Коэффициент корреляции спирмена в excel. Применение корреляции спирмена и пирсона

При наличии двух рядов значений, подвергающихся ранжированию, рационально рассчитывать ранговую корреляцию Спирмена.

Такие ряды могут представляться:

  • парой признаков, определяемых в одной и той же группе исследуемых объектов;
  • парой индивидуальных соподчиненных признаков, определяемых у 2 исследуемых объектов по одинаковому набору признаков;
  • парой групповых соподчиненных признаков;
  • индивидуальной и групповой соподчиненностью признаков.

Метод предполагает проведение ранжирования показателей в отдельности для каждого из признаков.

Наименьшее значение имеет наименьший ранг.

Этот метод относится к непараметрическому статистическому методу, предназначенному для установления существования связи изучаемых явлений:

  • определение фактической степени параллелизма между двумя рядами количественных данных;
  • оценка тесноты выявленной связи, выражаемой количественно.

Корреляционный анализ

Статистический метод, предназначенный для выявления существования зависимости между 2 и более случайными величинами (переменными), а также ее силы, получил название корреляционного анализа.

Получил свое название от correlatio (лат.) – соотношение.

При его использовании возможны варианты развития событий:

  • наличие корреляции (положительная либо отрицательная);
  • отсутствие корреляции (нулевая).

В случае установления зависимости между переменными речь идет об их коррелировании. Иными словами, можно сказать, что при изменении значения Х, обязательно будет наблюдаться пропорциональное изменение значения У.

В качестве инструментов используются различные меры связи (коэффициенты).

На их выбор оказывает влияние:

  • способ измерения случайных чисел;
  • характер связи между случайными числами.

Существование корреляционной связи может отображаться графически (графики) и с помощью коэффициента (числовое отображение).

Корреляционная связь характеризуется такими признаками:

  • сила связи (при коэффициенте корреляции от ±0,7 до ±1 – сильная; от ±0,3 до ±0,699 – средняя; от 0 до ±0,299 – слабая);
  • направление связи (прямая или обратная).

Цели корреляционного анализа

Корреляционный анализ не позволяет установить причинную зависимость между исследуемыми переменными.

Он проводится с целью:

  • установления зависимости между переменными;
  • получения определенной информации о переменной на основе другой переменной;
  • определения тесноты (связи) этой зависимости;
  • определение направления установленной связи.

Методы корреляционного анализа


Данный анализ может выполняться с использованием:

  • метода квадратов или Пирсона;
  • рангового метода или Спирмена.

Метод Пирсона применим для расчетов требующих точного определения силы, существующей между переменными. Изучаемые с его помощью признаки должны выражаться только количественно.

Для применения метода Спирмена или ранговой корреляции нет жестких требований в выражении признаков – оно может быть, как количественным, так и атрибутивным. Благодаря этому методу получается информация не о точном установлении силы связи, а имеющая ориентировочный характер.

В рядах переменных могут содержаться открытые варианты. Например, когда стаж работы выражается такими значениями, как до 1 года, более 5 лет и т.д.

Коэффициент корреляции

Статистическая величина характеризующая характер изменения двух переменных получила название коэффициента корреляции либо парного коэффициента корреляции. В количественном выражении он колеблется в пределах от -1 до +1.

Наиболее распространены коэффициенты:

  • Пирсона – применим для переменных принадлежащих к интервально шкале;
  • Спирмена – для переменных порядковой шкалы.

Ограничения использования коэффициента корреляции

Получение недостоверных данных при расчете коэффициента корреляции возможно в тех случаях, когда:

  • в распоряжении имеется достаточное количество значений переменной (25-100 пар наблюдений);
  • между изучаемыми переменными установлено, например, квадратичное соотношение, а не линейное;
  • в каждом случае данные содержат больше одного наблюдения;
  • наличие аномальных значений (выбросов) переменных;
  • исследуемые данные состоят из четко выделяемых подгрупп наблюдений;
  • наличие корреляционной связи не позволяет установить какая из переменных может рассматриваться в качестве причины, а какая – в качестве следствия.

Проверка значимости корреляции

Для оценки статистических величин используется понятие их значимости или же достоверности, характеризующей вероятность случайного возникновения величины либо крайних ее значений.

Наиболее распространенным методом определения значимости корреляции является определение критерия Стьюдента.

Его значение сравнивается с табличным, количество степенней свободы принимается как 2. При получении расчетного значения критерия больше табличного, свидетельствует о значимости коэффициента корреляции.

При проведении экономических расчетов достаточным считается доверительный уровень 0,05 (95%) либо 0,01 (99%).

Ранги Спирмена

Коэффициент ранговой корреляции Спирмена позволяет статистически установить наличие связи между явлениями. Его расчет предполагает установление для каждого признака порядкового номера – ранга. Ранг может быть возрастающим либо убывающим.

Количество признаков, подвергаемых ранжированию, может быть любым. Это достаточно трудоемкий процесс, ограничивающий их количество. Затруднения начинаются при достижении 20 признаков.

Для расчета коэффициента Спирмена пользуются формулой:

в которой:

n – отображает количество ранжируемых признаков;

d – не что иное как разность между рангами по двум переменным;

а ∑(d2) – сумма квадратов разностей рангов.

Применение корреляционного анализа в психологии

Статистическое сопровождение психологических исследований позволяет сделать их более объективными и высоко репрезентативными. Статистическая обработка данных полученных в ходе психологических экспериментов способствует извлечению максимума полезной информации.

Наиболее широкое применение в обработке их результатов получил корреляционный анализ.

Уместным является проведение корреляционного анализа результатов, полученных при проведении исследований:

  • тревожности (по тестам R. Temml, M. Dorca, V. Amen);
  • семейных взаимоотношений («Анализ семейных взаимоотношений» (АСВ) опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • уровня интернальности-экстернальности (опросник Е.Ф. Бажина, Е.А. Голынкиной и А.М. Эткинда);
  • уровня эмоционального выгорания у педагогов (опросник В.В. Бойко);
  • связи элементов вербального интеллекта учащихся при разно профильном обучении (методика К.М. Гуревича и др.);
  • связи уровня эмпатии (методика В.В. Бойко) и удовлетворенностью браком (опросник В.В. Столина, Т.Л. Романовой, Г.П. Бутенко);
  • связи между социометрическим статусом подростков (тест Jacob L. Moreno) и особенностями стиля семейного воспитания (опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • структуры жизненных целей подростков, воспитанных в полных и неполных семьях (опросник Edward L. Deci, Richard M. Ryan Ryan).

