Непрерывная ставка. Непрерывная ставка (сила роста) и непрерывный дисконт

1. Постоянная сила роста

При использовании дискретной номинальной ставки наращенная сумма определяется по формуле:

При переходе к непрерывным процентам получим:

Множитель наращения при непрерывной капитализации процентов.

Обозначая силу роста через, получим:

т.к. дискретные и непрерывные ставки функционально связаны друг с другом, то можно записать равенство множителей наращения

На первоначальный капитал 500 тыс. руб. начислили сложные проценты - 8% годовых в течении 4 лет. Определить наращенную сумму, если начисление процентов производится непрерывно.

Дисконтирование на основе непрерывных процентных ставок

В формуле (4.21) можно определить современную величину

Непрерывная процентная ставка, используемая при дисконтировании называется силой дисконта. Она равна силе роста, т.е. используется для дисконтирования силы дисконта или силы роста приводят к одному и тому же результату.

Определить современную стоимость платежа при условии, что дисконтирование производится по силе роста 12% и по дискретной сложной учетной ставке такого же размера.

Анализ финансовых результатов деятельности предприятия ООО "СМР"

Резервы роста прибыли - это количественно измеримые возможности ее увеличения за объема продукции рассчитывается по формуле: , (1.22) где: - резерв роста прибыли за счет увеличения объема продукции; структуры производственной системы...

Анализ финансовых результатов деятельности предприятия СХПК "Родина"

Государственные финансовые ресурсы России, возможности их роста в современных условиях

Второе звено финансовых ресурсов -- внебюджетные специальные фонды. Внебюджетные фонды имеют строго целевое назначение -- расширить социальные услуги населению, стимулировать развитие отсталых отраслей инфраструктуры...

Действия с непрерывными процентами

С помощью этой характеристики моделируются процессы наращения денежных сумм с изменяющейся процентной ставкой. Если сила роста описывается некоторой непрерывной функцией времени, то справедливы формулы...

Детерминанты стоимости компании

Итак, как показало проведенное исследование, детерминанты стоимости компании могут быть различного рода, и от их сочетания и развитости, а так же внешних факторов очень многое зависит. Но, нельзя забывать...

Инфляция

В настоящее время инфляция - одна из самых острых тем не только в России, но и за рубежом. Но в то время как мировое сообщество переживает спад инфляции, в России этот показатель до сих пор составляет двузначное число. Более того...

Оценка финансового состояния и эффективности функционирования предприятия ООО "Актор"

Для анализа деловой активности используем «золотое правило экономического роста»: Тбп>Твр>Твб>100%. В нашем случае: Таблица 11 Темпы прироста, % БП 110,47 ВР 98,7 ВБ 101,2 Как видим...

Политика управления заемными источниками финансирования

Модель устойчивого экономического роста (МУЭР) позволяет определить возможный прирост продаж (выручки) без нарушения финансовой устойчивости. МУЭР определяется по формуле:...

Применение различных методик по оценке налоговой нагрузки для хозяйствующих субъектов

Дополнительная формулировка: «Несоответствие темпов роста расходов по сравнению с темпом роста доходов по данным налоговой отчетности с темпами роста расходов по сравнению с темпом роста доходов, отраженными в финансовой отчетности»...

Разработка финансового плана предприятия (на примере ОАО "Ракитянский арматурный завод")

Экономический рост предприятия показывает максимум роста продаж, который может достичь предприятие, не изменяя прочие оперативные показатели. Эк. рост = коэф. реинв.*эффект фин. рычага * коэф...

Финансовый анализ деятельности компании ОАО "Промсвязьбанк"

· себестоимости и объема продаж · постоянных затрат и объема продаж · активов и объема продаж: Таблица 6 Показатели На начало периода На конец периода Темп прироста Выручка от продажи 43 754 131 49 343 607 12...

Финансовый менеджмент

Модель SGR: где g - потенциально возможный рост объема продаж, %; b - доля чистой прибыли...

Формирование финансовой политики и стратегии устойчивого роста ПАО "Фабрика №5"

Сформируем бухгалтерский баланс и отчет о прибылях и убытках организации на конец отчетного периода на основании данных таблиц А.3. Таблица 3.1 - Бухгалтерский баланс, руб...

Формирование финансовых результатов предприятия на примере ЗАО "ДС-Контролз"

Б.И. Герасимов считает, результаты факторного анализа прибыли и рентабельности позволяют выявить резервы их роста. Резервы роста прибыли - это количественно измеримые возможности ее увеличения за счет роста объема реализации продукции...

