Методы изучения внутреннего строения земли. Методы географических исследований

Исследование планеты Земля в Солнечной системе: история, описание поверхности, запуск космических аппаратов, вращение, орбита, достижения, знаменательные даты.

Речь идет о родной планете, поэтому давайте посмотрим, как проходило исследование Земли. Большую часть земной поверхности успели изучить к началу 20-го века, включая внутреннее строение и географию. Загадочными оставались Арктика и Антарктика. Сегодня практически все участки удалось запечатлеть и нанести на карту благодаря фотографическому картированию и радиолокаторам. Одной из последних исследованных областей был полуостров Дариен, расположенный между Панамским Каналом и Колумбией. Ранее выполнить обзор было сложно из-за постоянных дождей, густой растительности и плотного облачного покрова.

Изучение глубинных особенностей планеты долгое время не проводили. До этого занимались исследованием поверхностных формирований. Но после Второй мировой войны принялись за геофизические исследования. Для этого использовали специальные датчики. Но так можно было рассмотреть ограниченную часть подповерхностного слоя. Получалось пробраться лишь под верхнюю кору. Максимальная глубина скважины – 10 км.

Основные цели и достижения при исследовании Земли

В исследовании Земли учеными движет научное любопытство, а также экономическая выгода. Население увеличивается, поэтому растет спрос на ископаемые, а также воду и прочие важные материалы. Многие подземные операции проводят для поиска:

  • нефти, угля и природного газа;
  • коммерческих (железо, медь, уран) и строительных (песок, гравий) материалов;
  • подземных вод;
  • пород для инженерного планирования;
  • геотермальных запасов для электричества и отопления;
  • археологии;

Также возникла необходимость в создании безопасности через туннели, хранилища, ядерные реакции и плотины. А это приводит к необходимости уметь предсказать силу и время землетрясения или уровень подповерхностной воды. Активнее всего землетрясениями и вулканами занимается Япония и США, потому что эти страны чаще всего переносят подобные бедствия. Периодически скважины бурят для профилактики.

Методология и инструменты исследовании Земли

Следует знать, какие существуют методы исследования планеты Земля. В геофизике используют магнетизм, гравитацию, отражательные способности, упругие или акустические волны, тепловой поток, электромагнетизм и радиоактивность. Большая часть замеров осуществляется на поверхности, но есть спутниковые и подземные.

Важно понимать, что находится внизу. Иногда не удается добыть нефть только из-за блока другим материалом. Выбор метода основывается на физических свойствах.

Сравнительная планетология

Астроном Дмитрий Титов о типах планет Солнечной системы, динамике атмосфер и парниковом эффекте на Марсе и Венере:

Дистанционное зондирование

Используется ЭМ-излучение от земли и отраженная энергия в разнообразных спектральных диапазонах, добытых самолетами и спутниками. Методы основываются на использовании комбинаций изображений. Для этого участки фиксируют с разных траекторий и создают трехмерные модели. Их также выполняют с интервалами, что позволяет проследить изменение (рост урожая за сезон или перемены от шторма и ливня).

Радарные лучи пробиваются сквозь облака. Боковой видимый радиолокатор отличается чувствительностью к перемене поверхностного наклона и шероховатости. Оптико-механический сканер регистрирует теплую ИК-энергию.

Чаще всего используют технику Landsat. Эти сведения добываются мультиспектральными сканерами, размещенными на некоторых американских спутниках, расположенных на высоте в 900 км. Кадры охватывают площадь 185 км. Используется видимый, ИК, спектральный, зеленый и красный диапазоны.

В геологии эту технику применяют для вычисления рельефа, обнажения горных порог и литологии. Также удается фиксировать перемены в растительности, породах, находить подземные воды и распределение микроэлементов.

Магнитные методы

Не будем забывать о том, что исследования Земли проводят из космоса, предоставляя не только фото планеты, но и важные научные данные. Можно вычислить полное земное магнитное поле или же конкретных компонентов. Наиболее старый метод – магнитный компас. Сейчас используют магнитные балансы и магнитометры. Протонный магнитометр вычисляет радиочастотное напряжение, а оптико-накачивающий отслеживает наименьшие магнитные флуктуации.

Магнитные съемки проводят магнитометрами, летающими на параллельных линиях с удаленностью в 2-4 км и на высоте в 500 м. Наземные исследования рассматривают магнитные аномалии, произошедшие в воздухе. Могут размещаться на специальных станциях или перемещающихся кораблях.

Магнитные эффекты формируются из-за намагниченности, созданной осадочными породами. Скалы не способны удерживать магнетизм, если температура превышает 500°C, а это ограничение для глубины в 40 км. Источник должен располагаться глубже и ученые полагают, что именно конвекционные токи генерируют поле.

Методы гравитации

Космические исследования Земли включают различные направления. Гравитационное поле можно определить через падение любого объекта в условиях вакуума, вычисление периода маятника или другими способами. Ученые используют гравиметры – вес на пружине, способной растягиваться и сжиматься. Они действуют с точностью до 0.01 миллиграмма.

Отличия в гравитации происходят из-за локальной плоскости. На определение данных уходит несколько минут, но вычисление позиции и высоты занимает больше времени. Чаще всего, плотность осадочных пород возрастает с глубиной, потому что давление повышается и теряется пористость. Когда подъемники переносят скалы ближе к поверхности, то формируют аномальные тяжести. Отрицательные аномалии вызывают и полезные ископаемые, поэтому понимание гравитации может указать на источник нефти, а также на расположение пещер и прочих подземных полостей.

Методы сейсмической рефракции

Научный метод исследования Земли основывается на вычислении временного интервала между началом волны и ее прибытием. Волна может создаться взрывом, упавшим весом, воздушным пузырьком и т.д. Для ее поиска используют геофон (суша) и гидрофон (вода).