Краткая инструкция к проведению корреляционного анализа по критерию Спирмена

Проведение корреляционного анализа с использованием метода Спирмена выполняется по следующему алгоритму:

  • парные сопоставимые признаки располагаются в 2 ряда, один из которых обозначается с помощью Х, а другой У;
  • значения ряда Х располагаются в порядке возрастания либо убывания;
  • последовательность расположения значений ряда У определяется их соответствием значений ряда Х;
  • для каждого значения в ряду Х определить ранг — присвоить порядковый номер от минимального значения к максимальному;
  • для каждого из значений в ряду У также определить ранг (от минимального к максимальному);
  • вычислить разницу (D) между рангами Х и У, прибегнув к формуле D=Х-У;
  • полученные значения разницы возводятся в квадрат;
  • выполнить суммирование квадратов разниц рангов;
  • выполнить расчеты по формуле:

Пример корреляции Спирмена

Необходимо установить наличие корреляционной связи между рабочим стажем и показателем травматизма при наличии следующих данных:

Наиболее подходящим методом анализа является ранговый метод, т.к. один из признаков представлен в виде открытых вариантов: рабочий стаж до 1 года и рабочий стаж 7 и более лет.

Решение задачи начинается с ранжирования данных, которые сводятся в рабочую таблицу и могут быть выполнены вручную, т.к. их объем не велик:

Рабочий стаж Число травм Порядковые номера (ранги) Разность рангов Квадрат разности рангов
d(х-у)
до 1 года 24 1 5 -4 16
1-2 16 2 4 -2 4
3-4 12 3 2,5 +0,5 0,25
5-6 12 4 2,5 +1,5 2,5
7 и более 6 5 1 +4 16
Σ d2 = 38,5

Появление дробных рангов в колонке связано с тем, что в случае появления вариант одинаковых по величине находится среднее арифметическое значение ранга. В данном примере показатель травматизма 12 встречается дважды и ему присваиваются ранги 2 и 3, находим среднее арифметическое этих рангов (2+3)/2= 2,5 и помещаем это значение в рабочую таблицу для 2 показателей.
Выполнив подстановку полученных значений в рабочую формулу и произведя несложные расчёты получаем коэффициент Спирмена равный -0,92

Отрицательное значение коэффициента свидетельствует о наличии обратной связи между признаками и позволяет утверждать, что небольшой стаж работы сопровождается большим числом травм. Причем, сила связи этих показателей достаточно большая.
Следующим этапом расчётов является определение достоверности полученного коэффициента:
рассчитывается его ошибка и критерий Стьюдента

- это количественная оценка статистического изучения связи между явлениями, используемая в непараметрических методах.

Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.

Назначение сервиса . С помощью данного онлайн-калькулятора производится:

  • расчет коэффициента ранговой корреляции Спирмена;
  • вычисление доверительного интервала для коэффициента и оценка его значимости;

Коэффициент ранговой корреляции Спирмена относится к показателям оценки тесноты связи. Качественную характеристику тесноты связи коэффициента ранговой корреляции, как и других коэффициентов корреляции, можно оценить по шкале Чеддока .

Расчет коэффициента состоит из следующих этапов:

Свойства коэффициента ранговой корреляции Спирмена

Область применения . Коэффициент корреляции рангов используется для оценки качества связи между двумя совокупностями. Кроме этого, его статистическая значимость применяется при анализе данных на гетероскедастичность .

Пример . По выборке данных наблюдаемых переменных X и Y:

  1. составить ранговую таблицу;
  2. найти коэффициент ранговой корреляции Спирмена и проверить его значимость на уровне 2a
  3. оценить характер зависимости
Решение. Присвоим ранги признаку Y и фактору X .
X Y ранг X, d x ранг Y, d y
28 21 1 1
30 25 2 2
36 29 4 3
40 31 5 4
30 32 3 5
46 34 6 6
56 35 8 7
54 38 7 8
60 39 10 9
56 41 9 10
60 42 11 11
68 44 12 12
70 46 13 13
76 50 14 14

Матрица рангов.
ранг X, d x ранг Y, d y (d x - d y) 2
1 1 0
2 2 0
4 3 1
5 4 1
3 5 4
6 6 0
8 7 1
7 8 1
10 9 1
9 10 1
11 11 0
12 12 0
13 13 0
14 14 0
105 105 10

Проверка правильности составления матрицы на основе исчисления контрольной суммы:

Сумма по столбцам матрицы равны между собой и контрольной суммы, значит, матрица составлена правильно.
По формуле вычислим коэффициент ранговой корреляции Спирмена.


Связь между признаком Y и фактором X сильная и прямая
Значимость коэффициента ранговой корреляции Спирмена
Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Спирмена при конкурирующей гипотезе H i . p ≠ 0, надо вычислить критическую точку:

где n - объем выборки; ρ - выборочный коэффициент ранговой корреляции Спирмена: t(α, к) - критическая точка двусторонней критической области, которую находят по таблице критических точек распределения Стьюдента, по уровню значимости α и числу степеней свободы k = n-2.
Если |p| < Т kp - нет оснований отвергнуть нулевую гипотезу. Ранговая корреляционная связь между качественными признаками не значима. Если |p| > T kp - нулевую гипотезу отвергают. Между качественными признаками существует значимая ранговая корреляционная связь.
По таблице Стьюдента находим t(α/2, k) = (0.1/2;12) = 1.782

Поскольку T kp < ρ , то отклоняем гипотезу о равенстве 0 коэффициента ранговой корреляции Спирмена. Другими словами, коэффициент ранговой корреляции статистически - значим и ранговая корреляционная связь между оценками по двум тестам значимая.

Дата публикации: 03.09.2017 13:01

Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

Материалы по корреляциям в сети слишком научны. Неспециалисту трудно разобраться в формулах. В то же время понимание смысла корреляций необходимо маркетологу, социологу, медику, психологу - всем, кто проводит исследования на людях.

В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

Содержание

Что такое корреляция

Корреляция - это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа - машина едет быстрее. Вы сбавляете газ - авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

Это зависимость функциональная - скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод - между продажами фирмы и окладом сотрудников есть прямая зависимость - чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим - связь продаж и оклада сотрудников есть, и она корреляционная.

В основе функциональной связи (педаль газа - скорость) лежит физический закон. В основе корреляционной связи (продажи - оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

Численное выражение корреляционной зависимости

Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

Например, изучается роль чтения в жизни людей. Исследователи взяли группу из 40 человек и измерили у каждого испытуемого два показателя: 1) сколько времени он читает в неделю; 2) в какой мере он считает себя благополучным (по шкале от 1 до 10). Ученые занесли эти данные в два столбика и с помощью статистической программы рассчитали корреляцию между чтением и благополучием. Предположим, они получили следующий результат -0,76. Но что значит это число? Как его проинтерпретировать? Давайте разбираться.

Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

  1. Знак «+» или «-» отражает направление зависимости.
  2. Величина коэффициента отражает силу зависимости.

