Модели систем массового обслуживания (СМО). Система массового обслуживания

  • Простейший поток и применение практических задач.
  • Нестационарные пуассоновские потоки.
  • Потоки с ограниченными последствиями (потоки Пальма).
  • Потоки восстановления.
  • 1. Введение.

    1.1. Историческая справка.

    Большинство систем, с которыми человек имеет дело, являются стохастическими. Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях.

    Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К. Эрлангом (1878- 1929г) в период между 1908 и 1922гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, морских и речных портов, магазинов, терминальных классов, электронных вычислительных комплексов, радиолокационных станций и т.д. может быть описана в рамках ТСМО.

    1.2. Примеры систем массового обслуживания. Анализ задач ТСМО.

    Пример 1. Телефонная связь времен Эрланга представляла из себя телефонную станцию, связанную с большим числом абонентов. Телефонистки станции по мере поступления вызовов соединяли телефонные номера между собой.

    Задача: Какое количество телефонисток (при условии их полной занятости) должно работать на станции для того, чтобы потери требований были минимальными.

    Пример 2. Система скорой помощи некоего городского района представляет собой пункт (который принимает требования на выполнение), некоторое количество автомашин скорой помощи и несколько врачебных бригад.

    Задача: Определить количество врачей, вспомогательного персонала, автомашин, для того чтобы время ожидания вызова было для больных оптимальным при условии минимизации затрат на эксплуатацию системы и максимизации качества обслуживания.

    Пример 3. Важной задачей является организация морских и речных перевозок грузов. При этом особое значение имеют оптимальное использование судов и портовых сооружений.

    Задача: Обеспечить определенный объем перевозок при минимальных расходах. При этом сократить простои судов при погрузочно-разгрузочных работах.

    Пример 4. Система обработки информации содержит мультиплексный канал и несколько ЭВМ. Сигналы от датчиков поступают на мультиплексный канал, где буферизуются и предварительно обрабатываются. Затем поступают в ту ЭВМ, где очередь минимальна.

    Задача: Обеспечить ускорение обработки сигналов при заданной суммарной длине очереди.

    Пример 5 . На рис 1.1. изображена структурная схема типичной системы массового обслуживания – ремонтного предприятия (например, по ремонту ПЭВМ). Порядок ее работы ясен из схемы и не требует разъяснений.

    рис 1.1.

    Нетрудно привести множество других примеров из самых различных областей деятельности.

    Характерным для таких задач является:

    1. условия “двойной” случайности –
      • случаен момент времени поступления заказа на обслуживание (на телефонную станцию, на пункт скорой помощи, на вход процессора, случаен момент времени прибытия морского судна под погрузку и т.д.);
      • случайна длительность времени обслуживания.

    2)проблема бича нашего времени – очередей: судов перед шлюзами, машин перед прилавками, задач на входе процессоров вычислительного комплекса и т.д.

    А.К. Эрланг обратил внимание на то, что СМО могут быть разделены на два типа, а именно: на системы с ожиданием и системы с потерями. В первом случае – заявка, поступившая на вход системы “ждет” очереди на выполнение, во втором – она из-за занятости канала обслуживания получает отказ и теряется для СМО.

    В дальнейшем мы увидим, что к классическим задачам Эрланга прибавляются новые задачи:

    Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания (рис 1.1.). Причем на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, подналадки и т.д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

    1.3. Понятия, определения, терминология.

    Все СМО имеют вполне определенную структуру, изображенную на рис 1.2

    рис 1.2

    Определения, термины

      • Потоком называют последовательность событий. Поток, состоящий из требований на обслуживание, называют потоком требований.
      • Поток требований, поступающих в обслуживающую систему, называют входящим потоком.
      • Поток требований, которые обслужены, называют выходящим потоком.
      • Совокупность очередей и приборов (каналов) обслуживания называются системой обслуживания.
      • Каждые требования поступают на свой канал, где подвергается операции обслуживания.
      • Каждая СМО имеет определенные правила формирования очереди и правила или дисциплину обслуживания.

    1.4. Классификация СМО.

    1.4.1. По характеру источника требований различают СМО с конечным и бесконечным количеством требований на входе.

    В первом случае в системе циркулирует конечное, обычно постоянное количество требований, которые после завершения обслуживания возвращаются в источник.

    Во втором случае источник генерирует бесконечное число требований.