Сейсмическая энергия прибывает к детектору различными путями. Сначала, пока волна близка к источнику, она выбирает самые короткие дорожки, но с увеличением дистанции начинает вилять. Сквозь тело могут проходить две разновидности волн: Р (первичные) и S (вторичные). Первые выступают волнами сжатия и перемещаются на максимальном ускорении. Вторые – сдвиговые, движущиеся с небольшой скоростью и не способны пройти сквозь жидкости.

Главная разновидность поверхностного типа – волны Рэлея, где частичка перемещается по эллиптическому пути в вертикальной плоскости от источника. Горизонтальная часть выступает главной причиной землетрясений.

Большая часть информации о земной структуре основывается на анализе землетрясений, так как они генерируют сразу несколько волновых режимов. Все они отличаются по компонентам движения и направлению. В инженерных исследованиях задействуют мелкую сейсмическую рефракцию. Иногда достаточно простого удара кувалдой. Также их применяют для обнаружения неисправностей.

Электрические и ЭМ-методы

При поиске полезных ископаемых методы зависят от электрохимической активности, изменения удельного сопротивления и эффектов диэлектрической проницаемости. Сам потенциал основывается на окислении верхней поверхности металлических сульфидных минералов.

Резистивность использует передачу тока от генератора к другому источнику и определяет разность потенциалов. Удельное сопротивление породы зависит от пористости, солености и прочих факторов. Скалы с глиной наделены низким удельным сопротивлением. Этим методом можно изучать подводные воды.

Зондирование точно вычисляет, как удельное сопротивление меняется с глубиной. Токи с диапазоном в 500-5000 Гц проникают глубоко. Частота помогает определить уровень глубины. Естественные токи индуцируются из-за возмущений в атмосфере или атаке верхнего слоя солнечным ветром. Они охватывают широкий диапазон, поэтому позволяют исследовать различные глубины эффективнее.

Но электрические методы не способны проникнуть слишком глубоко, поэтому не дают полноценных сведений о нижних слоях. Но с их помощью можно изучить металлические руды.

Радиоактивные методы

Этим способом можно выявить руды или горные породы. Наиболее естественная радиоактивность поступает от урана, тория и радиоизотопа калия. Сцинтиллометр помогает обнаружить гамма-лучи. Главный эмиттер – калий-40. Иногда скалу специально облучают, чтобы измерить воздействие и ответную реакцию.

Геотермические методы

Вычисление температурного градиента приводит к определению аномалии теплового потока. Земля наполнена различными жидкостями, химический состав и перемещение которых определяются чувствительными детекторами. Элементы трассировки иногда связаны с углеводородами. Геохимические карты помогают отыскать промышленные отходы и загрязненные участки.

Раскопки и выборка

Чтобы идентифицировать различные виды топлива, нужно добыть образец. Многие скважины создаются вращательным способ, где жидкость циркулирует через долото для смазки и охлаждение. Иногда используют перкуссию, где тяжелое сверло опускают и поднимают, чтобы срезать куски скал.

Выводы о земных глубинах

О форме узнали в 1742-1743 гг., а среднюю плотность и массу вычислил Генри Кавендиш в 1797 году. Позже выяснили, что плотность горных пород на поверхности ниже показателя средней плотности, а значит данные внутри планеты должны быть выше.

В конце 1500-х гг. Уильям Гилберт изучил магнитное поле. С того момента узнали о дипольном характере и перемене геомагнитного поля. Волны землетрясений наблюдали в 1900-х гг. Черта между корой и мантией характеризуется крупным ростом скорости на разрыве Мохоровича с глубиной в 24-40 км. Граница мантии и ядра – разрыв Гутенберга (глубина – 2800 км). Внешнее ядро жидкое, потому что не пропускает поперечные волны.

В 1950-х гг. случилась революция в понимании нашей планеты. Теории континентального дрейфа перешли в тектонику плит, то есть литосфера плавает на астеносфере. Пластины смещаются и формируется новая океаническая кора. Также литосферы могут сближаться, удаляться и врезаться. Многие землетрясения возникают на местах субдукции.

Об океанической коре узнали благодаря серии буровых скважин. В рифтовых участках материал из мантийных колодцев охлаждается и затвердевает. Постепенно осадки накапливаются и создается базальтовый фундамент. Кора тонкая (5-8 км в толщину) и практически вся молодая (меньше 200 000 000 лет). Но реликты достигают возраста в 3.8 млрд. лет.

Континентальная кора намного старше и формировалась сложнее, поэтому ее тяжелее изучать. В 1975 году команда ученых использовала сейсмические методы, чтобы найти залежи нефти. В итоге им удалось обнаружить несколько низкоугловых тяговых листов под горами Аппалачи. Это сильно отразилось на теории формирования континентов.

Изложение предлагаемого материала базируется на структуре различных методов и принципов изучения стратиграфии и палеогеографии, предлагаемой исследователями в разных вариантах (Евдокимов, 1991; Гурский, 1979; Гурский и др., 1982, 1985; и др., таблица 1), в которой они группируются в соответствии с решаемыми задачами.

Основным методом является естественно-исторический, представляющий собой совокупность имеющихся современных методов, с помощью которых проводятся всесторонние исследования Земли, позволяющие выявлять состояние и процессы изменения географической оболочки во времени и пространстве для объяснения их сходства и различия, однотипные связи между компонентами природы, осуществлять сопоставления природных условий и создавать прогнозы их развития. В основе решения обозначенных проблем лежат три основные задачи:

1) изучение природной обстановки прошлого во времени и пространстве;

2) оценка состояния геосистем нынешнего этапа как результата пространственно-временного развития;

3) прогнозирование тенденций развития природной среды на основе их анализа в прошлом и настоящем.

