Мероприятия на 5 и 6 августа.

В тысячах фантастических романов описаны гигантские фотонные звездолеты размером с небольшой (или большой) город, уходящие в межзвездный полет с орбиты нашей планеты (реже — с поверхности Земли). Но по замыслу авторов проекта Breakthrough Starshot все будет происходить совсем не так: в один знаменательный день две тысячи какого-то года к одной из ближайших звезд, альфе Центавра, стартует не один и не два, а сразу сотни и тысячи маленьких звездолетиков размером с ноготь и массой в 1 г. И у каждого из них будет тончайший солнечный парус площадью в 16 м 2 , который и понесет звездолет со все возрастающей скоростью вперед — к звездам.

Такелаж. Для сохранения формы паруса предполагается армировать его графеном. Некоторые композитные материалы на основе графена могут сокращаться под действием приложенного электрического напряжения для активного управления. Для стабилизации парус можно раскрутить или придать ему форму обратного конуса для пассивной самостабилизации в поле лазерного излучения. Солнечный парус. Один из главных элементов проекта — солнечный парус площадью в 16 м² и массой всего 1 г. В качестве материала паруса рассматриваются многослойные диэлектрические зеркала, отражающие 99,999% падающего света (по предварительным расчетам этого должно хватить, чтобы парус не расплавился в поле излучения 100-ГВт лазера). Более перспективный подход, позволяющий сделать толщину паруса меньшей длины волны отражаемого света, — это использование в качестве основы паруса монослоя метаматериала с отрицательным показателем преломления (такой материал к тому же имеет наноперфорацию, что еще уменьшает его массу). Второй вариант — это использование материала не с высоким коэффициентом отражения, а с низким коэффициентом поглощения (10−9), такого как оптические материалы для световодов.

«Выстрел к звёздам»

Основой проекта Breakthrough Starshot стала статья профессора физики Калифорнийского университета в Санта-Барбаре Филипа Любина «План для межзвездных полетов» (A Roadmap to Interstellar Flight). Основная заявленная цель проекта состоит в том, чтобы сделать межзвездные полеты возможными уже при жизни следующего поколения людей, то есть не через столетия, а через десятилетия.

Полетный план

1. Ракета выводит на околоземную орбиту материнский корабль, содержащий десятки, сотни, тысячи или десятки тысяч зондов. 2. Зонды покидают материнский корабль, разворачивают паруса, ориентируются и занимают стартовую позицию. 3. На Земле начинает работать фазированный массив размерами 1 х 1 км из 20 млн небольших (с апертурой в 20−25 см) лазерных излучателей, фокусирующий лазерный луч на поверхности паруса. 4. Для компенсации атмосферных искажений используются опорные бакены — «искусственные звезды» в верхних слоях атмосферы, на материнском корабле, а также отраженный сигнал от паруса. 5. Зонд разгоняется лазерным лучом в течение нескольких минут до 20% от скорости света, ускорение при этом достигает 30 000 g. На протяжении всего полета, который продлится около 20 лет, лазер периодически отслеживает положение зонда. 6. По прибытии к цели, в систему Альфа Центавра, зонды пытаются обнаружить планеты и сделать их снимки во время пролета. 7. Используя парус как линзу Френеля и лазерный диод в качестве передатчика, зонд ориентируется и передает полученные данные в направлении Земли. 8. Через пять лет на Земле принимают эти данные.

Сразу после официального анонса программы Starshot на авторов проекта обрушилась волна критики со стороны ученых и технических специалистов в различных областях. Критически настроенные эксперты отмечали многочисленные некорректные оценки и просто «белые пятна» в плане программы. Некоторые замечания были приняты во внимание, и план полета был несколько скорректирован в первой итерации.