    Пример 1. Цех с постоянным количеством станков или определенное количество ПЭВМ в терминальном классе, требующих постоянного профилактического осмотра и ремонта.

    Пример 2 . Сеть Internet с бесконечным требованием на входе, любой магазин, парикмахерская и т.д.

    Первый вид СМО называют замкнутой, второй – разомкнутой.

    СМО различают:

    1.4.2. По дисциплине обслуживания:

      1. обслуживание в порядке поступления;
      2. обслуживание в случайном порядке (в соответствии с заданным законом распределения);
      3. обслуживание с приоритетом.

    1.4.3. по характеру организации:

      1. с отказами;
      2. с ожиданиями;
      3. с ограничением ожидания.

    В первом случае заявка получает отказ, когда канал занят. Во втором случае – ставится в очередь и ждет освобождения канала. В третьем случае вводится ограничения на длительность ожидания.

    1.4.4. По количеству единиц обслуживания:

      1. одноканальные;
      2. двухканальные;
      3. многоканальные.

      1.4.5. По числу этапов (фаз) обслуживания - на однофазные и многофазные. (Примером многофазных СМО может служить любая поточная линия).

      1.4.6. По свойствам каналов: на однородные, когда каналы имеют одинаковую характеристику и неоднородные в противном случае.

    Показатели эффективности СМО
    • абсолютная и относительная пропускная способность системы;
    • коэффициенты загрузки и простоя;
    • среднее время полной загрузки системы;
    • среднее время пребывания заявки в системе.
    Показатели, характеризующие систему с точки зрения потребителей :
    • P обс – вероятность обслуживания заявки,
    • t сист – время пребывания заявки в системе.
    Показатели, характеризующие систему с точки зрения её эксплуатационных свойств :
    • λ b – абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени),
    • P обс – относительная пропускная способность системы,
    • k з – коэффициент загрузки системы.
    см. также Параметры экономической эффективности СМО

    Задача . В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.
    Решение. По условию n=3, λ=0,25(1/ч), t об. =3 (ч). Интенсивность потока обслуживаний μ=1/t об. =1/3=0,33. Интенсивность нагрузки ЭВМ по формуле (24) ρ=0,25/0,33=0,75. Найдем предельные вероятности состояний:
    по формуле (25) p 0 =(1+0,75+0,75 2 /2!+0,75 3 /3!) -1 =0,476;
    по формуле (26) p 1 =0,75∙0,476=0,357; p 2 =(0,75 2 /2!)∙0,476=0,134; p 3 =(0,75 3 /3!)∙0,476=0,033 т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).
    Вероятность отказа (когда заняты все три ЭВМ), таким образом, P отк. =p 3 =0,033.
    По формуле (28) относительная пропускная способность центра Q = 1-0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.
    По формуле (29) абсолютная пропускная способность центра A= 0,25∙0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.
    По формуле (30) среднее число занятых ЭВМ k =0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 =24,2%.
    При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

    Задача . В порту имеется один причал для разгрузки судов. Интенсивность потока судов равна 0,4 (судов в сутки). Среднее время разгрузки одного судна составляет 2 суток. Предполагается, что очередь может быть неограниченной длины. Найти показатели эффективности работы причала, а также вероятность того, что ожидают разгрузки не более чем 2 судна.
    Решение. Имеем ρ = λ/μ = μt об. =0,4∙2=0,8. Так как ρ = 0,8 < 1, то очередь на разгрузку не может бесконечно возрастать и предельные вероятности существуют. Найдем их.
    Вероятность того, что причал свободен, по (33) p 0 = 1 - 0,8 = 0,2, а вероятность того, что он занят, P зан. = 1-0,2 = 0,8. По формуле (34) вероятности того, что у причала находятся 1, 2, 3 судна (т.е. ожидают разгрузки 0, 1, 2 судна), равны p 1 = 0,8(1-0,8) = 0,16; p 2 = 0,8 2 ∙(1-0,8) = 0,128; p 3 = 0,8 3 ∙(1-0,8) = 0,1024.
    Вероятность того, что ожидают разгрузку не более чем 2 судна, равна

    По формуле (40) среднее число судов, ожидающих разгрузки

    а среднее время ожидания разгрузки по формуле (15.42)
    (сутки).
    По формуле (36) среднее число судов, находящихся у причала, L сист. = 0,8/(1-0,8) = 4 (сутки) (или проще по (37) L сист. = 3,2+0,8 = 4 (сутки), а среднее время пребывания судна у причала по формуле (41) T сист = 4/0,8 = 5 (сутки).
    Очевидно, что эффективность разгрузки судов невысокая. Для ее повышения необходимо уменьшение среднего времени разгрузки судна t об либо увеличение числа причалов n .