Эффект финансового рычага

В ходе масштабного исследования возможностей отечественного бизнеса по управлению структурой капитала на первом этапе исследовался вопрос, управляют ли российские компании структурой своего капитала и осознают ли...

Для непрерывных процентов не существует различий между процентной и учетной ставками, поскольку сила роста – универсальный показатель. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции).

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов.

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно , за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

k н = (1 + j / m ) m = (1 + j / 365) 365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j :

где e ≈ 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV e j n = P e δ n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом δ , в отличие от ставки дискретных процентов (j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Решение:

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100"000 (1 + 0,08) 3 = 125"971,2 долларов;

ежедневное начисление процентов

FV = 100"000 (1 + 0,08 / 365) 365 3 = 127"121,6 долларов

непрерывное начисление процентов

FV = 100"000 e 0,08 3 = 127"124,9 долларов.

12. Расчет срока кредита:

В любой простейшей финансовой операции всегда присутствуют четыре величины: современная величина (PV ), наращенная или будущая величина (FV ), процентная ставка (i ) и время (n ).

Иногда при разработке условий финансовой сделки или ее анализе возникает необходимость решения задач, связанных с определением отсутствующих параметров, таких как срок финансовой операции или уровень процентной ставки.

Как правило, в финансовых контрактах обязательно фиксируются сроки, даты, периоды начисления процентов, поскольку фактор времени в финансово-коммерческих расчетах играет важную роль. Однако бывают ситуации, когда срок финансовой операции прямо в условиях финансовой сделки не оговорен, или когда данный параметр определяется при разработке условий финансовой операции.

Обычно срок финансовой операции определяют в тех случаях, когда известна процентная ставка и величина процентов.

Если срок определяется в годах, то

n = (FV - PV ) : (PV i ),

а если срок сделки необходимо определить в днях, то появляется временная база в качестве сомножителя:

t = [(FV - PV ) : (PV i )] T .

Так же как для простых процентов, для сложных процентов необходимо иметь формулы, позволяющие определить недостающие параметры финансовой операции:

  • срок ссуды:

n = / = / ;

  • ставка сложных процентов:

Таким образом, увеличение вклада за три года в три раза эквивалентно годовой процентной ставке в 44,3%, поэтому размещение денег под 46% годовых будет более выгодно.

13. Расчет срока кредита:

14. Расчет процентной ставки:

- при наращении по сложной годовой ставке %,

- при наращении по номинальной ставке % m раз в году,

- при наращении по постоянной силе роста.

15. Расчет процентной ставки:

- при дисконтировании по сложной годовой учетной ставке,

- при дисконтировании по номинальной учетной ставке m раз в году.

Связь дискретных и непрерывных процентных ставок
Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения
(1+i)n=eSn.

Пример 13.
Годовая ставка сложных процентов равна 15%, чему равна эквивалентная сила роста,
Решение.
Воспользуемся формулой (50)
д=Ы(1+^=Ы(1+0,15)=0,т76,
т.е. эквивалентная сила роста равна 13,976%.
Расчет срока ссуды и процентных ставок
В ряде практических задач начальная (Р) и конечная (Б) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования. По сути дела, в обоих случаях решается в известном смысле обратная задача.
Срок ссуды
При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.
А) При наращивании по сложной годовой ставке i. Из исходной формулы наращения
5=P(1+i)n
следует, что
п = 1ои(Б / Р) (52)
1оё(1 +1) ’
где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.