Итак, межзвездный зонд будет представлять собой космический парусник с электронным модулем StarChip массой 1 г, соединенным сверхпрочными стропами с солнечным парусом площадью 16 м 2 , толщиной 100 нм и массой 1 г. Конечно, света нашего Солнца недостаточно, чтобы разогнать даже столь легкую конструкцию до скоростей, при которых межзвездные путешествия не будут длиться тысячелетиями. Поэтому главная изюминка проекта StarShot — это разгон с помощью мощного лазерного излучения, которое фокусируется на парусе. По оценкам Любина, при мощности лазерного луча 50−100 ГВт ускорение составит около 30 000 g, и за несколько минут зонд достигнет скорости в 20% световой. Полет к альфе Центавра продлится около 20 лет.


Под звёздными парусами

Одна из ключевых деталей проекта — это солнечный парус. В исходном варианте площадь паруса изначально составляла всего 1 м 2 , и из-за этого он мог не выдержать нагрева при разгоне в поле лазерного излучения. Новый вариант использует парус площадью 16 м 2 , так что тепловой режим будет хотя и довольно жестким, но, по предварительным оценкам, не должен расплавить или разрушить парус. Как пишет сам Филип Любин, в качестве основы для паруса планируется использовать не металлизированные покрытия, а полностью диэлектрические многослойные зеркала: «Такие материалы характеризуются умеренным коэффициентом отражения и чрезвычайно низким поглощением. Скажем, оптические стекла для волоконной оптики рассчитаны на большие световые потоки и имеют поглощение порядка двадцати триллионных на 1 мкм толщины». Добиться хорошего коэффициента отражения от диэлектрика при толщине паруса в 100 нм, а это много меньше длины волны, непросто. Но авторы проекта возлагают некоторые надежды на использование новых подходов, таких как монослои метаматериала с отрицательным показателем преломления. «Кроме того, нужно учитывать, что отражение от диэлектрических зеркал настраивается на узкий диапазон длин волн, а по мере ускорения зонда эффект Доплера сдвигает длину волны более чем на 20%, — говорит Любин. — Мы это учитывали, поэтому отражатель будет настроен примерно на двадцатипроцентную ширину полосы излучения. Мы спроектировали такие отражатели. Если необходимо, доступны и отражатели с большей шириной полосы».


Юрий Мильнер, российский бизнесмен и меценат, основатель фонда Breakthrough Initiatives: За последние 15 лет произошли существенные, можно сказать, революционные продвижения по трем технологическим направлениям: миниатюризация электронных компонентов, создание нового поколения материалов, также удешевление и увеличение мощности лазеров. Сочетание этих трех тенденций приводит к теоретической возможности разогнать наноспутник до почти релятивистских скоростей. На первом этапе (5−10 лет) мы планируем провести более углубленное научно-инженерное исследование, чтобы понять, насколько этот проект реализуем. На сайте проекта есть список из примерно 20 серьезных технических проблем, без решения которых мы не сможем идти дальше. Это не окончательный список, но, опираясь на мнение научного совета, мы считаем, что первый этап проекта имеет достаточную мотивацию. Я знаю, что проект звездного паруса подвергается серьезной критике со стороны специалистов, но думаю, что позиция некоторых критически настроенных экспертов связана с не совсем точным пониманием того, что же мы реально предлагаем. Мы финансируем не полет к другой звезде, а вполне реалистичные многоцелевые разработки, связанные с идеей межзвездного зонда лишь общим направлением. Эти технологии найдут применение и для полетов в Солнечной системе, и для защиты от опасных астероидов. Но постановка столь амбициозной стратегической цели, как межзвездный полет, представляется оправданной в том смысле, что развитие технологий за последние 10−20 лет, вероятно, делает реализацию подобного проекта вопросом не веков, как многие предполагали, а скорее — десятилетий.