    Задача . В универсаме к узлу расчета поступает поток покупателей с интенсивностью λ = 81 чел. в час. Средняя продолжительность обслуживания контролером-кассиром одного покупателя t об = 2 мин. Определить:
    а. Минимальное количество контролеров-кассиров п min , при котором очередь не будет расти до бесконечности, и соответствующие характеристики обслуживания при n=n min .
    б. Оптимальное количество n опт. контролеров-кассиров, при котором относительная величина затрат С отн., связанная с издержками на содержание каналов обслуживания и с пребыванием в очереди покупателей, задаваемая, например, как , будет минимальна, и сравнить характеристики обслуживания при n=n min и n=n опт.
    в. Вероятность того, что в очереди будет не более трех покупателей.
    Решение.
    а. По условию l = 81(1/ч) = 81/60 = 1,35 (1/мин.). По формуле (24) r = l/ m = lt об = 1,35×2 = 2,7. Очередь не будет возрастать до бесконечности при условии r/n < 1, т.е. при n > r = 2,7. Таким образом, минимальное количество контролеров-кассиров n min = 3.
    Найдем характеристики обслуживания СМО при п = 3.
    Вероятность того, что в узле расчета отсутствуют покупатели, по формуле (45) p 0 = (1+2,7+2,7 2 /2!+2,7 3 /3!+2,7 4 /3!(3-2,7)) -1 = 0,025, т.е. в среднем 2,5% времени контролеры-кассиры будут простаивать.
    Вероятность того, что в узле расчета будет очередь, по (48) P оч. = (2,7 4 /3!(3-2,7))0,025 = 0,735
    Среднее число покупателей, находящихся в очереди, по (50) L оч. = (2,7 4 /3∙3!(1-2,7/3) 2)0,025 = 7,35.
    Среднее время ожидания в очереди по (42) T оч. = 7,35/1,35 = 5,44 (мин).
    Среднее число покупателей в узле расчета по (51) L сист. = 7,35+2,7 = 10,05.
    Среднее время нахождения покупателей в узле расчета по (41) T сист. = 10,05/1,35 = 7,44 (мин).
    Таблица 1

    Характеристика обслуживания Число контролеров-кассиров
    3 4 5 6 7
    Вероятность простоя контролеров-кассиров p 0 0,025 0,057 0,065 0,067 0,067
    Среднее число покупателей в очереди T оч. 5,44 0,60 0,15 0,03 0,01
    Относительная величина затрат С отн. 18,54 4,77 4,14 4,53 5,22
    Среднее число контролеров-кассиров, занятых обслуживанием покупателей, по (49) k = 2,7.
    Коэффициент (доля) занятых обслуживанием контролеров-кассиров
    = ρ/n = 2,7/3 = 0,9.
    Абсолютная пропускная способность узла расчета А = 1,35 (1/мин), или 81 (1/ч), т.е. 81 покупатель в час.
    Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех контролеров-кассиров.
    б. Относительная величина затрат при n = 3
    C отн. = = 3/1,35+3∙5,44 = 18,54.
    Рассчитаем относительную величину затрат при других значениях п (табл. 1).
    Как видно из табл. 2, минимальные затраты получены при n = n опт. = 5 контролерах-кассирах.
    Определим характеристики обслуживания узла расчета при n = n опт. =5. Получим P оч. = 0,091; L оч. = 0,198; Т оч. = 0,146 (мин); L сист. = 2,90; T снст. = 2,15 (мин); k = 2,7; k 3 = 0,54.
    Как видим, при n = 5 по сравнению с n = 3 существенно уменьшились вероятность возникновения очереди P оч. , длина очереди L оч. и среднее время пребывания в очереди T оч. и соответственно среднее число покупателей L сист. и среднее время нахождения в узле расчета T сист., а также доля занятых обслуживанием контролеров k 3. Но среднее число занятых обслуживанием контролеров-кассиров k и абсолютная пропускная способность узла расчета А естественно не изменились.
    в. Вероятность того, что в очереди будет не более 3 покупателей, определится как
    = 1- P оч. + p 5+1 + p 5+2 + p 5+3 , где каждое слагаемое найдем по формулам (45) – (48). Получим при n=5:

    (Заметим, что в случае n=3 контролеров-кассиров та же вероятность существенно меньше: P(r ≤ 3) =0,464).

    Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

    • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
    • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
    • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
    Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
    • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
    • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
    • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
    Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
    В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

    Многоканальная система с отказами

    Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
    Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

    Смешанные системы

    1. Система с ограничением на длину очереди .
      Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
      Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
    2. Система с ограничением на длительность пребывания заявки в очереди .
      Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

    Математическое описание СМО

    СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
    Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
    Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
    Простейшим называют поток, обладающий следующими свойствами:
    • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
    • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
    • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
    В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, t =M[T]=1/λ.
    Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
    Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.

    Применение различных математических методов к формализации. Акцент на сложную систему - непредсказуемую. Носитель неопределенности является человек.

    Характерным примером стохастических (случайные, вероятностные) задач являются модели систем массового обслуживания.

    СМО имеют повсеместное распространение. Это телефонные сети, автозаправочные станции, предприятия бытового обслуживания, билетные кассы, торговые мероприятия и т.д.

    С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если такое имеется в блоке ожидания. Цикл функционирования СМО подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

    Примерами СМО могут служить:

      посты технического обслуживания автомобилей;

      посты ремонта автомобилей;

      аудиторские фирмы и т.д.

    Основоположником теории массового обслуживания, в частности, теории очередей, является известный датский ученый А.К.Эрланг (1878-1929), который исследовал процессы обслуживания на телефонных станциях.

    Системы, в которых имеют место процессы обслуживания, называют системами массового обслуживания (СМО).

    Чтобы описать систему массового обслуживания, необходимо задать:

    - входной поток заявок;

    - дисциплину обслуживания;

    - время обслуживания

    - количество каналов обслуживания.

    Входной поток требований (заявок) описывается путем выявления как вероятностного закона распределения моментов поступления требований в систему, так и количества требований в каждом поступлении.

    При задании дисциплины обслуживания (ДО) необходимо описать правила постановки требований в очередь и обслуживания их в системе. При этом длина очереди может быть как ограниченной, так и неограниченной. В случае ограничений на длину очереди поступившая на вход СМО заявка получает отказ. Чаще всего используются ДО, определяемые следующими правилами:

    первым пришел – первым обслуживаешься;

      пришел последним - обслуживаешься первым; (коробочка для теннисных шариков, стек в технике)

      случайный отбор заявок;

      отбор заявок по критерию приоритетности.

    Время обслуживания заявки в СМО является случайной величиной. Наиболее распространенным законом распределения является экспоненциальный закон.  - скорость обслуживания. =количество заявок обслуживания/ед. времени.

    Каналы обслуживания , могут быть расположены параллельно и последовательно. При последовательном расположении каналов каждая заявка проходит обслуживание на всех каналах последовательно. При параллельном расположении каналов обслуживание производится на всех каналах одновременно по мере их освобождения.

    Обобщенная структура СМО представлена на рис.

    Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности СМО, и эффективностью ее функционирования.

    Проблемы проектирования СМО.

    К задачам определения характеристик структуры СМО относятся задача выбора количества каналов обслуживания (базовых элементов {Ф i }), задача определения способа соединения каналов (множества элементов связей {Hj}), а также задача определения пропускной способности каналов.

    1). Выбор структуры . Если каналы работают параллельно, то проблема выбора Str сводится к определению количества каналов в обслуживающей части исходя из условия обеспечения работоспособности СМО. (Если очередь не является бесконечно растущей).

    Отметим, что при определении количества каналов системы, в случае их параллельного расположения, необходимо соблюдать условие работоспособности системы . Обозначим:  - среднее число заявок, поступающих в единицу времени, т.е. интенсивность входного потока;  - среднее число заявок, удовлетворяемых в единицу времени, т.е. интенсивность обслуживания; S - количество каналов обслуживания. Тогда условие работоспособности СМО запишется

    или
    . Выполнение этого условия позволяет вычислить нижнюю границу количества каналов.

