Кусочно заданные функции примеры и исследование. Как построить график кусочной функции

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №13

«Кусочные функции»

Сапогова Валентина и

Донская Александра

Руководитель-консультант:

г. Бердск

1. Определение основных целей и задач.

2. Анкетирование.

2.1. Определение актуальности работы

2.2. Практическая значимость.

3. История функций.

4. Общая характеристика.

5. Способы задания функций.

6. Алгоритм построения.

8. Используемая литература.

1. Определение основных целей и задач.

Цель:

Выяснить способ решения кусочных функций и, исходя из этого, составить алгоритм их построения.

Задачи:

— Познакомиться с общим понятием о кусочных функциях;

— Узнать историю термина «функция»;

— Провести анкетирование;

— Выявить способы задания кусочных функций;

— Составить алгоритм их построения;

2. Анкетирование.

Среди старшеклассников было проведено анкетирование на умение строить кусочные функции. Общее количество опрошенных составило 54 человека. Среди них 6% - работу выполнили полностью. 28% работу смогли выполнить, но с определёнными ошибками. 62% - работу не смогли выполнить, хоть и предпринимали какие-либо попытки, а оставшиеся 4% вообще не приступали к работе.

Из этого анкетирования можно сделать вывод, что ученики нашей школы, которые проходят программу имеют не достаточную базу знаний, ведь этот автор не уделяет особого внимания на задания подобного рода. Именно из этого вытекает актуальность и практическая значимость нашей работы.

2.1. Определение актуальности работы.

Актуальность:

Кусочные функции встречаются, как в ГИА, так и в ЕГЭ, задания, которые содержат функции подобного рода, оцениваются в 2 и более баллов. И, следовательно, от их решения может зависеть ваша оценка.

2.2. Практическая значимость.

Результатом нашей работы будет являться алгоритм решения кусочных функций, который поможет разобраться в их построении. И добавит шансы на получения желаемой вами оценки на экзамене.

3. История функций.

— «Алгебра 9 класс» и др.;






Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник: Алгебра 8 класс под редакцией А. Г. Мордковича.

Тип урока: Открытие нового знания.

Цели:

для учителя цели зафиксированы в каждом этапе урока;

для ученика:

Личностные цели:

  • Научиться ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи;
  • Научиться применять подученные знания и навыки к решению новых проблем;
  • Научиться контролировать процесс и результат своей деятельности;

Метапредметные цели:

В познавательной деятельности:

  • Развитие логического мышления и речи, умения логически обосновывать свои суждения, проводить несложные систематизации;
  • Научиться выдвигать гипотезы при решении задач, понимать необходимость их проверки;
  • Применять знания в стандартной ситуации, научиться самостоятельно выполнять задания;
  • Осуществлять перенос знаний в изменённую ситуацию, видеть задачу в контексте проблемной ситуации;

В информационно-коммуникативной деятельности:

  • Научиться вести диалог, признавать право на иное мнение;

В рефлексивной деятельности:

  • Научиться предвидеть возможные последствия своих действий;
  • Научиться устранять причины возникновения трудностей.

Предметные цели:

  • Узнать, что такое кусочно-заданной функция;
  • Научиться задавать кусочно-заданную функцию аналитически по ее графику;

Ход урока

1. Самоопределение к учебной деятельности

Цель этапа:

  • включить учащихся в учебную деятельность;
  • определить содержательные рамки урока: продолжаем повторять тему числовые функции.

Организация учебного процесса на этапе 1:

У: Чем мы занимались на предыдущих уроках?

Д: Повторяли тему числовые функции.

У: Сегодня мы продолжим повторять тему предыдущих уроков, а также мы должны сегодня выяснить, что нового в этой теме мы можем узнать.

2. Актуализация знаний и фиксация затруднений в деятельности

Цель этапа:

  • актуализировать учебное содержание, необходимое и достаточное для восприятия нового материала: вспомнить формулы числовых функций, их свойства и способы построения;
  • актуализировать мыслительные операции, необходимые и достаточные для восприятия нового материала: сравнение, анализ, обобщение;
  • зафиксировать индивидуальное затруднение в деятельности, демонстрирующее на личностно значимом уровне недостаточность имеющихся знаний: задание кусочно-заданной функции аналитически, а так же построения ее графика.

Организация учебного процесса на этапе 2:

У: На слайде изображено пять числовых функций. Определите их вид.

1) дробно-рациональная;

2) квадратичная;

3) иррациональная;

4) функция с модулем;

5) степенная.

У: Назовите формулы соответствующие им.

3) ;

4) ;

У: Давайте обсудим, какую роль выполняет каждый коэффициент в данных формулах?

Д: Переменные “l” и “m” отвечают за сдвиг графиков данных функций влево - вправо и вверх - вниз соответственно, коэффициент “к” в первой функции определяет положение веток гиперболы: к>0 - ветви находятся в I и III четвертях, к < 0 - во II и IV четвертях, а коэффициент “а” определяет направление ветвей параболы: а>0 - ветви направлены вверх, а < 0 - вниз).