Прямая и обратная

Знак плюс перед коэффициентом указывает на то, что связь между явлениями или показателями прямая. То есть, чем больше один показатель, тем больше и другой. Выше оклад - выше продажи. Такая корреляция называется прямой, или положительной.

Если коэффициент имеет знак минус, значит, корреляция обратная, или отрицательная. В этом случае чем выше один показатель, тем ниже другой. В примере с чтением и благополучием мы получили -0,76, и это значит, что, чем больше люди читают, тем ниже уровень их благополучия.

Сильная и слабая

Корреляционная связь в численном выражении - это число в диапазоне от -1 до +1. Обозначается буквой «r». Чем выше число (без учета знака), тем корреляционная связь сильнее.

Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

Максимально возможная сила зависимости - это 1 или -1. Как это понять и представить?

Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

Испытуемый

IQ

Успеваемость (баллы)

Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

Испытуемый

IQ

Успех в общении с противоположным полом (баллы)

Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

Это пример полной согласованности изменения двух показателей в группе - максимально возможная отрицательная взаимосвязь. Корреляционная связь между IQ и успешностью общения с противоположным полом равна -1.

А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель - длину прыжка с места.

Испытуемый

IQ

Длина прыжка с места (м)

Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

  • если коэффициент больше 0,70 - связь между показателями сильная;
  • от 0,30 до 0,70 - связь умеренная,
  • меньше 0,30 - связь слабая.

Если оценить по этой шкале полученную нами выше корреляцию между чтением и благополучием, то окажется, что эта зависимость сильная и отрицательная -0,76. То есть, наблюдается сильная отрицательная связь между начитанностью и благополучием. Что еще раз подтверждает библейскую мудрость о соотношении мудрости и печали.

Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

Корреляционный анализ в психологии

Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

В психологии иная ситуация. Например, психологи публикуют данные о связи теплых отношений в детстве с родителями и уровня креативности во взрослом возрасте. Означает ли это, что любой из испытуемых с очень теплыми отношениями с родителями в детстве будет иметь очень высокие творческие способности? Ответ однозначный - нет. Здесь нет закона, подобного физическому. Нет механизма влияния детского опыта на креативность взрослых. Это наши фантазии! Есть согласованность данных (отношения - креативность), но за ними нет закона. А есть лишь корреляционная связь. Психологи часто называют выявляемые взаимосвязи психологическими закономерностями, подчеркивая их вероятностный характер - не жесткость.

Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

  1. Анализ взаимосвязи между психологическими показателями. В нашем примере IQ и успешность общения с противоположным полом - это психологические параметры. Выявление корреляции между ними расширяет представления о психической организации человека, о взаимосвязях между различными сторонами его личности - в данном случае между интеллектом и сферой общения.
  2. Анализ взаимосвязей IQ с успеваемостью и прыжками - пример связи психологического параметра с непсихологическими. Полученные результаты раскрывают особенности влияния интеллекта на учебную и спортивную деятельность.

Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

  1. Выявлена значимая положительная зависимость интеллекта студентов и их успеваемости.
  2. Существует отрицательная значимая взаимосвязь IQ с успешностью общения с противоположным полом.
  3. Не выявлено связи IQ студентов с умением прыгать с места.

Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

Коэффициенты Пирсона и Спирмена

Рассмотрим два метода расчета.

Коэффициент Пирсона - это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

  1. Берутся значения двух параметров в группе испытуемых (например, агрессии и перфекционизма).
  2. Находятся средние значения каждого параметра в группе.
  3. Находятся разности параметров каждого испытуемого и среднего значения.
  4. Эти разности подставляются в специальную форму для расчета коэффициента Пирсона.

Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

  1. Берутся значения двух индикаторов в группе испытуемых.
  2. Находятся ранги каждого фактора в группе, то есть место в списке по возрастанию.
  3. Находятся разности рангов, возводятся в квадрат и суммируются.
  4. Далее разности рангов подставляются в специальную форму для вычисления коэффициента Спирмена.

В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

Как рассчитать коэффициент корреляции

Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

Расчет с помощью электронных таблиц Microsoft Excel

Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

В таблицах Excel реализована формула расчета только коэффициента Пирсона.

Расчет с помощью программы STATISTICA

Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.


Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону - 0,038, полученной выше с помощью Excel. Однако различия незначительны.

Использование корреляционного анализа в дипломных работах по психологии (пример)

Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

Сам термин «корреляция» в названиях тем звучит редко - он скрывается за следующими формулировками:

  • «Взаимосвязь субъективного ощущения одиночества и самоактуализации у женщин зрелого возраста»;
  • «Особенности влияния жизнестойкости менеджеров на успешность их взаимодействия с клиентами в конфликтных ситуациях»;
  • «Личностные факторы стрессоустойчивости сотрудников МЧС».

Таким образом, слова «взаимосвязь», «влияние» и «факторы» - верные признаки того, что методом анализа данных в эмпирическом исследовании должен быть корреляционный анализ.

Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

  • каждая строка содержит данные на одного испытуемого;
  • каждый столбец содержит показатели по одной шкале для всех испытуемых.

№ испытуемого

Личностная тревожность

Агрессивность

2. Необходимо решить, какой из двух типов коэффициентов - Пирсона или Спирмена - будет использоваться. Напоминаем, что Пирсон дает более точный результат, но он чувствителен к выбросам в данных Коэффициенты Спирмена могут использоваться с любыми данными (кроме номинативной шкалы), поэтому именно они чаще всего используют в дипломах по психологии.

3. Заносим таблицу сырых данных в статистическую программу.

4. Рассчитываем значение.



5. На следующем этапе важно определить, значима ли взаимосвязь. Статистическая программа подсветила результаты красным, что означает, что корреляция статистически значимы при уровне значимости 0,05 (указано выше).

Однако полезно знать, как определить значимость вручную. Для этого понадобится таблица критических значений Спирмена.

Таблица критических значений коэффициентов Спирмена

Уровень статистической значимости

Число испытуемых

р=0,05

р=0,01

р=0,001

0,88

0,96

0,99

0,81

0,92

0,97

0,75

0,88

0,95

0,71

0,83

0,93

0,67

0,63

0,77

0,87

0,74

0,85

0,58

0,71

0,82

0,55

0,68

0,53

0,66

0,78

0,51

0,64

0,76

Нас интересует уровень значимости 0,05 и объем нашей выборки 10 человек. На пересечении этих данных находим значение критического Спирмена: Rкр=0,63.

Правило такое: если полученное эмпирическое значение Спирмена больше либо равно критическому, то он статистически значим. В нашем случае: Rэмп (0,66) > Rкр (0,63), следовательно, взаимосвязь между агрессивностью и тревожностью в группе подростков статистически значима.

5. В текст дипломной нужно вставлять данные в таблице формата word, а не таблицу из статистической программы. Под таблицей описываем полученный результат и интерпретируем его.