    В случае, если
    , система не справляется с очередью. Очередь при этом растет безгранично.

    2). Необходимо определить критерий эффективности функционирования СМО с учетом затрат на потери времени как со стороны заявок, так и со стороны обслуживающей части.

    В качестве показателей эффективности функционирования СМО рассматриваются следующие три основные группы показателей:

    1. Показатели эффективности использования СМО.

      Абсолютная пропускная способность СМО - среднее число заявок, которое может обслужить СМО в единицу времени.

      Относительная пропускная способность СМО – отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу поступивших заявок за это время.

      Средняя продолжительность периода занятости СМО.

      Коэффициент использования СМО - средняя доля времени, в течение которого СМО занята обслуживанием заявок.

    2. Показатели качества обслуживания заявок.

      Среднее время ожидания заявки в очереди.

      Среднее время пребывания заявки в СМО.

      Вероятность отказа заявке в обслуживании без ожидания.

      Вероятность того, что поступившая заявка немедленно будет принята к обслуживанию.

      Закон распределения времени ожидания заявки в очереди.

      Закон распределения времени пребывания заявки в СМО.

      Среднее число заявок, находящихся в очереди.

      Среднее число заявок, находящихся в СМО.

    3. Показатели эффективности функционирования пары «СМО - потребитель».

    При выборе критерия эффективности функционирования СМО необходимо учесть двойственный подход к рассмотрению систем массового обслуживания. Например, работу универсама, как СМО, можно рассматривать с противоположных сторон. С одной, традиционно принятой, стороны покупатель, ожидающий свою очередь у кассы, представляет собой заявку на обслуживание, а кассир - канал обслуживания. С другой стороны, кассир, который ожидает покупателей, может быть рассмотрен в качестве заявки на обслуживание, а покупатель - обслуживающее устройство, способное удовлетворить заявку, т.е. подойти к кассе и прекратить вынужденный простой кассира. (традиционно – покупателей > чем кассиров, если кассиров > чем покупателей, они ждут покупателей).

    С
    учетом этого целесообразно минимизировать обе части СМО одновременно.

    Применение такого двойственного подхода предполагает необходимость учета при формировании критерия эффективности не только перечисленных выше показателей в отдельности, но и одновременно нескольких показателей, отражающих интересы как обслуживающей, так и обслуживаемой подсистем СМО. Например, показано, что наиболее важным критерием эффективности в задачах массового обслуживания является суммарное время нахождения клиента в очереди, с одной стороны, и простоя каналов обслуживания - с другой.

    Классификация систем массового обслуживания

    1. По характеру обслуживания выделяют следующие виды СМО:

    1.1. Системы с ожиданием или системы с очередью . Требования, поступившие в систему и не принятые немедленно к обслуживанию, накапливаются в очереди. Если каналы свободны, то заявка обслуживается. Если же все каналы заняты в момент поступления заявки, то очередная заявка будет обслужена после завершения обслуживания предыдущей. Такая система называется полнодоступной (с неограниченной очередью).

    Существуют системы с автономным обслуживанием, когда обслуживание начинается в определенные моменты времени;

        Системы с ограниченной очередью . (ремонт в гараже)

        Системы с отказами . Все заявки, прибывшие в момент обслуживания заявки, получают отказ. (ГТС)

        Системы с групповым входным потоком и групповым обслуживанием . В таких системах заявки поступают группами в моменты времени, обслуживание также происходит группами.

    2. По количеству каналов обслуживания СМО подразделяются на следующие группы.

    Одноканальные СМО.

    Многоканальные СМО . Обслуживание очередной заявки может начаться до окончания обслуживания предыдущей заявки. Каждый канал действует как самостоятельное обслуживающее устройство.

    3. По кругу обслуживаемых объектов различают два вида.

    Замкнутые СМО. Замкнутая система массового обслуживания - это система массового обслуживания, в которой обслуженные требования могут возвращаться в систему и вновь поступать на обслуживание. Примерами замкнутой СМО являются ремонтные мастерские, сберегательные банки.

    Открытые СМО.

    4. По количеству этапов обслуживания различают однофазные и многофазные СМО.

    Однофазные СМО - это однородные системы, которые выполняют одну и ту же операцию обслуживания.

    Многофазные СМО - это системы, в которых каналы обслуживания расположены последовательно и выполняют различные операции обслуживания. Примером многофазной СМО являются станции технического обслуживания автомобилей.