Решение данных задач находит свое практическое применение в нескольких аспектах: геохронологии (установление возраста событий геологического прошлого), стратиграфии (расчленение толщ), палеогеографии (воссоздание условий накопления отложений и развития природных компонентов среды во времени и пространстве) и корреляции (сопоставление природных геологических событий как в пределах отдельных регионов, так и значительно удаленных друг от друга - дальние корреляции) и базируется ныне на принципах актуализма и историзма, возникших после зарождения униформизма и катастрофизма. При этом используются такие научные подходы, как статистический, руководящих форм, реликтов и экзотов, палеонтологических комплексов и эволюционный. Общими методами или методами синтеза научных исследований являются палеонтологические (биостратиграфические: флористические и фаунистические), непалеонтологические (геолого-стратиграфические или литогенетические) и физические. Получение фактического материала проводится на основе совокупного применения ряда частных методов и аналитических приемов. Частные методы дают первичную информацию, фактический материал, а общие методы - позволяют на их основе обрабатывать уже имеющуюся информацию.

Сбор и первичное изучение фактического материала осуществляется в полевых условиях на основе аэрофото- и геологической съемок, бурения скважин, описаний геологических объектов (естественных обнажений, выходов древних пород, продуктов вулканической деятельности, а также искусственных выработок - керна скважин, шурфов, шахт, карьеров), по записям и определениям каротажными станциями физических свойств горных пород в скважинах, отборам проб и органических остатков.

Последующая обработка пород проводится в лабораторных условиях и включает: техническую обработку образцов различными видами анализов и последующую микроскопию (в т.ч. фотографирование объектов), дешифрирование аэрофотоснимков и материалов каротажа.

Обобщение и анализ полученных данных проводится в камеральных условиях с использованием общенаучных методов (моделирования, системного, логического, сравнения и аналогов) и приемов (математического, компьютерного, табличного, а также графического в виде диаграмм, карт, профилей, перфокарт, схем, сейсмограмм и проч.) обработки полученной информации. Самая глубокая в мире Кольская скважина была заложена в 1970 г. и имеет проектную глубину 15 км. Начиная с 1961 г., американские геологи, используя специальное судно “Челенджер”, пробурили в разных частях ложа Мирового океана 600 скважин глубиной до 500-600 м. Советская автоматическая станция произвела бурение на Венере, а в 1976 г. буровое устройство АМС “Луна-24” прошло по лунным породам до глубины около 2 м, отобрало образцы, которые были доставлены на Землю и впоследствии изучены.

Любое историческое исследование, в том числе и историко-геологическое, направлено на рассмотрение событий во времени, что требует установления хронологии этих событий. Хронология - необходимая и неотъемлемая часть любых геологических и палеогеографических исследований. Она дает возможность расположить события прошлого в их естественной последовательности и установить их формальные хронологические отношения. Без хронологии не может быть истории (в т.ч. и геологической истории). Но хронология это еще не история. По утверждению И.Вальтера (1911), “только тогда хронология превращается в историю, когда единство великих событий от их начала до их конца находит себе выражение в их изложении”.

Чтобы ориентироваться в бесконечном множестве отдельных событий прошлого, необходимо установить не только их формальные хронологические отношения, но и их внутренние связи (хронологические и пространственные) друг с другом. Тем самым могут быть выявлены их естественные группировки, позволяющие наметить отвечающие последним этапы и рубежи геологического развития, составляющие основу естественной геологической периодизации.

Историческая последовательность геологических событий запечатлена в последовательности образования слагающих земную кору геологических единиц (пластов), изучением которых занимается стратиграфия.

Между геохронологией и стратиграфией существует тесная связь. Задача геохронологии заключается в установлении хронологии событий геологического прошлого Земли: ее возраста (изначального времени ее возникновения как планеты Солнечной системы - Протоземли; возраста горных пород, сформировавшихся в процессе эволюции Протоземли и слагающих земную кору; хронологической последовательности отрезков времени, в течение которых формировались толщи горных пород. Поскольку ни в одной точке Земли абсолютно полных геологических разрезов за всю историю планеты не существует в силу того, что периоды накопления (аккумуляции) осадков сменялись периодами разрушения и сноса (денудации) горных пород, многие страницы каменной летописи Земли оказываются вырванными и уничтоженными. Неполнота геологической летописи требует для восстановления истории Земли сопоставления геологических данных по большим территориям.

Все эти задачи решаются на основе рассматриваемых ниже методов относительной геохронологии. В результате разработаны геохронологическая (последовательный ряд геохронологических подразделений в их таксономической соподчиненности) и стратиграфическая (совокупность общих стратиграфических подразделений, расположенных в порядке их последовательности и таксономической подчиненности) шкалы с целым рядом соответствующих подразделений, основанных на эволюции органического мира. Стратиграфические подразделения применяются для обозначения комплексов слоев горных пород, а соответствующие им геохронологические подразделения - для обозначения времени, за которое эти комплексы отложились.

Говоря об относительном времени, используются геохронологические единицы, а говоря об отложениях, которые сформировались в определенное время, - стратиграфические единицы.

Расчленение и корреляцию разрезов производят на основе критериев, обусловленных минералого-петрографическими особенностями слоев, их взаимоотношениями и условиями накопления, или же составом остатков животных и растительных организмов, заключенных в породах. В соответствии с этим принято выделять методы, основанные на изучении состава слоев и их взаимоотношений (геолого-стратиграфические методы) и основанные на палеонтологической характеристике пород (биостратиграфические методы). Эти методы позволяют определить относительный возраст слоев горных пород и последовательность событий геологического прошлого (одни моложе или раньше, другие древнее или позже) и коррелировать одновозрастные слои и события.