Таблица 1

Коэффициенты Спирмена агрессивности и тревожности в группе подростков

Агрессивность

Личностная тревожность

0,665*

* - статистически достоверна (р 0,05)

Анализ данных, приведенных в таблице 1, показывает, что существует статистически значимая положительная связьмежду агрессивностью и тревожностью подростков. Это означает, что чем выше личностная тревожность подростков, тем выше уровень их агрессивности. Такой результат дает основание предположить, что агрессия для подростков выступает одним из способов купирования тревожности. Испытывая неуверенность в себе, тревогу в связи с угрозами самооценке, особенно чувствительной в подростковом возрасте, подросток часто использует агрессивное поведение, таким непродуктивным способом снижая тревогу.

6. Можно ли при интерпретации связей говорить о влиянии? Можно ли сказать, что тревожность влияет на агрессивность? Строго говоря, нет. Выше мы показали, что корреляционная связь между явлениями носит вероятностный характер и отражает лишь согласованность изменений признаков в группе. При этом мы не можем сказать, что эта согласованность вызвана тем, что одно из явлений является причиной другого, влияет на него. То есть, наличие корреляции между психологическими параметрами не дает оснований говорить о существовании между ними причинно-следственной связи. Однако практика показывает, что термин «влияние» часто используется при анализе результатов корреляционного анализа.

37. Коэффициент ранговой корреляции Спирмена.

С. 56 (64) 063.JPG

http://psystat.at.ua/publ/1-1-0-33

Коэффициент ранговой корреляции Спирмена используется в случаях, когда:
- переменные имеют ранговую шкалу измерения;
- распределение данных слишком отличается от нормального или вообще неизвестно;
- выборки имеют небольшой объём (N < 30).

Интерпретация рангового коэффициента корреляции Спирмена не отличается от коэффициента Пирсона, однако его смысл несколько отличен. Чтобы понять различие этих методов и логически обосновать области их применения сравним их формулы.

Коэффициент корреляции Пирсона:

Коэффициент корреляции Спирмена:

Как видим формулы значительно различаются. Сравним формулы

В формуле корреляции Пирсона используется среднее арифметическое и стандартное отклонение коррелируемых рядов, а в формуле Спирмена не используется. Таким образом, для получения адекватного результата по формуле Пирсона, необходимо, чтобы коррелируемые ряды были приближены к нормальному распределению (среднее и стандартное отклонение являются параметрами нормального распределения ). Для формулы Спирмена это не актуально.

Элементом формулы Пирсона является стандартизация каждого ряда в z-шкалу .

Как видим, перевод переменных в Z-шкалу присутствует в формуле коэффициента корреляции Пирсона. Соответственно, для коэффициента Пирсона абсолютно не имеет значение масштаб данных: к примеру, мы можем коррелировать две переменных, одна из которых имеет мин. = 0 и макс. = 1, а вторая мин. = 100 и макс. = 1000. Как бы не различался размах диапазона значений, все они будут переведены в стандартные z-значения одинаковые по своему масштабу.

В коэффициенте Спирмена такой нормализации не происходит, поэтому

ОБЯЗАТЕЛЬНЫМ УСЛОВИЕМ ИСПОЛЬЗОВАНИЯ КОЭФФИЦИЕНТА СПИРМЕНА ЯВЛЯЕТСЯ РАВЕНСТВО РАЗМАХА ДВУХ ПЕРЕМЕННЫХ.

Перед использованием коэффициента Спирмена для рядов данных с различным размахом, необходимо обязательно их ранжировать . Ранжирование приводит к тому, что значения этих рядов приобретают одинаковый минимум = 1 (минимальный ранг) и максимум, равный количеству значений (максимальный, последний ранг = N, т.е. максимальному количеству случаев в выборке).

В каких случаях можно обойтись без ранжирования

Это случаи, когда данные имеют исходно ранговую шкалу . К примеру, тест ценностных ориентаций Рокича.

Также, это случаи, когда количество вариантов значений невелико и в выборке присутствуют фиксированные минимум и максимум. К примеру, в семантическом дифференциале минимум = 1, максимум = 7.

Пример расчета рангового коэффициента корреляции Спирмена

Тест ценностных ориентаций Рокича был проведён на двух выборках Xи Y. Задача: узнать, насколько близки иерархии ценностей данных выборок (буквально – на сколько они похожи).

Полученное значение r=0,747 проверяется по таблице критических значений . Согласно таблице, при N=18, полученное значение достоверно на уровне p<=0,005

Ранговые коэффициенты корреляции по Спирману и Кендалу

Для переменных, принадлежащих к порядковой шкале или для переменных, не подчиняющихся нормальному распределению, а также для переменных принадлежащих к интервальной шкале, вместо коэффициента Пирсона рассчитывается ранговая корреляция по Спирману. Для этого отдельным значениям переменных присваиваются ранговые места, которые впоследствии обрабатываются с помощью соответствующих формул. Чтобы выявить ранговую корреляцию, уберите в диалоговом окне Bivariate Correlations... (Парные корреляции) метку для расчета корреляции по Пирсону, установленную по умолчанию. Вместо этого активируйте расчет корреляции Спирмана. Это расчет даст следующие результаты. Коэффициенты ранговой корреляции весьма близки к соответствующим значениям коэффициентов Пирсона (исходные переменные имеют нормальное распределение).

titkova-matmetody.pdf с. 45

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление

корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же

набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому

признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму

признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по

одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs

необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим

признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение

между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля ), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них

обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг –

признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в

одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно

проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в

"сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по

выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки,

имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот.

Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у

другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения,

полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору

признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно

индивидуальные значения испытуемого и среднегрупповые значения по тому же набору

признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он

не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный

профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и

групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется

по количеству ранжированных значений N. В первом случае это количество будет совпадать с

объемом выборки n. Во втором случае количеством наблюдений будет количество признаков,

составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых

признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если

абсолютная величина rs достигает критического значения или превышает его, корреляция

достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H2: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H2: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя

граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых

рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале

оба коррелируемых ряда должны представлять собой две последовательности несовпадающих

значений. В случае, если это условие не соблюдается, необходимо вносить поправку на

одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов,

перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые

ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

38. Точечно-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf

Пусть переменная X измерена в сильной шкале, а переменная Y – в дихотомической. Точечный бисериальный коэффициент корреляции rpb вычисляется по формуле:

Здесь x 1 – среднее значение по Х объектов со значением «единица» по Y;

x 0 – среднее значение по Х объектов со значением «ноль» по Y;

s х – среднее квадратическое отклонение всех значений по Х;

n 1 – число объектов «единица» по Y, n 0 - число объектов «ноль» по Y;

n = n 1 + n 0 – объем выборки.