5=P(1+j/m)mn
получаем
п =
т іо§(1 + у I т)
В) При дисконтировании по сложной годовой учетной ставке d. Из формулы
P=S(1d)n
имеем п = 1оё(Р 15). (54)
1оё(1 – ^
Г) При дисконтировании по номинальной учетной ставке m раз в году. Из
P=S(1f/m)mn
приходим к формуле
п = 1о8(Р 15). (55)
т 1о§(1 – /1 т)
При наращивании по постоянной силе роста. Исходя из
Б=Рв3п
получаем
іп(Б/Р)=Ьп.
Расчет процентных ставок
Из тех же исходных формул, что и выше, получим выражения для процентных ставок.
А) При наращивании по сложной годовой ставке I. Из исходной формулы наращения
Б=Р(1+1)п
следует, что
""і."1
Б) При наращивании по номинальной ставке процентов т раз в году из формулы
Б=Р(1+]/т)тп
В) При дисконтировании по сложной годовой учетной ставке й. Из формулы
Р=Б(1й)п
имеем ё = 1 – (§). (59)
Г) При дисконтировании по номинальной учетной ставке т раз в году. Из
Р=Б(1//т)тп
приходим к формуле
1 /(тп)
Д) При наращивании по постоянной силе роста. Исходя из
получаем
Начисление процентов и инфляция
Следствием инфляции является падение покупательной способности денег, которое за период П характеризуется индексом Jn. Индекс покупательной способности равен обратной величине индекса цен Jp, т.е.
Jn 1/Jp¦
Индекс цен показывает во сколько раз выросли цены за указанный промежуток времени.
Наращение по простым процентам
Если наращенная за п лет сумма денег составляет S, а индекс цен равен Jp, то реально наращенная сумма денег, с учетом их покупательной способности, равна
C=S/Jp.
Пусть ожидаемый средний годовой темп инфляции (характеризующий прирост цен за год) равен Ь. Тогда годовой индекс цен составит (1+Ь.).
Если наращение производится по простой ставке в течение П лет, то реальное наращение при темпе инфляции Ь составит
с = р (1 + Ш)
где в общем случае
п
JP =П (1+К),
г=1
и, в частности, при неизменном темпе роста цен h,
Jp=(1+h)n. (66)
Процентная ставка, которая при начислении простых процентов компенсирует инфляцию, равна
71
і =Р1. (67)
п
Один из способов компенсации обесценения денег заключается в увеличении ставки процентов на величину так называемой инфляционной премии. Скорректированная таким образом ставка называется бруттоставкой. Бруттоставка, которую мы будем обозначать символом Г, находится из равенства скорректированного на инфляцию множителя наращения по бруттоставке множителю наращения по реальной ставке процента
1+пг = 1 + пі, (68)