Подобное определение относительного возраста горных пород не дает реального представления о геологическом возрасте Земли, о продолжительности событий геологического прошлого и продолжительности геохронологических подразделений. Относительная геохронология позволяет судить лишь о последовательности во времени отдельных геохронологических единиц и событий, но их истинную продолжительность (в тысячах и миллионах лет) можно установить геохронологическими методами, часто называемыми методами определения абсолютного возраста.

Таким образом, в географии и геологии существуют два летоисчисления: относительное и абсолютное. Относительное летоисчисление определяет возраст геологических объектов и событий относительно друг друга, последовательность их образования и протекания при помощи геолого-стратиграфических и биостратиграфических методов. Абсолютное летоисчисление устанавливает время возникновения горных пород, проявления геологических процессов и их продолжительность в астрономических единицах (годах) радиометрическими методами.

В связи с поставленными задачами частные географические и геологические методы объединяются в две крупные группы: абсолютной и относительной геохронологии.

Методами абсолютной (радиометрической, ядерной) геохронологии определяется количественно абсолютный (истинный) возраст геологических тел (пластов, слоев) со времени их образования. Эти методы имеют важное значение для датирования древнейших (включая докембрийские) толщ Земли, содержащие весьма скудные органические остатки.

Методами относительной (сравнительной) геохронологии можно получать представление об относительном возрасте горных пород, т.е. определять последовательность формирования геологических тел, соответствующих определенным геологическим событиям в истории Земли. Методы относительной геохронологии и стратиграфии позволяют ответить на вопрос, какие из сравниваемых отложений являются более древними и какие более молодыми без оценки длительности времени их образования и к какому временному интервалу относятся изучаемые отложения, соответствующие им геологические процессы, изменения климата, находки фауны, флоры и т.д.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт экологии и географии

Кафедра географии и картографии

Реферат

Дистанционные методы исследования Земли

Выполнил студент III курса

группы № 02-106

Ялалов Д.

Научный руководитель:

Денмухаметов Р.Р.

Казань - 2013

Введение

1. Дистанционные методы

2. Возникновение космических методов

3. Аэрофотосъемка

3.1. Возникновение аэрофотосъемки

3.2. Использование аэрофотосъемки в народном хозяйстве

4. Дистанционные исследования при поисках полезных ископаемых

5. Методики автоматизации дешифрирования космических материалов

Заключение

Список использованных источников

Введение

Стремительное развитие космонавтики, успехи в изучение околоземного и межпланетного космического пространства, выявилось весьма высокая эффективность использования околоземного космоса и космических технологий в интересах многих наук о Земле: география, гидрология, геохимия, геология, океанология, геодезия, гидрология, землеведение.

Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного прогнозирования погоды и гидрометеорологической обстановки, для навигации на морских путях и авиационных трассах, для высокоточной геодезии, изучения природных ресурсов Земли и контроля среды обитания становится все более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники в различных областях хозяйства значительно возрастет

1. Дистанционные методы

Дистанционные методы - общее название методов изучения наземных объектов и космических тел неконтактным путём на значительном расстоянии (например, с воздуха или из космоса) различными приборами в разных областях спектра (Рис.1). Дистанционные методы позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире искусственного спутника Земли и съёмки обратной стороны Луны советской автоматической станцией "Зонд-3" (1959).

Рис. 1. Основные геометрические параметры сканирующей системы: - угол обзора; Х и У - линейные элементы сканирования; dx и dy - элементы изменения мгновенного угла зрения; W - направление движения

Различают активные дистанционные методы, основанные на использовании отражённого объектами излучения после облучения их искусственными источниками, и пассивные , которые изучают собственное излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников дистанционные методы подразделяют на наземные (в том числе надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры дистанционные методы различают самолётные, вертолётные, аэростатные, ракетные, спутниковые дистанционные методы (вгеолого-геофизических исследованиях - аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагнитного излучения позволяют распознать объекты и получить информацию об их размере, плотности, химическом составе, физических свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления химического состава горных пород и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растительного покрова, инфракрасная (ИК) - даёт оценки температур поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.

По типу приёмника излучения дистанционные методы подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографические приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют различную чувствительность в разных областях спектра (селективны). Фотоэлектрические приёмники (энергия излучения преобразуется непосредственно в электрический сигнал при помощи фотоумножителей, фотоэлементов и других фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абсолютных энергетических измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в другие виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и других носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и другими системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.

2. Возникновение космических методов

В истории космического фотографирования может быть выделено три этапа. К первому этапу следует отнести фотографирование Земли с высотных, а затем с баллистических ракет, относящееся к 1945--1960 гг. Первые фотография земной поверхности были получены еще в конце XIX в. - начале ХХ в., то есть еще до использования в этих целях авиации. Первые опыты по подъему фотоаппаратов на ракетах начал проводить в 1901--1904 гг. немецкий инженер Альфред Мауль в Дрездене. Первые снимки были получены с высоты 270--800 м, имели размер кадра 40х40 мм. В этом случае фотографирование проводилось при спуске ракеты с фотоаппаратом на парашюте. В 20--30 гг. ХХ в. в ряде стран производились попытки использования ракет для съемки земной поверхности, однако в связи с малыми высотами подъема (10-12 км) они оказались не эффективными.