    Приведенная классификация СМО является условной. На практике чаще всего СМО выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

    Во многих областях экономики, финансов, производства и быта важную роль играют системы массо-вого обслуживания (СМО), т.е. такие системы, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, а с другой стороны, происходит удовлетворение этих запросов.

    В качествепримеров СМО в финансово-экономи-ческой сфере можно привести системы, представляющие собой: банки различных типов, страховые организа-ции, налоговые инспекции, ау-диторские службы, различные системы связи (в том числе те-лефонные станции), погрузочно-разгрузочные комплексы (товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, предприятия массового питания, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы).

    Такие сис-темы как компьютерные сети, системы сбора, хранения и обра-ботки информации, транспортные системы, автоматизирован-ные производственные участки, поточные линии также могут рассматриваться как своеобразные СМО.

    В торговле выполняется множество операций в процессе движе-ния товарной массы из сферы производства в сферу потребления. Такими операциями являются: погрузка и выгрузка товаров, пере-возка, упаковка, фасовка, хранение, выкладка, продажа и т. д. Для торговой деятельности характерны массовое поступление товаров, денег, массовое обслу-живание покупателей и т. п., а также выполнение соответствующих операций, которые носят случайный характер. Все это создает не-равномерность в работе торговых организаций и предприятий, порождает недогрузки, простои и перегрузки. Много времени отни-мают очереди, например, у покупателей в магазинах, водителей ав-томашин на товарных базах, ожидающих разгрузки или погрузки.

    В связи с этим возникают задачи анализа работы, например тор-гового отдела, торгового предприятия или секции, для оценки их деятельности, выявления недостатков, резервов и принятия в конеч-ном итоге мер, направленных на увеличение ее эффективности. Кроме того, возникают задачи, связанные с созданием и внедре-нием более экономичных способов выполнения операций в пределах секции, отдела, торгового предприятия, овощной базы, управления торговли и т. п. Следовательно, в организа-ции торговли методы теории массового обслуживания позволяют определить оптимальное количество торговых точек данного профиля, численность про-давцов, частоту завоза товаров и другие параметры.

    Другим ха-рактерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организа-ций, и задача теории массового обслуживания сводится к тому, чтобы установить оптимальное соотношение между числом по-ступающих на базу требований на обслуживание и числом об-служивающих устройств, при котором суммарные расходы на обслуживание и убытки от простоя транспорта были бы мини-мальными. Теория массового обслуживания может найти при-менение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку - как требование.


    Основные характеристики СМО

    СМО включаетследующие элементы : источник требований, входящий поток требований, очередь, обслуживающее устройство (канал обслуживания), выходящий поток требований (обслуженных заявок).

    Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы, в основном, не регулярно, а в случайные моменты времени. Обслуживание заявок также длится не постоянное, заранее известное время, а случайное время, которое зависит от многих случайных причин. После обслуживания заявки канал освобожден и готов к приему следующей заявки.

    Случайный характер потока заявок и времени их обслуживания приводит к не-равномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться необслуженные заявки, что приводит к перегрузке СМО, в некоторые же дру-гие интервалы времени при свободных каналах на входе CMО заявок не будет, что приводит к недогрузке СМО, т.е. к про-стаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо "становятся" в очередь, либо по какой-то причине невоз-можности дальнейшего пребывания в очереди покидают СМО необслуженными.

    Схема СМО изображена на рисунке 5.1.

    Рисунок 5.1 - Схема системы массового обслуживания

    Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, которые называют каналами обслуживания . Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, продавцы), линии связи, автомашины и т.д.

    Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производи-тельности, а также от правил организации работы обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

    СМО явля-ется предметом изучения теории массового обслуживания .

    Цель теории массового обслуживания — выработка рекомен-даций по рациональному построению СМО, рациональной ор-ганизации их работы и регулированию потока заявок для обес-печения высокой эффективности функционирования СМО.

    Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффек-тивности функционирования СМО от ее организации (пара-метров).

    В качестве характеристик эффективности функционирова-ния СМО можно выбрать три основные группы (обычно средних) показателей:

    1. Показатели эффективности использования СМО:

    1.1. Абсолютная пропускная способность СМО - среднее число заявок, которое сможет обслужить СМО в единицу времени.

