = - \frac{D}{4a}$, где $D = b^2 – 4ac$.

Пример 1

Пример составления классического уравнения параболы

Задача. Зная расположение фокусной точки, составить каноническое уравнение параболы. Координаты точки фокуса $F$ $(4; 0)$.

Так как мы рассматриваем параболу, график которой задан каноническим уравнением, то её вершина $O$ находится на пересечении осей икс и игрек, следовательно расстояние от фокуса до вершины равно $\frac{1}{2}$ фокального параметра $\frac{p}{2} = 4$. Путём нехитрых вычислений получим, что сам фокальный параметр $p = 8$.

После подстановки значения $p$ в каноническую форму уравнения, наше уравнение примет вид $y^2 = 16x$.

Как составить уравнение параболы по имеющемуся графику

Пример 2

Рисунок 2. Каноническое уравнение для параболы график и пример для решения

Для начала необходимо выбрать точку $М$, принадлежащую графику нашей функции, и, опустив из неё перпендикуляры на оси $OX$ и $OY$, записать её икс и игрек, в нашем случае точка $M$ это $(2;2)$.

Теперь нужно подставить полученные для этой точки $x$ и $y$ в каноническое уравнение параболы $y^2 = px$, получаем:

$2^2 = 2 \cdot 2p$

Сократив, получаем следующее уравнение параболы $y^2 = 2 \cdot x$.




Top