Съемки Земли с баллистических ракет сыграли важную роль в предыстории изучения природных ресурсов с различных космических летательных аппаратов. С помощью баллистических ракет были получены первые мелкомасштабные изображения Земли с высоты более 90-100 км. Самые первые космические фотографии Земли были сделаны в 1946 г. с помощью баллистической ракеты "Викинг-2" с высоты около 120 км на полигоне Уайт-Сэнд (Нью-Мексико, США). В течение 1946--1958 гг. на этом полигоне производились запуски баллистических ракет в вертикальном направлении и после достижения максимальной высоты (около 400 км) происходило их падение на Землю. На траектории падения осуществлялось получение фотографических изображений земной поверхности в масштабе 1:50 000 - 1:100 000. В 1951--1956 гг. на советских метеорологических ракетах также стала устанавливаться фотоаппаратура. Снимки выполнялись при спуске на парашюте головной части ракеты. В 1957--1959 гг. для съемок в автоматическом режиме использовались геофизические ракеты. В 1959--1960 гг. на высотных стабилизированных в полете оптических станциях были установлены фотографические камеры кругового обзора, с помощью которых были получены фотографии Земли с высоты 100-120 км. Фотографирование производилось в разные стороны, в разное время года, в разные часы дня. Это позволило проследить сезонные изменения космического изображения природных особенностей Земли. Снимки, полученные с баллистических ракет, были весьма несовершенны: были большие расхождения в масштабе изображения, малая площадь, нерегулярность запусков ракет. Но эти работы были необходимы для отработки техники и методики съемок земной поверхности с искусственных спутников Земли и пилотируемых кораблей.

Второй этап фотографирования Земли из Космоса охватывает период с 1961 по 1972 г. и носит название экспериментального. 12 апреля 1961 г. первый космонавт СССР (России) Ю. А. Гагарин впервые вел визуальное наблюдение Земли через иллюминаторы корабля "Восток". 6 августа 1961 г. космонавт Г. С. Титов на корабле "Восток-2" выполнял наблюдение и съемку земной поверхности. Съемка производилась через иллюминаторы отдельными сеансами на протяжении всего полета. Уникальную научную ценность имеют исследования, выполненные в этот период на космических пилотируемых кораблях серии "Союз". С борта корабля "Союз-3" проводилось фотографирование дневного и сумеречного горизонта Земли, земной поверхности, а также наблюдение тайфунов, циклонов, лесных пожаров. С борта корабля "Союз-4" и "Союз-5" велись визуальные наблюдения за земной поверхностью, фото- и киносъемка, в том числе районов Каспийского моря. Эксперименты большого хозяйственного значения были выполнены по совместной программе научно-исследовательским судном "Академик Ширшов", спутником "Метеор" и пилотируемым космическим кораблем "Союз-9". Программой исследований в этом случае было предусмотрено наблюдение Земли с использованием оптических приборов, фотографирование геолого-географичеких объектов с целью составления геологических карт и возможных районов залегания полезных ископаемых, наблюдение и фотографирование атмосферных образований с целью составления метеорологических прогнозов. В этот же период была проведена радиолокационная и тепловая съемка Земли и экспериментальное фотографирование в разных зонах видимого солнечного спектра, позднее названного многозональным фотографированием.

3. Аэрофотосъемка

Аэрофотосъемка - это фотографирование земной поверхности с самолета или вертолета. Оно производится вертикально вниз или наклонно к плоскости горизонта. В первом случае получаются плановые снимки, во втором - перспективные. Чтобы иметь изображение обширного района, делается серия аэрофотоснимков, а затем они монтируются вместе. Снимки делаются с перекрытием, чтобы один и тот же участок попал на соседние кадры. Два кадра составляют стереопару. Когда мы рассматриваем их в стереоскоп, изображение выглядит объемным. Аэрофотосъемка производится с использованием светофильтров. Это позволяет видеть особенности природы, которые не заметишь невооруженным глазом. Если произвести съемку в инфракрасных лучах, то можно увидеть не только земную поверхность, но и некоторые черты геологического строения, условия залегания грунтовых вод.

Аэрофотосъемка широко используется для изучения ландшафтов. С ее помощью составляются точные топографические карты без проведения многочисленных трудных съемок местности на поверхности Земли. Она помогает археологам находить следы древних цивилизаций. Открытие в Италии погребенного этрусского города Спины было осуществлено с помощью аэрофотосъемок. Об этом городе упоминали географы прошлых лет, но найти его никак не удавалось, пока в болотистой дельте реки По не стали проводить осушительные работы. Мелиораторы использовали аэрофотоснимки. Некоторые из них привлекли внимание ученых-специалистов. На этих снимках была запечатлена плоская поверхность низины. Так вот, на снимках этой местности просматривались контуры каких-то правильных геометрических фигур. Когда начали раскопки, стало ясно, что здесь процветал некогда богатый портовый город Спина. Аэрофотоснимки позволили по неприметным с земли изменениям растительности, заболоченности увидеть расположение его домов, каналов, улиц.

Большую помощь аэроснимки оказывают геологам, помогая прослеживать простирание горных пород, рассматривать геологические структуры, обнаруживать выходы коренных пород на поверхность.

В наше время в одних и тех же районах аэрофотосъемка многократно проводится в течение долгих лет. Если сравнить полученные снимки, можно определить характер и масштабы изменений природной обстановки. Аэрофотосъемка помогает регистрировать степень воздействия человека на природу. Повторные снимки показывают участки нерационального природопользования, и на основе этих снимков планируются мероприятия по охране природы.

3.1 Возникновение аэрофотосъемки

Возникновение аэрофотосъемки относится к концу XIX в. Первые фотографии земной поверхности были сделаны с воздушных шаров. Хотя они отличались множеством недостатков, сложностью получения и последующей обработки, изображение на них было достаточно четким, что позволяло различить множество деталей, а также получить общую картину исследуемого региона. Дальнейшее развитие и совершенствование фотографии, фотоаппаратов а также воздухоплавания привели к тому, что съемочные устройства стали устанавливать на летающих аппаратах, называемых аэропланами. Во время Первой мировой войны фотографирование с аэропланов производилось с целью воздушной разведки. Фотографировались расположение войск противника, их укрепления, количество техники. Эти данные использовались для разработки оперативных планов ведения боевых действий.