Точечный бисериальный коэффициент корреляции можно рассчитать также с помощью других эквивалентных выражений:

Здесь x – общее среднее значение по переменной Х .

Точечный бисериальный коэффициент корреляции rpb изменяется в пределах от –1 до +1. Его значение равно нулю в том случае, если пере-менные с единицей по Y имеют среднее по Y , равное среднему переменных с нулем по Y .

Проверка гипотезы о значимости точечного бисериального коэффициента корреляции заключается в проверке нулевой гипотезы h 0 о равенстве генерального коэффициента корреляции нулю: ρ = 0, которая осуществляется с помощью критерия Стьюдента. Эмпирическое значение

сравнивается с критическими значениями t a (df ) для числа степеней свободы df = n – 2

Если выполняется условие | t | ≤ (df ), нулевая гипотеза ρ = 0 не от-вергается. Точечный биссериальный коэффициент корреляции значимо от-личается от нуля, если эмпирическое значение | t | попадает в критическую область, то есть если выполняется условие | t | > (n – 2). Достоверность связи, рассчитанной с помощью точечного бисериального коэффициента корреляции rpb , можно определить также с помощью критерия χ 2 для числа степеней свободы df = 2.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r . Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через r pbis Поскольку в r pbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае r bis , его знак определяется произвольно. Поэтому для всех практ. целей r pbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции r tet ,к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления r tet достаточно сложны. Поэтому при практ. применении этого метода используются приближения r tet ,получаемые на основе сокращенных процедур и таблиц.

/on-line/dictionary/dictionary.php?term=511

ТОЧЕЧНО-БИСЕРИАЛЬНЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - это коэффициент корреляции между двумя переменными, одна из которых измерена в дихотомической шкале, а другая – в интервальной шкале. Применяется в классической и современной тестологии как показатель качества тестового задания – надежности-согласованности с общим баллом по тесту.

Для коррелирования переменных, измеренных в дихотомической и интервальной шкале используют точечно-бисериальный коэффициент корреляции .
Точечно-бисериальный коэффициент корреляции - это метод корреляционного анализа отношения переменных, одна из которых измерена в шкале наименований и принимает только 2 значения (к примеру, мужчины/женщины, ответ верный/ответ неверный, признак есть/признака нет), а вторая в шкале отношений или интервальной шкале. Формула расчета коэффициента точечно-бисериальной корреляции:

Где:
m1 и m0 - средние значения Х со значением 1 или 0 по Y.
σx – стандартное отклонение всех значений по Х
n1 ,n0 – количество значений Х с 1 или 0 по Y.
n – общее количество пар значений

Чаще всего данный вид коэффициента корреляции применяется для расчета связи пунктов теста с суммарной шкалой. Это один из видов проверки валидности.

39. Рангово-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf с. 28

Рангово-бисериальный коэффициент корреляции, используемый в случаях, когда одна из переменных (Х ) представлена в порядковой шкале, а другая (Y ) – в дихотомической, вычисляется по формуле

.

Здесь – средний ранг объектов, имеющих единицу по Y ; – средний ранг объектов с нулем по Y , n – объем выборки.

Проверка гипотезы о значимости рангово-бисериального коэффи-циента корреляции осуществляется аналогично точечному биссериальному коэффициенту корреляции с помощью критерия Стьюдента с заменой в формулах r pb на r rb .

В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в ранговой шкале (переменная У), используется рангово-бисериальный коэффициент корреляции. Мы помним, что переменная X, измеренная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем: несмотря на то что этот коэффициент изменяется в диапазоне от –1 до +1, его знак для интерпретации результатов не имеет значения. Это еще одно исключение из общего правила.

Расчет этого коэффициента производится по формуле:

где `X 1средний ранг по тем элементам переменной Y , которым соответствует код (признак) 1 в переменной Х ;

`X 0– средний ранг по тем элементам переменной Y, которым соответствует код (признак) 0 в переменной Х\

N – общее количество элементов в переменной X.

Для применения рангово-бисериального коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y– в ранговой шкале.

2. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

3. Для оценки уровня достоверности рангово-бисериального коэффициента корреляции следует пользоваться формулой (11.9)и таблицей критических значений для критерия Стьюдентапри k = n – 2.

http://psystat.at.ua/publ/drugie_vidy_koehfficienta_korreljacii/1-1-0-38

Случаи, когда одна из переменных представлена в дихотомической шкале , а другая в ранговой (порядковой) , требуют применения коэффициента рангово-бисериальной корреляции:

rpb=2 / n * (m1 - m0)

где:
n – число объектов измерения
m1 и m0 - средний ранг объектов с 1 или 0 по второй переменной.
Данный коэффициент также применяется при проверке валидности тестов.

40. Коэффициент линейной корреляции.

О корреляции вообще (и в частности о линейной как раз) см. вопрос № 36 с. 56 (64) 063.JPG

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ г-ПИРСОНА

r -Пирсона (Pearson r ) применяется для изучения взаимосвязи двух метричес- ких переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успе-ваемость на старших курсах университета? Связан ли размер заработной пла-ты работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересую-щих его показателя у каждого члена выборки. Данные для изучения взаимо-связи затем сводятся в таблицу, как в приведенном ниже примере.

ПРИМЕР 6.1

В таблице приведен пример исходных данных измерения двух показателей интел-лекта (вербального и невербального) у 20 учащихся 8-го класса.

Связь между этими переменными можно изобразить при помощи диаграммы рас-сеивания (см. рис. 6.3). Диаграмма показывает, что существует некоторая взаимо-связь измеренных показателей: чем больше значения вербального интеллекта, тем (преимущественно) больше значения невербального интеллекта.

Прежде чем дать формулу коэффициента корреляции, попробуем просле-дить логику ее возникновения, используя данные примера 6.1. Положение каждой /-точки (испытуемого с номером /) на диаграмме рассеивания отно-сительно остальных точек (рис. 6.3) может быть задано величинами и знака-ми отклонений соответствующих значений переменных от своих средних ве-личин: (xj - MJ и (у, -М у ). Если знаки этих отклонений совпадают, то это свидетельствует в пользу положительной взаимосвязи (большим значениям по х соответствуют большие значения по у или меньшим значениям по х со-ответствуют меньшие значения по у).

Для испытуемого № 1 отклонение от среднего по х и по у положительное, а для испытуемого № 3 и то и другое отклонения отрицательные. Следовательно, данные того и другого свидетельствуют о положительной взаимосвязи изучаемых призна-ков. Напротив, если знаки отклонений от средних по х и по у различаются, то это будет свидетельствовать об отрицательной взаимосвязи между признаками. Так, для испытуемого № 4 отклонение от среднего по х является отрицательным, по у - положительным, а для испытуемого № 9 - наоборот.