Лазерная установка

Основная силовая установка звездолета не полетит к звездам — она будет расположена на Земле. Это наземная фазируемая решетка лазерных излучателей размером 1х1 км. Суммарная мощность лазеров должна составлять от 50 до 100 ГВт (это эквивалентно мощности 10−20 Красноярских ГЭС). Предполагается с помощью фазирования (то есть изменения фаз на каждом отдельном излучателе) сфокусировать излучение с длиной волны 1,06 мкм со всей решетки в пятно диаметром несколько метров на расстояниях вплоть до многих миллионов километров (предельная точность фокусировки 10−9 радиана). Но такой фокусировке сильно мешает турбулентная атмосфера, размывающая луч в пятно размером примерно в угловую секунду (10−5 радиана). Улучшения на четыре порядка предполагается достичь с помощью адаптивной оптики (АО), которая будет компенсировать атмосферные искажения. Лучшие системы адаптивной оптики в современных телескопах уменьшают размытие до 30 угловых миллисекунд, то есть до намеченной цели остается еще примерно два с половиной порядка.



Филип Любин в своей статье приводит численные оценки пунктов плана, однако многие ученые и специалисты относятся к этим данным весьма критически. Конечно, для проработки столь амбициозного проекта, как Breakthrough Starshot, требуются годы работы, да и $100 млн — не такая уж и большая сумма для работы подобного масштаба. В особенности это касается наземной инфраструктуры — фазированной решетки лазерных излучателей. Установка такой мощности (50−100 ГВт) потребует гигантского количества энергии, то есть рядом нужно будет построить как минимум десяток крупных электростанций. Помимо этого, потребуется отводить от излучателей огромное количество тепла на протяжении нескольких минут, и как это делать — пока что совсем неясно. Таких вопросов без ответов в проекте Breakthrough Starshot огромное количество, однако пока что работа только началась. «В научный совет нашего проекта входят ведущие специалисты, ученые и инженеры в различных релевантных областях, включая двух нобелевских лауреатов, — говорит Юрий Мильнер. — И я слышал весьма сбалансированные оценки реализуемости этого проекта. При этом мы, безусловно, полагаемся на совокупную экспертизу всех членов нашего научного совета, но в то же время открыты для более широкой научной дискуссии».

«Чтобы победить мелкомасштабную атмосферную турбулентность, фазируемая решетка должна быть разбита на очень мелкие элементы, размер излучающего элемента для нашей длины волны должен составлять не более 20−25 см, — объясняет Филип Любин. — Это минимум 20 млн излучателей, но такое количество меня не пугает. Для обратной связи в системе АО мы планируем использовать много опорных источников — бакенов — и на зонде, и на материнском корабле, и в атмосфере. Кроме того, мы будем отслеживать зонд на пути к цели. Мы также хотим использовать звезды как бакен для настройки фазирования решетки при приеме сигнала от зонда по прибытии, но для надежности будем отслеживать зонд».


Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 10 13 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13−14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия — ключевой фактор в сокращении фона, — говорит Любин. — Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле — один из главных в нашем плане проекта».


С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр — это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. — Но, — добавляет Любин, — мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Но в любом случае, по словам Любина, первые полеты будут совершаться в пределах Солнечной системы: «Поскольку мы можем посылать огромное количество зондов, это дает нам много разных возможностей. Мы также можем посылать подобные маленькие (wafer-scale, то есть на чипе) зонды на обычных ракетах и использовать те же технологии для изучения Земли или планет и их спутников в Солнечной системе».

Редакция благодарит газету « Троицкий вариант — наука » и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

В одной только нашей Галактике расстояния между звездными системами невообразимо огромны. Если пришельцы из космоса действительно посещают Землю, уровень их технического развития должен во сто крат превосходить теперешний уровень нашего, земного.

На расстоянии в несколько световых лет

Для обозначения расстояний между звездами астрономы ввели понятие «световой год». Скорость света - самая быстрая во Вселенной: 300 ООО км/с!

Ширина нашей Галактики - 100 ООО световых лет. Чтобы покрыть такое громадное расстояние, пришельцам с других планет надо построить космический корабль, скорость которого равна или даже превышает скорость света.