После окончания Первой мировой войны, уже в послереволюционной России, аэрофотосъемку стали использовать для нужд народного хозяйства.

3.2 Использование аэрофотосъемки в народном хозяйстве

В 1924 г. под г. Можайск был создан аэрофотосъемочный полигон, на котором производилось испытание вновь создаваемых аэрофотоаппаратов, аэрофотосъемочных материалов (фотопленки, специальной бумаги, оборудования для проявления и печатания снимков). Эту аппаратуру устанавливали на существовавшие тогда самолеты типа Як, Ил, новый самолет Ан. Эти исследования давали положительные результаты, что и позволило перейти к широкому использованию аэрофотосъемки в народном хозяйстве. Аэрофотографирование производилось с помощью специального фотоаппарата, который устанавливался в днище самолета с приспособлениями, устраняющими вибрацию. Кассета фотоаппарата имела пленку длиной от 35 до 60 м и шириной 18 или 30 см, отдельный снимок имел размеры 18х18 см, реже - 30х30 см. До 50-х гг. ХХ в. изображение на снимках было черно-белым, позже стали получать цветные, а затем спектральные изображения.

Спектральные изображения выполняются с помощью светофильтра в определенной части видимого солнечного спектра. Например, возможно фотографирование в красной, синей, зеленой, желтой части спектра. При этом используется двухслойная эмульсия, покрывающая пленку. Такой способ фотографирования передает ландшафт в необходимых цветах. Так, например, смешанный лес при спектральном фотографировании дает изображение, которое легко можно подразделять по породам, имеющим на снимке разные цвета. После проявления и сушки пленки готовят контактные отпечатки на фотобумаге размером соответственно 18х18 см или 30х30 см. Каждый снимок имеет номер, круглый уровень, по которому можно судить о степени горизонтальности снимка, а также часы, фиксирующие время в момент получения данного снимка.

Фотографирование какой-либо местности осуществляется в полете, при котором самолет совершает перелеты с запада на восток, затем с востока на запад. Аэрофотоаппарат работает в автоматическом режиме и выполняет снимки, располагающиеся по маршруту самолета один за другим, перекрывая друг друга на 60 %. Перекрытие снимков между маршрутами составляет 30 %. В 70-х гг. ХХ в. на базе самолета Ан был сконструирован для этих целей специальный самолет Ан-30. Он снабжен пятью фотоаппаратами, управление которыми осуществляется с помощью счетной машины, а в настоящее время - с помощью компьютера. Кроме того, самолет обеспечен противовибрационным устройством, исключающим боковой снос за счет ветра. Он может выдерживать заданную высоту полета. Первые опыты использования аэрофотосъемки в народном хозяйстве относятся к концу 20-х гг. ХХ в. Снимки были использованы в труднодоступных местах в бассейне реки Мологи. С их помощью производилось изучение, обследование и определение качества и продуктивности (таксация) лесов этой территории. Кроме того, немного позже производилось изучение фарватера Волги. Эта река на некоторых участках часто меняла фарватер, возникали мели, косы, пересыпи, сильно мешающие судоходству до создания водохранилищ.

Аэрофотосъемочные материалы позволили выявить закономерности в образовании и отложении речных наносов. Во время Второй мировой войны аэрофотосъемка также широко использовалась в народном хозяйстве для разведки полезных ископаемых, а также на фронте для выявления перемещения живой силы и техники противника, съемки укреплений, возможных театров военных действий. В послевоенный период аэрофотосъемка также использовалась во многих направлениях.

4. Дистанционные исследования при поисках полез ных ископаемых

Так, для обеспечения разведки месторождений углеводородного сырья, проектирования, строительства и эксплуатации объектов добычи, переработки и транспортировки нефти и газа с использованием аэрокосмической информации производят изучение рельефа, растительности, почв и грунтов, их состояния в разные времена года, в том числе в экстремальных природных условиях, например, при наводнениях, засухах или сильных морозах, анализ наличия и состояния селитебной и транспортной инфраструктуры, изменений компонентов ландшафтов в результате хозяйственного освоения территории, в том числе в результате аварий на нефтяных и газовых промыслах и трубопроводах и т.д.

При необходимости применяют цифрирование, фотограмметрическую и фотометрическую обработку изображений, их геометрическую коррекцию, масштабирование, квантование, контрастирование и фильтрацию, синтезирование цветных изображений, в том числе с использованием различных фильтров и т.д.

Подбор аэрокосмических материалов и дешифрирование изображений производятся с учетом времени суток и сезона проведения съемки, влияния метеорологических и иных факторов на параметры изображения, маскирующего действия облачности, аэрозольного загрязнения.

Для того, чтобы расширить возможности анализа аэрокосмической информации, используются не только прямые дешифровочные признаки, априорно известные или выявляемые в процессе целенаправленного исследования аэрокосмических изображений, но и косвенные признаки, широко используемые при визуальном дешифрировании. Они, прежде всего, основаны на индикационных свойствах рельефа, растительности, поверхностных вод, почв и грунтов.

Различные результаты наблюдаются при съемке одних и тех же объектов в разных зонах спектра. Например, съемки в инфракрасном и радиотепловом диапазонах лучше фиксируют температуру и влажность земной поверхности, наличие на водной поверхности нефтяной пленки, но точность результатов такой съемки может быть перечеркнута сильным влиянием физической неоднородности поверхности суши или волнения на водной поверхности.