Таким образом, если произведение отклонений (х,- М х ) х (у, - М у ) поло-жительное, то данные /-испытуемого свидетельствуют о прямой (положи-тельной) взаимосвязи, а если отрицательное - то об обратной (отрицатель-ной) взаимосвязи. Соответственно, если х w у ъ основном связаны прямо пропорционально, то большинство произведений отклонений будет поло-жительным, а если они связаны обратным соотношением, то большинство произведений будет отрицательным. Следовательно, общим показателем для силы и направления взаимосвязи может служить сумма всех произведений отклонений для данной выборки:

При прямо пропорциональной связи между переменными эта величина является большой и положительной - для большинства испытуемых откло-нения совпадают по знаку (большим значениям одной переменной соответ-ствуют большие значения другой переменной и наоборот). Если же х и у име-ют обратную связь, то для большинства испытуемых большим значениям одной переменной будут соответствовать меньшие значения другой перемен-ной, т. е. знаки произведений будут отрицательными, а сумма произведений в целом будет тоже большой по абсолютной величине, но отрицательной по знаку. Если систематической связи между переменными не будет наблюдать-ся, то положительные слагаемые (произведения отклонений) уравновесятся отрицательными слагаемыми, и сумма всех произведений отклонений будет близка к нулю.

Чтобы сумма произведений не зависела от объема выборки, достаточно ее усреднить. Но мера взаимосвязи нас интересует не как генеральный параметр, а как вычисляемая его оценка - статистика. Поэтому, как и для формулы дис-персии, в этом случае поступим также, делим сумму произведений отклоне-ний не на N , а на TV- 1. Получается мера связи, широко применяемая в физи-ке и технических науках, которая называется ковариацией (Covahance ):


В психологии, в отличие от физики, большинство переменных измеряют-ся в произвольных шкалах, так как психологов интересует не абсолютное зна-чение признака, а взаимное расположение испытуемых в группе. К тому же ковариация весьма чувствительна к масштабу шкалы (дисперсии), в которой измерены признаки. Чтобы сделать меру связи независимой от единиц изме-рения того и другого признака, достаточно разделить ковариацию на соот-ветствующие стандартные отклонения. Таким образом и была получена фор- мула коэффициента корреляции К. Пирсона:

или, после подстановки выражений для о х и


Если значения той и другой переменной были преобразованы в г-значения по формуле


то формула коэффициента корреляции r-Пирсона выглядит проще (071.JPG):

/dict/sociology/article/soc/soc-0525.htm

КОРРЕЛЯЦИЯ ЛИНЕЙНАЯ - статистическая линейная связь непричинного характера между двумя количественными переменными х и у . Измеряется с помощью "коэффициента К.Л." Пирсона, который является результатом деления ковариации на стандартные отклонения обеих переменных:

,

где s xy - ковариация между переменными х и у ;

s x , s y - стандартные отклонения для переменных х и у ;

x i , y i - значения переменных х и у для объекта с номером i ;

x , y - средние арифметические для переменных х и у .

Коэффициент Пирсона r может принимать значения из интервала [-1; +1]. Значение r = 0 означает отсутствие линейной связи между переменными х и у (но не исключает статистической связи нелинейной). Положительные значения коэффициента (r > 0) свидетельствуют о прямой линейной связи; чем ближе его значение к +1, тем сильнее связь статистическая прямая. Отрицательные значения коэффициента (r < 0) свидетельствуют об обратной линейной связи; чем ближе его значение к -1, тем сильнее обратная связь. Значения r = ±1 означают наличие полной линейной связи, прямой или обратной. В случае полной связи все точки с координатами (x i , y i ) лежат на прямой y = a + bx .

"Коэффициент К.Л." Пирсона применяется также для измерения тесноты связи в модели регрессии линейной парной.

41. Корреляционная матрица и корреляционный граф.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

Корреляционная матрица. Часто корреляционный анализ включает в себя изучение связей не двух, а множества переменных, измеренных в количествен-ной шкале на одной выборке. В этом случае вычисляются корреляции для каждой пары из этого множества переменных. Вычисления обычно прово-дятся на компьютере, а результатом является корреляционная матрица.

Корреляционная матрица (Correlation Matrix ) - это результат вычисления корреляций одного типа для каждой пары из множества Р переменных, изме-ренных в количественной шкале на одной выборке.

ПРИМЕР

Предположим, изучаются связи между 5 переменными (vl, v2,..., v5; P = 5), изме-ренными на выборке численностью N=30 человек. Ниже приведена таблица ис-ходных данных и корреляционная матрица.

И
сходные данные:

Корреляционная матрица:

Нетрудно заметить, что корреляционная матрица является квадратной, симметрич-ной относительно главной диагонали (таккакг,у= /} у), с единицами на главной диа-гонали (так как г и = Гу = 1).

Корреляционная матрица является квадратной: число строк и столбцов равно числу переменных. Она симметрична относительно главной диагона-ли, так как корреляция х с у равна корреляции у с х. На ее главной диагонали располагаются единицы, так как корреляция признака с самим собой равна единице. Следовательно, анализу подлежат не все элементы корреляцион-ной матрицы, а те, которые находятся выше или ниже главной диагонали.

Количество коэффициентов корреляции, подлежащих анализу при изучении связей Рпризнаков определяется формулой: Р(Р- 1)/2. В приведенном выше примере количество таких коэффициентов корреляции 5(5 - 1)/2 = 10.

Основная задача анализа корреляционной матрицы - выявление структуры взаимосвязей множества признаков. При этом возможен визуальный анализ корреляционных плеяд - графического изображения структуры статистически значимых связей, если таких связей не очень много (до 10-15). Другой спо-соб - применение многомерных методов: множественного регрессионного, факторного или кластерного анализа (см. раздел «Многомерные методы...»). Применяя факторный или кластерный анализ, можно выделить группиров-ки переменных, которые теснее связаны друг с другом, чем с другими пере-менными. Весьма эффективно и сочетание этих методов, например, если признаков много и они не однородны.

Сравнение корреляций - дополнительная задача анализа корреляционной матрицы, имеющая два варианта. Если необходимо сравнение корреляций в одной из строк корреляционной матрицы (для одной из переменных), при-меняется метод сравнения для зависимых выборок (с. 148-149). При сравне-нии одноименных корреляций, вычисленных для разных выборок, применя-ется метод сравнения для независимых выборок (с. 147-148).

Методы сравнения корреляций в диагоналях корреляционной матрицы (для оценки стационарности случайного процесса) и сравнения нескольких корре-ляционных матриц, полученных для разных выборок (на предмет их одно-родности), являются трудоемкими и выходят за рамки данной книги. Позна-комиться с этими методами можно по книге Г. В. Суходольского 1 .