    1.2. Относительная пропускная способность СМО - от-ношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу посту-пивших заявок за это же время.

    1.3. Средняя продолжительность периода занятости СМО.

    1.4. Коэффициент использования СМО — средняя доля времени, в течение которого СМО занята обслужи-ванием заявок.

    2. Показатели качества обслуживания заявок :

    2.1. Среднее время ожидания заявки в очереди.

    2.2. Среднее время пребывания заявки в СМО.

    2.3. Вероятность отказа заявке в обслуживании без ожи-дания.

    2.4. Вероятность того, что поступившая заявка немедлен-но будет принята к обслуживанию.

    2.5. Закон распределения времени ожидания заявки в очереди.

    2.6. Закон распределения времени пребывания заявки в СМО.

    2.7. Среднее число заявок, находящихся в очереди.

    2.8. Среднее число заявок, находящихся в СМО, и т.п.

    3. Показатели эффективности функционирования пары "СМО — потребитель" , где под "потребителем" понимают всю совокупность заявок или некий их источник (например, средний доход, при-носимый СМО в единицу времени, и т.п.).

    Случайный характер потока заявок и длительности их об-служивания порождает в СМО случайный процесс . Поскольку моменты времени T i и интервалы времени поступле-ния заявок T , продолжительность операций обслуживания Т обс , про-стоя в очереди T оч , длина очереди l оч — случайные величины, то характеристики состояния систем массового обслуживания носят вероятностный характер. Поэтому для решения задач теории массового обслужива-ния необходимо этот случайный процесс изучить, т.е. постро-ить и проанализировать его математическую модель.

    Математическое изучение функционирования СМО значи-тельно упрощается, если протекающий в ней случайный про-цесс является марковским . Чтобы случайный процесс был марковским, необходимо и достаточно, чтобы все потоки событий, под воз-действием которых происходят переходы системы из состояния в состояние, были (простейшими) пуассоновскими .

    Простейший поток обладает тремя основными свойствами : ординарности, стационарности и отсутствия последействия.

    Ординарность потока означает практическую невозмож-ность одновременного поступления 2-х и более требований. На-пример, достаточно малой является вероятность того, что в магазине самообслуживания одно-временно выйдут из строя несколько кассовых аппаратов.

    Стационарным называется поток, для которого математиче-ское ожидание числа требований, поступающих в систему в едини-цу времени (обозначим λ ), не меняется во времени. Таким образом, вероятность поступления в систему определенного количества тре-бований в течение заданного промежутка времени ?T зависит от его величины и не зависит от начала его отсчета на оси времени.

    Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента T , не определяет того, сколько требований поступит в систему за время (T + ?T) . Например, если в кассовом аппарате в данный момент произо-шел обрыв кассовой ленты и он устранен кассиром, то это не влияет на воз-можность нового обрыва на данной кассе в следующий момент и тем более на вероятность возникновения обрыва на других кассовых аппаратах.

    Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона , т. е. вероятность по-ступления за время T ровно k требований задается формулой

    , (5.1)

    где λ интенсивность потока заявок , т. е. среднее число заявок, поступающих в СМО в единицу времени,

    , (5.2)

    где τ — среднее значение интервала времени между двумя со-седними заявками.

    Для такого потока заявок время между двумя соседними заяв-ками распределено экспоненциально с плотностью вероятности

    Случайное время ожидания в очереди начала обслуживания то-же можно считать распределенным экспоненциально:

    , (5.4)

    где ν интенсивность движения очереди , т. е. среднее число зая-вок, приходящих на обслуживание в единицу времени,

    где Т оч - среднее значение времени ожидания в очереди.

    Выходной поток заявок связан с потоком обслуживания в кана-ле, где длительность обслуживания Т обс является случайной величи-ной и подчиняется во многих случаях показательному закону рас-пределения с плотностью

    , (5.6)

    где μ интенсивность потока обслуживания , т. е. среднее число заявок, обслуживаемых в единицу времени,

    . (5.7)

    Важной характеристикой СМО, объединяющей показатели λ и μ , является интенсивность нагрузки, которая показывает степень согласования указанных потоков зая-вок:

    Перечисленные показатели k, τ, λ, l оч, Т оч, ν, Т обс, μ, ρ, Р k являются наиболее общими для СМО.



    
    Top