5. Методики автоматизации дешифрирования космических материалов

Специфика использования материалов космических съемок связана с целевым подходом к дешифрированию дистанционных материалов, которые содержат информацию о многих территориально связанных параметрах (географических, сельскохозяйственных, геологических, техногенных и т.п.) природной среды. В основу компьютерного визуального дешифрирования положены измерения четырехмерных (две пространственных координаты, яркостная и временная) и пятимерных (дополнительно, цветное изображение при многозональной съемке) распределений радиационных потоков, отражаемых элементами и объектами местности. Тематическая обработка изображения включает в себя логические и арифметические операции, классификации, фильтрацию и/или линеаментный анализ и серию других методических приемов. Сюда же следует отнести визуальное дешифрирование изображения на экране компьютера, которое осуществляется с помощью стереоэффекта, а также и всего арсенала средств компьютерной обработки и преобразования изображений. Широкие возможности для исследователя открывают автоматические классификации многозональных изображений (с предварительным обучением на эталонах или с задаваемыми параметрами). Классификации основаны на том, что различные природные объекты имеют в разных диапазонах электромагнитного спектра отличающиеся друг от друга яркости. Анализ яркостей объектов в разных зонах (СОХ - спектральные оптические характеристики) позволяет идентифицировать и оконтурить представительные виды ландшафта, структурно-вещественные (производственные и социальные) комплексы и конкретные геологические и техногенные тела. Технология обновления по космическим снимкам цифровых топографических карт на основе визуального дешифрирования должна обеспечивать следующую совокупность функций:

1) экспорт/импорт цифровой картографической информации и цифровых изображений местности;

2) дешифрирование космических фотоснимков с соблюдением оптимальных условий их обработки:

Подготовка исходных материалов для идентификации элементов местности на увеличенных позитивах (на пленке);

Оценка разрешения снимков до и после первичной обработки;

Определение прямых и косвенных дешифровочных признаков, а также использование фотообразов типовых элементов местности и справочных материалов;

4) оцифровку космических снимков и результатов дешифрирования;

5) трансформирование (ортотрансформирование) цифровых космических снимков;

6) подготовку статистических и иных характеристик информационных признаков элементов местности;

7) редактирование элементов содержания цифровой карты по результатам дешифрирования снимков;

8) формирование обновленной цифровой топографической карты;

9) оформление цифровой топографической или тематической карты для пользователя совместно со снимком - создание композитной цифровой фототопографической карты.

При автоматическом и интерактивном дешифрировании дополнительно возможно моделирование полей сигналов на входе приемной аппаратуры аэрокосмических систем мониторинга окружающей среды; фильтрация изображения и операции распознавания образов.

Но совместное наблюдение на экране слоя, получение которого возможно различными методами, векторной цифровой карты и растрового снимка создают новые, ранее не использованные, возможности для автоматизированного дешифрирования и обновления карт.

Координаты контура площадного или линейного элемента местности на цифровой карте могут служить "песмейкером" - указателем для снятия данных с пикселов растрового изображения местности с последующим вычислением осреднённых характеристик окрестной области, задаваемых размеров, и оконтуриванием площади или нанесением соответствующей кривой в новом слое. При нестыковке параметров растра в очередном пикселе изображения возможен переход на следующий соответствующий тому же элементу на карте и с последующей интерактивной ликвидацией разрывов. Возможен алгоритм прерывного получения статистических характеристик осреднённых окрестностей пикселов (точек отрезков между экстремумами или на сплайнах) с учетом допустимого изменения характеристик растротона, а не всего массива равноотстоящих пробных областей вдоль кривой.

Использование данных карты о рельефе местности позволяет значительно усилить автоматизацию алгоритмов дешифрирования, особенно для гидрологических и геологических массивов информации по прямым признакам, используя тот же приём сопоставления, на базе геологических и гравитационных отношений.

Заключение

Применение аэрокосмических технологий в дистанционном зондировании является одним из наиболее перспективных путей развития этого направления. Конечно, как и любые методы исследования аэрокосмическое зондирование имеет свои достоинства и недостатки.

Одним из основных недостатков этого метода является его относительная дороговизна и на сегодняшний день недостаточная четкость получаемых данных.

Выше перечисленные недостатки являются устранимыми и малозначимыми на фоне тех возможностей, которые открываются благодаря аэрокосмическим технологиям. Это возможность наблюдать обширные территории на протяжении длительного времени, получение динамической картинки, рассмотрение влияние различных факторов на территорию и их взаимосвязь между собой. Это открывает возможность системного изучения Земли и ее отдельных районов.

аэрофотосъемка земная дистанционные космические

Список использованных источников

1. С.В. Гарбук, В.Е. Гершензон «Космические системы дистанционного зондирования Земли», «Скан-Экс», Москва 1997г., 296 стр.

2. Виноградов Б. В. Космические методы изучения природной среды. М., 1976.

3. Методики автоматизации дешифрирования космических материалов - http://hronoinfotropos.narod.ru/articles/dzeprognos.htm

4. Дистанционные методы изучения земной поверхности-http://ib.komisc.ru

5. Аэрокосмические методы. Фотосъемки - http://referatplus.ru/geografi

Размещено на Allbest.ru

Подобные документы

    дипломная работа , добавлен 15.02.2017

    Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.

    презентация , добавлен 19.02.2011

    Геология как наука, объекты исследований и ее научные направления. Геологические процессы, формирующие рельеф земной поверхности. Месторождение полезных ископаемых, классификация их по применению в народном хозяйстве. Руды черных и легированных металлов.