Проблема статистической значимости корреляций. Проблема заключается в том, что процедура статистической проверки гипотезы предполагает одно- кратное испытание, проведенное на одной выборке. Если один и тот же метод применяется многократно, пусть даже и в отношении различных переменных, то увеличивается вероятность получить результат чисто слу-чайно. В общем случае, если мы повторяем один и тот же метод проверки гипотезы к раз в отношении разных переменных или выборок, то при уста-новленной величине а мы гарантированно получим подтверждение гипоте-зы в ахк числе случаев.

Предположим, анализируется корреляционная матрица для 15 переменных, то есть вычислено 15(15-1)/2 = 105 коэффициентов корреляции. Для проверки гипотез установлен уровень а = 0, 05. Проверяя гипотезу 105 раз, мы пять раз (!) получим ее подтверждение независимо от того, существует ли связь на самом деле. Зная это и получив, скажем, 15 «статистически достоверных» коэффициентов корреляции, сможем ли мы сказать, какие из них получены случайно, а какие - отражают ре-альную связь?

Строго говоря, для принятия статистического решения необходимо умень-шить уровень а во столько раз, сколько гипотез проверяется. Но вряд ли это целесообразно, так как непредсказуемым образом увеличивается вероятность проигнорировать реально существующую связь (допустить ошибку II рода).

Одна только корреляционная матрица не является достаточным основанием для статистических выводов относительно входящих в нее отдельных коэффи- циентов корреляций!

Можно указать лишь один действительно убедительный способ решения этой проблемы: разделить выборку случайным образом на две части и прини-мать во внимание только те корреляции, которые статистически значимы в обеих частях выборки. Альтернативой может являться использование много-мерных методов (факторного, кластерного или множественного регрессион-ного анализа) - для выделения и последующей интерпретации групп статис-тически значимо связанных переменных.

Проблема пропущенных значений. Если в данных есть пропущенные значе-ния, то возможны два варианта расчета корреляционной матрицы: а) построч-ное удаление значений (Exclude cases listwise ); б) попарное удаление значений (Exclude cases pairwise ). При построчном удалении наблюдений с пропусками удаляется вся строка для объекта (испытуемого), который имеет хотя бы одно пропущенное значение по одной из переменных. Этот способ приводит к «пра-вильной» корреляционной матрице в том смысле, что все коэффициенты вы-числены по одному и тому же множеству объектов. Однако если пропущенные значения распределены случайным образом в переменных, то данный метод может привести к тому, что в рассматриваемом множестве данных не останется ни одного объекта (в каждой строке встретится, по крайней мере, одно пропу-щенное значение). Чтобы избежать подобной ситуации, используют другой способ, называемый попарным удалением. В этом способе учитываются только пропуски в каждой выбранной паре столбцов-переменных и игнорируются пропуски в других переменных. Корреляция для пары переменных вычисляет-ся по тем объектам, где нет пропусков. Во многих ситуациях, особенно когда число пропусков относительно мало, скажем 10%, и пропуски распределены достаточно хаотично, этот метод не приводит к серьезным ошибкам. Однако иногда это не так. Например, в систематическом смещении (сдвиге) оценки может «скрываться» систематическое расположение пропусков, являющееся причиной различия коэффициентов корреляции, построенных по разным под-множествам (например - для разных подгрупп объектов). Другая проблема, связанная с корреляционной матрицей, вычисленной при попарном удалении пропусков, возникает при использовании этой матрицы в других видах анали-за (например, в множественном регрессионном или факторном анализе). В них предполагается, что используется «правильная» корреляционная матрица с определенным уровнем состоятельности и «соответствия» различных коэффи-циентов. Использование матрицы с «плохими» (смещенными) оценками приводит к тому, что программа либо не в состоянии анализировать такую матри-цу, либо результаты будут ошибочными. Поэтому, если применяется попарный метод исключения пропущенных данных, необходимо проверить, имеются или нет систематические закономерности в распределении пропусков.

Если попарное исключение пропущенных данных не приводит к какому-либо систематическому сдвигу средних значений и дисперсий (стандартных отклонений), то эти статистики будут похожи на аналогичные показатели, вы-численные при построчном способе удаления пропусков. Если наблюдается значительное различие, то есть основание предполагать наличие сдвига в оцен-ках. Например, если среднее (или стандартное отклонение) значений перемен-ной А, которое использовалось при вычислении ее корреляции с переменной В, намного меньше среднего (или стандартного отклонения) тех же значений переменной А, которые использовались при вычислении ее корреляции с пе-ременной С, то имеются все основания ожидать, что эти две корреляции (А-В нА-С) основаны на разных подмножествах данных. В корреляциях будет сдвиг, вызванный неслучайным расположением пропусков в значениях переменных.

Анализ корреляционных плеяд. После решения проблемы статистической зна-чимости элементов корреляционной матрицы статистически значимые корре-ляции можно представить графически в виде корреляционной плеяды или пле-яд. Корреляционная плеяда - это фигура, состоящая из вершин и соединяющих их линий. Вершины соответствуют признакам и обозначаются обычно цифра-ми - номерами переменных. Линии соответствуют статистически достоверным связям и графически выражают знак, а иногда - и /j-уровень значимости связи.

Корреляционная плеяда может отра-жать все статистически значимые связи корреляционной матрицы (иногда называ-ется корреляционным графом ) или только их содержательно выделенную часть (напри-мер, соответствующую одному фактору по результатам факторного анализа).

ПРИМЕР ПОСТРОЕНИЯ КОРРЕЛЯЦИОННОЙ ПЛЕЯДЫ


Подготовка к проведению государственной (итоговой) аттестации выпускников: формирования базы ЕГЭ (общий список участников ЕГЭ всех категорий с указанием предметов) – с учетом резервных дней в случае совпадения предметов;

  • План работы (27)

    Решение

    2. Деятельность ОУ по совершенствованию содержания и оценке качества по предметам естественно-математического образования МОУ СОШ № 4, Литвиновская, Чапаевская,

  • В случаях, если измерения исследуемых признаков проводятся в шкале порядка, или же форма взаимосвязи отличается от линейной, исследование взаимосвязи между двумя случайными величинами осуществляется с помощь ранговых коэффициентов корреляции. Рассмотрим коэффициент ранговой корреляции Спирмена. При его вычислении необходимо ранжировать (упорядочить) варианты выборки. Ранжированием называется группировка экспериментальных данных в определенном порядке, либо по возрастанию, либо по убыванию.

    Проведение операции ранжирования осуществляется по следующему алгоритму:

    1. Меньшему значению начисляется меньший ранг. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Наименьшему значению начисляется ранг равный 1. Например, если n=7, то наибольшее значение получит ранг под номером 7, за исключением случаев, которые предусмотрены вторым правилом.