откуда
г = (1 + ті)Р 1. (69)
п
Наращение по сложным процентам
Наращенная по сложным процентам сумма к концу срока ссуды с учетом падения покупательной способности денег (т.е. в неизменных рублях) составит
С = Р (1+01, (70)
где индекс цен определяется выражением (65) или (66), в зависимости от непостоянства или постоянства темпа инфляции.
В этом случае падение покупательной способности денег компенсируется при ставке i=h, обеспечивающей равенство C=P.
Применяются два способа компенсации потерь от снижения покупательной способности денег при начислении сложных процентов.
А) Корректировка ставки процентов, по которой производится наращение, на величину инфляционной премии. Ставка процентов, увеличенная на величину инфляционной премии, называется бруттоставкой. Будем обозначать ее символом г. Считая, что годовой темп инфляции равен Ь можем написать равенство соответствующих множителей наращения
- = 1 + /, (71)
1 + И
где і – реальная ставка.
Отсюда получаем формулу Фишера
r=i+h+ih. (72)
То есть инфляционная премия равна h+ih.
Б) Индексация первоначальной суммы P. В этом случае сумма P корректируется согласно движению заранее оговоренного индекса. Тогда
S=PJp(1+i)n. (73)
Нетрудно заметить, что и в случае А) и в случае Б) в итоге мы приходим к одной и той же формуле наращения (73). В ней первые два сомножителя в правой части отражают индексацию первоначальной суммы, а последние два – корректировку ставки процента.
Измерение реальной ставки процента
На практике приходится решать и обратную задачу – находить реальную ставку процента в условиях инфляции. Из тех же соотношений между множителями наращения нетрудно вывести формулы, определяющие реальную ставку і по заданной (или объявленной) бруттоставке г.
При начислении простых процентов годовая реальная ставка процентов равна
(л \
1 + пг
1
р
При начислении сложных процентов реальная ставка процентов определяется следующим выражением
1 + Г Г – И /ГГГЧ
I = 1 =. (75)
1+И 1+И
Практические приложения теории
Рассмотрим некоторые практические приложения рассмотренной нами теории. Покажем как полученные выше формулы применяются при решении реальных задач по расчету эффективности некоторых финансовых операций, сравним различные методы расчетов.
Конвертация валюты и начисление процентов
Рассмотрим совмещение конвертации (обмена) валюты и наращение простых процентов, сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту. Всего возможно 4 варианта наращения процентов:
1. Без конвертации. Валютные средства размещаются в качестве валютного депозита, наращение первоначальной суммы производится по валютной ставке путем прямого применения формулы простых процентов.
2. С конвертацией. Исходные валютные средства конвертируются в рубли, наращение идет по рублевой ставке, в конце операции рублевая сумма конвертируется обратно в исходную валюту.
3. Без конвертации. Рублевая сумма размещается в виде рублевого депозита, на который начисляются проценты по рублевой ставке по формуле простых процентов.
4. С конвертацией. Рублевая сумма конвертируется в какуюлибо конкретную валюту, которая инвестируется в валютный депозит. Проценты начисляются по валютной ставке. Наращенная сумма в конце операции обратно конвертируется в рубли.?
Операции без конвертации не представляют сложности. В операции наращения с двойной конвертацией имеются два источника дохода: начисление процента и изменение курса. Причем начисление процента является безусловным источником (ставка фиксирована, инфляцию пока не рассматриваем). Изменение же обменного курса может быть как в ту, так и в другую сторону, и оно может быть как источником дополнительного дохода, так и приводить к потерям. Далее мы конкретно остановимся на двух вариантах (2 и 4), предусматривающих двойную конвертацию.
Предварительно введем следующие ОБОЗНАЧЕНИЯ:
Pv – сумма депозита в валюте,
Pr – сумма депозита в рублях,
Sv – наращенная сумма в валюте,
Sr – наращенная сумма в рублях,
^ – курс обмена в начале операции (курс валюты в руб.)
^ – курс обмена в конце операции, П – срок депозита,
І – ставка наращения для рублевых сумм (в виде десятичной дроби),
j – ставка наращения для конкретной валюты.
ВАРИАНТ: ВАЛЮТАМ РУБЛИ ^ РУБЛИ ^ВАЛЮТА Операция состоит из трех этапов: обмена валюты на рубли, наращения рублевой суммы, обратное конвертирование рублевой суммы в исходную валюту. Наращенная сумма, получаемая в конце операции в валюте, составит
= РуК- (1 + пі)!.
к1
Как видим, три этапа операции нашли свое отражение в этой формуле в виде трех сомножителей.
Множитель наращения с учетом двойной конвертации равен
К0 „,ч 1 + пі 1 + пі,
к
К о
где k=Kl/Ko – темп роста обменного курса за срок операции.?
Мы видим, что множитель наращения т связан линейной зависимостью со ставкой I и обратной с обменным курсом в конце операции К (или с темпом роста обменного курса к).