Ученые полагают, что материальный объект не может двигаться быстрее скорости света. Впрочем, раньше они считали, что невозможно развить и сверхзвуковую скорость, однако в 1947 г. самолет модели «Белл Х-1» успешно преодолел звуковой барьер.

Возможно в будущем, когда у человечества накопится больше знаний о физических законах Вселенной, земляне сумеют построить космический корабль, который будет передвигаться со скоростью света и даже быстрее.

Великие путешествия

Даже если инопланетяне способны передвигаться в космическом пространстве со скоростью света, подобное путешествие должно занять многие годы. Для землян, продолжительность жизни которых составляет в среднем 80 лет, это было бы невозможно. Однако у каждого вида живых существ свой собственный жизненный цикл. Например, в Калифорнии, США, есть остистые сосны, которым уже 5000 лет.

Кто знает, сколько лет живут пришельцы? Может быть, несколько тысяч? Тогда межзвездные перелеты, длящиеся сотни лет, для них обычны.

Кратчайшие пути

Вполне вероятно, что инопланетяне нашли короткие пути через космическое пространство - гравитационные «дыры», или искажения пространства, образованные силой тяжести. Такие места во Вселенной могли бы стать своего рода мостами - кратчайшими путями между небесными телами, находящимися в разных концах Вселенной.

Межзвёздный полёт -- путешествие между звёздами пилотируемых аппаратов или автоматических станций. Чаще всего под межзвёздным полётом понимают пилотируемое путешествие, иногда с возможной колонизацией внесолнечных планет.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Основываясь на предвидимых технологиях и ресурсных возможностях, можно дать абрис будущих межзвездных перелетов.

При рассмотрении космического корабля любого назначения удобно разделить его на две части - двигательную установку и полезную нагрузку. Под двигательной установкой принято понимать не только собственно двигатели, но и баки с топливом, необходимые силовые конструкции. Для проблематики межзвездных перелетов именно двигательная установка является ключевым фактором, определяющим осуществимость проекта. Однако проблемы создания двигательной установки выходят за рамки настоящего рассмотрения. Сейчас для нас важно то, что существуют технологии, которые в ходе своего развития могут стать приемлемыми для осуществления межзвездных перелетов. Здесь на первом месте технологии использования инерциального термоядерного синтеза для ракетного движения. На американской установке NIF (National Ignition Facility) для исследования лазерного термоядерного синтеза стоимостью 3,5 миллиардов долларов уже получены результаты, говорящие о том, что ракетный двигатель на данном принципе может быть создан. Еще более мощная установка такого типа строится у нас под Саровом. Эти установки мало похожи на ракетные двигатели, но если их условно "разрезать" пополам, избавиться от фундаментов, стенок и многого ненужного в космосе оборудования, мы получим ракетный двигатель, который может быть доведен и до межзвездного варианта. Не вдаваясь в детали, отметим, что такие двигатели по необходимости будут большими, тяжелыми и очень мощными. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Располагая таким двигателем (а если такого двигателя нет, то и говорить не о чем), можно более свободно себя чувствовать, рассматривая параметры полезной нагрузки. По аналогии, если для велосипедиста лишние 50 кг уже ощутимы, то тепловоз и лишние 50 тонн не заметит.

Вооружившись таким пониманием, мы можем попробовать представить первую межзвездную экспедицию. При этом придется использовать результаты расчетов и оценок, которые сделаны, но здесь, по понятным причинам, воспроизведены быть не могут.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства.

Один корабль - это сотни тысяч тонн полезной нагрузки, миллионы тонн - двигатели, десятки миллионов тонн - топливо. Цифры могут напугать, но, чтобы не сильно пугаться, их можно сравнить с другими крупными строительствами. Давным-давно за 20 лет была построена пирамида Хеопса весом более 6 миллионов тонн. Или уже в наши времена -- в Канаде в 1965 году был построен остров "Норт-Дам". Только грунта потребовалось 15 миллионов тонн, а постройка заняла всего 10 месяцев. Самый большой морской корабль -- Knock Nevis -- имел водоизмещение 825 614 тонн. Строительство в космосе имеет свои специфические трудности, но имеет и некоторые преимущества, например, облегчение силовых элементов из-за невесомости, практическое отсутствие ограничений по массе и размерам (на Земле достаточно большая конструкция просто раздавит сама себя).