    2. Если несколько значений равны, то им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны. В качестве примера рассмотрим упорядоченную по возрастанию выборку, состоящую из 7 элементов: 22, 23, 25, 25, 25, 28, 30. Значения 22 и 23 встречаются по одному разу, поэтому их ранги соответственно равны R22=1, а R23=2. Значение 25 встречается 3 раза. Если бы эти значения не повторялись, то их ранги были бы равными 3, 4, 5. Поэтому их ранг R25 равен среднему арифметическому 3, 4 и 5: . Значения 28 и 30 не повторяются, поэтому их ранги соответственно равны R28=6, а R30=7. Окончательно имеем следующее соответствие:

    3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле:

    где n - общее количество ранжируемых значений.

    Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. В этом случае необходимо найти и исправить ошибку.

    Коэффициент ранговой корреляции Спирмена является методом, позволяющим определить силу и направленность взаимосвязи между двумя признаками или двумя иерархиями признаков. Применение коэффициента ранговой корреляции имеет ряд ограничений:

    • а) Предполагаемая корреляционная зависимость должна носить монотонный характер.
    • б) Объем каждой из выборок должен быть больше или равен 5. Для определения верхней границы выборки пользуются таблицами критических значений (Таблица 3 Приложения). Максимальное значение n в таблице - 40.
    • в) При проведении анализа вероятна возможность возникновения большого количества одинаковых рангов. В этом случае, необходимо вносить поправку. Наиболее благоприятным является случай когда, обе изучаемые выборки представляют собой две последовательности несовпадающих значений.

    Для проведения корреляционного анализа исследователь должен располагать двумя выборками, которые могут быть ранжированы, например:

    • - два признака, измеренные в одной и той же группе испытуемых;
    • - две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;
    • - две групповые иерархии признаков;
    • - индивидуальная и групповая иерархии признаков.

    Расчет начинаем с ранжирования изучаемых показателей отдельно по каждому из признаков.

    Проведем анализ случая с двумя признаками, измеренными в одной и той же группе испытуемых. Сначала ранжируют индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку. Если меньшим рангам одного показателя соответствуют меньшие ранги другого показателя, а большим рангам одного показателя соответствуют большие ранги другого показателя, то два признака связаны положительно. Если же большим рангам одного показателя соответствуют меньшие ранги другого показателя, то два признака связаны отрицательно. Для нахождения rs, определяем разности между рангами (d) по каждому испытуемому. Чем меньше разности между рангами, тем ближе коэффициент ранговой корреляции rs будет к «+1». Если взаимосвязь отсутствует, то между ними не будет никакого соответствия, следовательно rs окажется близким к нулю. Чем больше разности между рангами испытуемых по двум переменным, тем ближе к «-1» будет значение коэффициента rs. Таким образом, коэффициент ранговой корреляции Спирмена является мерой любой монотонной зависимости между двумя исследуемыми признаками.

    Рассмотрим случай с двумя индивидуальными иерархиями признаков, выявленными у двух испытуемых по одному и тому же набору признаков. В данной ситуации ранжируют индивидуальные значения, полученные каждым из двух испытуемым по определенной совокупности признаков. Признаку с самым низким значением необходимо присвоить первый ранг; признаку с более высоким значением - второй ранг и т.д. Следует обратить особое внимание на то, чтобы все признаки были измерены в одних и тех же единицах. Например, невозможно ранжировать показатели, если они выражены в различных по «цене» баллах, поскольку невозможно определить, какой из факторов будет занимать первое место по выраженности, пока все значения не будут приведены к единой шкале. Если признаки, имеющие низкие ранги у одного из испытуемых так же имеют низкие ранги у другого, и наоборот, то индивидуальные иерархии связаны положительно.

    В случае с двумя групповыми иерархиями признаков, ранжируют средне-групповые значения, полученные в двух группах испытуемых по одинаковому для исследуемых групп, набору признаков. Далее следует придерживаемся алгоритма, приведенного в предыдущих случаях.

    Проведем анализ случая с индивидуальной и групповой иерархией признаков. Начинают с того, что ранжируют отдельно индивидуальные значения испытуемого и средне-групповые значения по тому же набору признаков, которые получены, при исключении того испытуемого, который не участвует в средне-групповой иерархии, так как с ней будет сопоставляться его индивидуальная иерархия. Ранговая корреляция позволяет оценить степень согласованности индивидуальной и групповой иерархии признаков.

    Рассмотрим, как определяется значимость коэффициента корреляции в перечисленных выше случаях. В случае с двумя признаками она будет определяться объемом выборки. В случае с двумя индивидуальными иерархиями признаков значимость зависит от количества признаков, входящих в иерархию. В двух последних случаях значимость обуславливается числом изучаемых признаков, а не численностью групп. Таким образом, значимость rs во всех случаях определяется числом ранжированных значений n.

    При проверке статистической значимости rs пользуются таблицами критических значений коэффициента ранговой корреляции, составленных для различных количеств ранжируемых значений и разных уровней значимости. Если абсолютная величина rs, достигает критического значения или превышает его, то корреляция достоверна.

    При рассмотрении первого варианта (случай с двумя признаками, измеренными в одной и той же группе испытуемых) возможны следующие гипотезы.

    Н0: Корреляция между переменными x и y не отличается от нуля.

    Н1: Корреляция между переменными x и y достоверно отличается от нуля.

    Если мы работаем с любым из трех оставшихся случаев, то необходимо выдвинуть другую пару гипотез:

    Н0: Корреляция между иерархиями x и y не отличается от нуля.

    Н1: Корреляция между иерархиями x и y достоверно отличается от нуля.

    Последовательность действий при вычислении коэффициента ранговой корреляции Спирмена rs такова.

    • - Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные x и y.
    • - Ранжировать значения переменной x, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования. Поместить ранги в первую колонку таблицы по порядку номеров испытуемых или признаков.
    • - Ранжировать значения переменной y. Поместить ранги во вторую колонку таблицы по порядку номеров испытуемых или признаков.
    • - Вычислить разности d между рангами x и y по каждой строке таблицы. Результаты поместить в следующую колонку таблицы.
    • - Вычислить квадраты разностей (d2). Полученные значения поместить в четвертую колонку таблицы.
    • - Вычислить сумму квадратов разностей? d2.
    • - При возникновении одинаковых рангов вычислить поправки:

    где tx - объем каждой группы одинаковых рангов в выборке x;

    ty - объем каждой группы одинаковых рангов в выборке y.

    Вычислить коэффициент ранговой корреляции в зависимости от наличия или отсутствия одинаковых рангов. При отсутствии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

    При наличии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

    где?d2 - сумма квадратов разностей между рангами;

    Tx и Ty - поправки на одинаковые ранги;

    n - количество испытуемых или признаков, участвовавших в ранжировании.

    Определить по таблице 3 Приложения критические значения rs, для данного количества испытуемых n. Достоверное отличие от нуля коэффициента корреляции будет наблюдаться при условии, если rs не меньше критического значения.



    
    Top