2. Слайд 2

У: Задайте аналитически функции, графики которых изображены на рисунках. (учитывая, что двигают y=х 2). Учитель выписывает ответы на доске.

Д: 1) );

2);

3. Слайд 3

У: Задайте аналитически функции, графики которых изображены на рисунках. (учитывая, что двигают ). Учитель выписывает ответы на доске.

4. Слайд 4

У: Используя предыдущие результаты, задайте аналитически функции, графики которых изображены на рисунках.

3. Выявление причин затруднений и постановка цели деятельности

Цель этапа:

  • организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности;
  • согласовать цель и тему урока.

Организация учебного процесса на этапе 3:

У: Что вызывает у вас затруднения?

Д: На экране предоставлены кусочки графиков.

У: Какова же цель нашего урока?

Д: Научиться задавать аналитически кусочки функций.

У: Сформулируйте тему урока. (Дети пытаются самостоятельно сформулировать тему. Учитель ее уточняет. Тема: Кусочно-заданная функция.)

4. Построение проекта выхода из затруднения

Цель этапа:

  • организовать коммуникативное взаимодействие для построения нового способа действия, устраняющего причину выявленного затруднения;
  • зафиксировать новый способ действия.

Организация учебного процесса на этапе 4:

У: Давайте еще раз внимательно прочитаем задание. Какие результаты в качестве помощи просят использовать?

Д: Предыдущие, т.е. те, которые записаны на доске.

У: Может эти формулы уже являются ответом на данное задание?

Д: Нет, т.к. этими формулами задается квадратичная и рациональная функции, а на слайде изображены их кусочки.

У: Давайте обсудим, каким промежуткам оси абсцисс соответствуют кусочки первой функций?

У: Тогда аналитический способ задания первой функции выглядит как: , если

У: Что нужно сделать, чтобы выполнить аналогичное задание?

Д: Записать формулу и определить, каким промежуткам оси абсцисс соответствуют кусочки данной функций.

5. Первичное закрепление во внешней речи

Цель этапа:

  • зафиксировать изученное учебное содержание во внешней речи.

Организация учебного процесса на этапе 5:

7. Включение в систему знаний и повторение

Цель этапа:

  • тренировать навыки использования нового содержания совместно с ранее изученным.

Организация учебного процесса на этапе 7:

У: Задайте аналитически функцию, график которой изображен на рисунке.

8. Рефлексия деятельности на уроке

Цель этапа:

  • зафиксировать новое содержание, изученное на уроке;
  • оценить собственную деятельность на уроке;
  • поблагодарить одноклассников, которые помогли получить результат урока;
  • зафиксировать неразрешённые затруднения как направления будущей учебной деятельности;
  • обсудить и записать домашнее задание.

Организация учебного процесса на этапе 8:

У: С чем мы сегодня познакомились на уроке?

Д: С кусочно-заданной функцией.

У: Какую работу мы учились сегодня выполнять?

Д: Задавать данный вид функции аналитически.

У: Поднимите руку, кто понял тему сегодняшнего урока? (С остальными детьми обсудить возникшие проблемы).

Домашнее задание

  • №21.12(а, в);
  • №21.13(a, в);
  • №22.41;
  • №22.44.

Кусочные функции - это функции, заданные разными формулами на разных числовых промежутках. Например,

Такая запись обозначает, что значение функции вычисляется по формуле √x, когда x больше или равен нулю. Когда же x меньше нуля, то значение функции определяется по формуле –x 2 . Например, если x = 4, то f(x) = 2, т. к. в данном случае используется формула извлечения корня. Если же x = –4, то f(x) = –16, т. к. в этом случае используется формула –x 2 (сначала возводим в квадрат, потом учитываем минус).

Чтобы построить график такой кусочной функции, сначала строятся графики двух разных функций не зависимо от значения x (т. е. на всей числовой прямой аргумента). После этого от полученных графиков берутся только те части, которые принадлежат соответствующим диапазонам x. Эти части графиков объединяются в один. Понятно, что в простых случаях чертить можно сразу части графиков, опустив предварительную прорисовку их «полных» вариантов.

Для приведенного выше примера для формулы y = √x получим такой график:

Здесь x в принципе не может принимать отрицательных значений (т. е. подкоренное выражение в данном случае не может быть отрицательным). Поэтому в график кусочной функции уйдет весь график уравнения y = √x.

Построим график функции f(x) = –x 2 . Получим перевернутую параболу:

В данном случае в кусочную функции мы возьмем только ту часть параболы, для которой x принадлежит промежутку (–∞; 0). В результате получится такой график кусочной функции:

Рассмотрим другой пример:

Графиком функции f(x) = (0.6x – 0.5) 2 – 1.7 будет видоизмененная парабола. Графиком f(x) = 0.5x + 1 является прямая:

В кусочной функции x может принимать значения в ограниченных промежутках: от 1 до 5 и от –5 до 0. Ее график будет состоять из двух отдельных частей. Одну часть берем на промежутке от параболы, другую - на промежутке [–5; 0] от прямой:

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in }


Top