Примерно 95% массы межзвездного корабля составит термоядерное топливо. Вероятно, в его качестве будут использоваться бороводороды, топливо -- твердое, баки не нужны, что очень улучшает характеристики корабля и облегчает его постройку. Набирать бороводороды лучше не системе Земля-Луна, а где-нибудь подальше от Солнца, в системе Сатурна, например, чтобы избежать потерь на сублимацию. Время строительства можно оценить в несколько десятков лет. Срок не так уж и велик, а кроме того, теми же строителями параллельно будут вестись и другие работы в рамках освоения Солнечной системы. Строительство лучше начинать с сооружения жилых блоков корабля, в которых и поселятся строители и другие специалисты. Заодно, за время строительства и накопления топлива будет в течение десятилетий проверена стабильность работы замкнутой системы жизнеобеспечения.

Замкнутая система жизнеобеспечения - наверное, второй по сложности вопрос после проблемы двигателей. Один человек потребляет примерно 5 кг воды, еды и воздуха в сутки, если все брать с собой, потребуется больше 200 тысяч тон припасов. Решение - повторное использование ресурсов, так как это происходит на планете Земля.

В полной мере масштаб межзвездных расстояний перелетов можно ощутить, только если заняться рассмотрением средств осуществления таких полетов. Конечно, такое рассмотрение не имеет целью "ощутить расстояние". Не может оно рассматривается и как проектирование конкретной конструкции межзвездных кораблей. Исследование вопросов межзвездных перелетов сегодня носит инженерно-теоретический характер. Нельзя доказать невозможность осуществления межзвездных перелетов, но и никому не удалость доказать их осуществимость. Выход из ситуации не прост - надо предложить такую конструкцию межзвездных кораблей, которая была бы воспринята инженерно-научным сообществом, как реализуемая.

Полеты одиночных межзвездных кораблей, являющиеся правилом в фантастической литературе, исключаются, возможен перелет только эскадры кораблей, примерно с десяток аппаратов. Это требование безопасности, а кроме того - и обеспечение разнообразия жизни за счет общения между экипажами разных кораблей.

Поле завершения строительства эскадры она перемещается к запасенным запасам топлива, стыкуется с ними и направляется в полет. По всей видимости, разгон будет очень медленным и в течение года-двух более мобильные аппараты смогут забросить на корабли то, что позабыли, и снять с борта передумавших.

Перелет продлится 100-150 лет. Медленный разгон с ускорением примерно в сотую долю земного в течение десятка лет, десятки лет полета по инерции, и несколько более быстрое, чем разгон, торможение. Быстрый разгон существенно сократил бы время перелета, но он не возможен из-за неизбежно большой массы двигательной установки.

Перелет не будет столь насыщен космическими приключениями, как описано в фантастической литературе. Внешних угроз практически нет. Облака космической пыли, завихрения пространства, провалы во времени - вся эта атрибутика угрозы не представляет ввиду ее отсутствия. Даже тривиальные метеориты крайне редки в межзвездном пространстве. Основная внешняя проблема - галактическое космическое излучение, космические лучи. Это изотропный поток ядер элементов, имеющих большую энергию и, следовательно, высокую проникающую способность. На Земле от них нас защищает атмосфера и магнитное поле, в космосе, если полет длительный, надо принимать специальные меры, экранировать жилую зону корабля так, чтобы доза космического излучения не сильно превышала земной уровень. Здесь поможет простой конструктивный прием - запасы топлива (а они очень большие) располагаются вокруг жилых отсеков и экранируют их от радиации большую часть времени перелета.




Top