Исследуем теоретически зависимость общей доходности операции с двойной конвертацией по схеме ВАЛЮТА ^ РУБЛИ ^ РУБЛИ ^ ВАЛЮТА от соотношения конечного и начального курсов обмена к.
Простая годовая ставка процентов, характеризующая доходность операции в целом, равна
/ = ^Р,.
*,")ТМТМ
* Рп
Подставим в эту формулу записанное ранее выражение для Бу
-(1 + т)1
К1 1 (1 + т) 1?
ВЫВОД 1: Если ожидаемые величины k или K1 превышают свои критические значения, то операция явно убыточна
Цэфф Теперь определим максимально допустимое значение курса обмена в конце операции Ki, при котором эффективность будет равна существующей ставке по депозитам в валюте, и применение двойной конвертации не дает никакой дополнительной выгоды. Для этого приравняем множители наращения для двух альтернативных операций
к
1 + nj =тт(1 + ni)
K1
Из записанного равенства следует, что
к к 1 + ni
max K1 = K 0
1 + nj
или
K, 1 + ni
max k = -L =
K о 1 + nj
ВЫВОД 2: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K1.
ВАРИАНТ: РУБЛИ ^ ВАЛЮТА ^ ВАЛЮТА ^ РУБЛИ
Рассмотрим теперь вариант с двойной конвертацией, когда имеется исходная сумма в рублях. В этом случае трем этапам операции соответствуют три сомножителя следующего выражения для наращенной суммы
P K
S = K(1 + nj)K 1= Pr (1 + nj)L
K0 K0
Здесь также множитель наращения линейно зависит от ставки, но теперь от валютной ставки процентов. От конечного курса обмена он также зависит линейно.
Проведем теоретический анализ эффективности этой операции с двойной конвертацией и определим критические точки.?
Доходность операции в целом определяется по формуле
«¦ =.
1 „тмгм „
Э Ргп
Отсюда, подставив выражение для Sr, получаем
К
(1 + п])1. = Ко " = *(1 + п])1
"Э11
п
Зависимость показателя эффективности iэфф от k линейная, она представлена на рис. 3
При k=1 ізфф=/", при к>1 ізфф>;", при к Найдем теперь критическое значение к*, при котором Ьфф=0. Оно оказывается равным
к* =^^ или к *1 =К^~.
1 + п 1 + п
ВЫВОД 3: Если ожидаемые величины к или ^ меньше своих критических значений, то операция явно убыточна
(ІЗФФ Минимально допустимая величина к (темпа роста валютного курса за весь срок операции), обеспечивающая такую же доходность, что и прямой вклад в рублях, определяется пу
тем приравнивания множителеи наращения для альтернативных операций (или из равенства iэфф=i)
к
- L(1 + nj) = 1 + ni,
K 0
1 + ni 1 + ni откуда mm k = или mm к = K
1 + nj 1 0 1 + nj
ВЫВОД 4: Депозит рублевых сумм через конвертацию в валюту выгоднее рублевого депозита, если обменный курс в конце операции ожидается больше min K1.
Теперь рассмотрим совмещение конвертации валюты и наращение сложных процентов. Ограничимся одним вариантом.
ВАРИАНТ: ВАЛЮТА ^ РУБЛИ ^ РУБЛИ ^ ВАЛЮТА
Три этапа операции записываются в одной формуле для наращенной суммы
sv = PVK 0(1+i) nK"
Ki
где i – ставка сложных процентов.
Множитель наращения
nKо _ (1 +i) n
K1 k
7 К
где к = -– темп роста валютного курса за период операции. К 0
Определим доходность операции в целом в виде годовой ставки сложных процентов iэ.
Из формулы наращения по сложным процентам
S=P(1+i)n
следует, что
I. - n
]Pv
Подставив в эту формулу значение БУ, получим
Р (1 + Опгг,.
ь = д, ^1 = 1+11.
Из этого выражения видно, что с увеличением темпа роста к эффективность ь падает. Это показано на графике рис. 4.
Рис. 4.
Анализ показывает, что при к = 1 1э = I, при к > 1 1э I.
Критическое значение к, при котором эффективность операции равна нулю, т.е. ь = 0,
определяется как к* = (1 + 1)п, что означает равенство среднегодового темпа роста курса валюты годовому темпу наращения по рублевой ставке: Vк = 1 + г.
ВЫВОД 5: Если ожидаемые величины к или К больше своих критических значений, то рассматриваемая операция с двойной конвертацией явно убыточна (ь Максимально допустимое значение к, при котором доходность операции будет равна доходности при прямом инвестировании валютных средств по ставке ] (т. а на рис. 4), находится из равенства соответствующих множителей наращения
(1 +1)я
(1 + Л)п =
кт?
откуда
п
1 +1
или max к = К
1 Л(
1 +У, 1 "VI + у,
ВЫВОД 6: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше тах
Погашение задолженности частями Контур финансовой операции
Финансовая или кредитная операции предполагают сбалансированность вложений и отдачи. Понятие сбалансированности можно пояснить на графике. а)
В
Я,.
Т
б)
Рис. 5.
Пусть ссуда в размере Бо выдана на срок Т. На протяжении этого срока в счет погашения задолженности производятся, допустим, два промежуточных платежа К и Кг, а в конце срока выплачивается остаток задолженности К3, подводящий баланс операции.
На интервале времени й задолженность возрастает до величины Бъ В момент и долг уменьшается до величины К1=Б1К1 и т.д. Заканчивается операция получением кредитором остатка задолженности Кз. В этот момент задолженность полностью погашается.