    контрольная работа , добавлен 20.01.2011

    Гидрогеологические исследования при поисках, разведке и разработке месторождений твердых полезных ископаемых: задачи и геотехнологические методы. Сущность и применение подземного выщелачивания металлов, выплавки серы, скважинной гидродобычи рыхлых руд.

    реферат , добавлен 07.02.2012

    Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация , добавлен 19.10.2014

    Аэросъемка и космическая съемка - получение изображений земной поверхности с летательных аппаратов. Схема получения первичной информации. Влияние атмосферы на электромагнитное излучение при съемках. Оптические свойства объектов земной поверхности.

    презентация , добавлен 19.02.2011

    Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.

    реферат , добавлен 10.09.2014

    Этапы разработка пластов полезных ископаемых. Определение ожидаемых величин сдвижений и деформаций земной поверхности в направлении вкрест простирания пласта. Вывод о характере мульды сдвижения и необходимости применения конструктивных мероприятий.

    практическая работа , добавлен 20.12.2015

    Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.

    презентация , добавлен 19.12.2013

    Метод геологических блоков и параллельных разрезов подсчета запасов ископаемых. Преимущества и недостатки рассматриваемых методов. Применение различных методов по оценке эксплуатационных запасов подземных вод. Определение расхода подземного потока.

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами , главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary - первичные ), более «медленные» поперечные волны называют S-волны (от англ. secondary - вторичные ). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км.

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км . На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга , хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км , делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора , ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой , состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная , или кристаллическая , кора , образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» - сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.


Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой - подкоровая мантия - простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» - слабый и «sphair» - сфера ); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone . Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом . м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы - твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии , отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Основная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см 3 ; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см 3 . В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см 3 в подкоровой части до 5,5 г/см 3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см 3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см 3 - происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см 3 .


Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

    сжатием за счет веса вышележащих оболочек (литостатическое давление);

    фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

    различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*10 9 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0 С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0 С. Средняя величина геотермического градиента в верхней части коры составляет 30 0 С/км и колеблется от 200 0 С/км в областях современного активного магматизма до 5 0 С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0 С/км, а в мантии – менее 1 0 С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.


Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации , т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло , возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 10 –4 %, в осадочных породах – 3,2 10 –4 %, в то время как в океанической коре она ничтожно мала: около 1,66 10 –7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло , сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы , обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0 С, на глубине 410 км – 1500 0 С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0 С, на глубине 5150 км – 3300 0 С, в центе Земли – 3400 0 С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 90 0) и наименьшим на экваторе (7-8 0).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe 2 O 4), гематит (Fe 2 O 3), ильменит (FeTiO 2), пирротин (Fe 1-2 S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию - изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака. Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

Когда все материки были открыты и нанесены на географические карты, изучение Земли продолжалось. Новые экспедиции отправились к полюсам Земли, на дно самой глубокой океанической впадины и на самую высокую вершину.

Исследование полярных областей

Достижение Северного и Южного полюсов было целью жизни многих исследователей. Американец трижды пытался покорить Северный полюс и достиг его в 1909 году.

Узнав об успехе Р. Пири, норвежец Руал Амундсен решил покорить Южный полюс. В 1911 году, добравшись на корабле «Фрам» до антарктического берега, он вместе с четырьмя товарищами отправился в путь на санях, запряжённых собаками. Отважные путешественники достигли Южного полюса, подняв над ним норвежский флаг.

Начиная с 1959 года в Антарктиде стали размещать постоянные научные станции. Они принадлежат разным странам, поэтому называют материком мира. Исследования Антарктиды очень важны, поскольку она оказывает существенное влияние на климат даже далёких от неё частей Земли. Продолжаются и исследования Арктики. В них особенно активно участвуют страны, территории которых омываются Северным Ледовитым океаном. Преимущество в исследованиях принадлежит России. Она на протяжении уже почти целого века снаряжает в Арктику полярные экспедиции. Очень крупные исследования проводились в 2007 году на судне «Академик Фёдоров» при поддержке атомного ледокола «Россия». Учёные изучали , морские течения, толщину льдов, глубину океана. Па дно океана в районе Северного полюса были спущены глубоководные аппараты «Мир».

Исследование океанов

В результате специальных экспедиций на дне океанов в 20 веке были открыты огромные горные хребты, множество подводных вулканов, глубоких впадин. Вулканов в океанах оказалось гораздо больше, чем на суше. В 1960 году исследователи Жак Пикар и Дон Уолш в специальном аппарате - батискафе опустились на дно самой глубокой и мире Марианской впадины, на глубину 11 022 метра. Оказалось, что на дне даже самых глубоких впадин есть жизнь. Французский океанолог Жак Ив Кусто изобрёл акваланг, с помощью которого можно свободно плавать под водой.

Другие исследования

В 1953 году новозеландец Эдмунд Хиллари и представитель Непала Норгеи Тенсинг впервые покорили самую высокую точку Земли - гору Джомолунгма. Поднявшись на вершину, они водрузили на ней флаги своих стран и флаг ООН, посвятив свою победу всем людям Земли.

Важнейшим достижением в исследовании Земли в 20 веке стало изучение верхних слоев атмосферы. Со второй половины 20 века космические корабли с космонавтами на борту участвовали в изучении Земли из космоса. С тех пор в географии появились новые космические методы исследования, с помощью которых учёные получают информацию о нашей планете и сегодня.

Исследования Земли ещё не завершены. До сих пор точно не установлен исток реки Амазонки, остаются неизученными многие растения и животные, распространённые в лесах но берегам этой реки. Лишь на глубину 12 километров проникли учёные в земную твердь, пробурив на сверхглубокую скважину. Продолжаются исследования льдов Антарктиды и глубин Мирового океана.




Top