Назовем график типа б) контуром финансовой операции. Сбалансированная операция обязательно имеет замкнутый контур, т.е. последняя выплата полностью покрывает остаток задолженности. Контур операции обычно применяется при погашении задолженности частичными промежуточными платежами.
С помощью последовательных частичных платежей иногда погашаются краткосрочные обязательства. В этом случае существуют два метода расчета процентов и определения остатка задолженности. Первый называется актуарным и применяется в основном в операциях со сроком более года. Второй метод назван правилом торговца. Он обычно применяется коммерческими фирмами в сделках со сроком не более года.
Замечание: При начислении процентов, как правило, используются обыкновенные проценты с приближенным числом дней временных периодов.
Актуарный метод
Актуарный метод предполагает последовательное начисление процентов на фактические суммы долга. Частичный платеж идет в первую очередь на погашение процентов, начисленных на дату платежа. Если величина платежа превышает сумму начисленных процентов, то разница идет на погашение основной суммы долга. Непогашенный остаток долга служит базой для начисления процентов за следующий период и т.д. Если же частичный платеж меньше начисленных
процентов, то никакие зачеты в сумме долга не делаются. Такое поступление приплюсовывается к следующему платежу.
Для случая, показанного на рис. 5 б), получим следующие расчетные формулы для определения остатка задолженности:
К1=Во(1+Ьь1)К1; К2=Кь(1+Ь21)К2; К2(1+Ьз1)Кз=0,
где периоды времени Ьь, Ь2, Ьз – заданы в годах, а процентная ставка I – годовая.
Правило торговца
Правило торговца является другим подходом к расчету частичных платежей. Здесь возможны две ситуации.
1) Если срок ссуды не превышает, сумма долга с начисленными за весь срок процентами остается неизменной до полного погашения. Одновременно идет накопление частичных платежей с начисленными на них до конца срока процентами.
2) В случае, когда срок превышает год, указанные выше расчеты, делаются для годового периода задолженности. В конце года из суммы задолженности вычитается наращенная сумма накопленных частичных платежей. Остаток погашается в следующем году.
При общем сроке ссуды Т m
S = D – K = P(l + Л) – ? RJ (1 + tJi),
]=1
где Э – остаток долга на конец срока,
В – наращенная сумма долга,
К – наращенная сумма платежей,
Щ – сумма частичного платежа,
Ь) – интервал времени от момента платежа до конца срока, т – число частичных (промежуточных) платежей.
Переменная сумма счета и расчет процентов
Рассмотрим ситуацию, когда в банке открыт сберегательный счет, и сумма счета в течение срока хранения изменяется: денежные средства снимаются, делаются дополнительные взносы. Тогда в банковской практике при расчете процентов часто используют методику расчета с вычислением так называемых процентных чисел. Каждый раз, когда сумма на счете изменяется, вычисляется процентное число Cj за прошедший период ], в течение которого сумма на счете оставалась неизменной, по формуле
с. = Р.,
у 100
где ^ – длительность ]го периода в днях.
Для определения суммы процентов, начисленной за весь срок, все процентные числа складываются и их сумма делится на постоянный делитель D:
В = К,
где K – временная база (число дней в году, т.е. 360 либо 365 или 366), i – годовая ставка простых процентов (в %).
При закрытии счета владелец получит сумму равную последнему значению суммы на счете плюс сумму процентов.
Пример 14.
Пусть 20 февраля был открыт счет до востребования в размере P1=3000 руб., процентная ставка по вкладу равнялась г=20% годовых. Дополнительный взнос на счет составил Rl=2000 руб. и был сделан 15 августа. Снятие со счета в размере R2=4000 руб. зафиксировано 1 октября, а 21 ноября счет был закрыт. Требуется определить сумму процентов и общую сумму, полученную вкладчиком при закрытии счета.
Решение.
Расчет будем вести по схеме (360/360). Здесь имеются три периода, в течение которых сумма на счете оставалась неизменной: с 20 февраля по 15 августа
^1 = 3000, и = 10 + 5*30 + 15 = 175),?
с 15 августа по 1 октября
(Р2 = Р1 + Я1 = 3000 + 2000 = 5000 руб., Ь = 15 + 30 + 1 = 46), с 1 октября по 21 ноября
(Рз = Р2 + Я2 = 5000 – 4000 = 1000 руб., Ьз = 29 + 21 = 50). Найдем процентные числа
Р*Д 3000 С. =-к = = 5250,
1 1ЛЛ 1лл
=2300,
Постоянный делитель
В=К/1=360/20=18.
Сумма процентов равна
I = (С, + С2 + С3)/ Б = 5250 + 2300 + 500 = 447 руб. 22 коп.
18
Сумма, выплачиваемая при закрытии счета, равна
Рз + I = 1000 + 447.22 = 1447 руб. 22 коп.
Теперь покажем связь этой методики с формулой простых процентов. Рассмотрим в алгебраическом виде представленный выше пример.
Сумму, выплачиваемую при закрытии счета, найдем следующим образом
РЛ, + (Р + О V 2 + (Р + Р. + 02 ^з /
Р3 +1 = Р + Я1 + Р2 +^-^ 1" 2 V 1 1 ^3 _
100 К
t1 +2 +13 I 1, о {, 2 +13 I 1, о (л, t3 I
= Р.1 1 +1 2 ^ 1 + О 1 + ^ ^ 1 + Р2| 1 +31 ^ К 100) ^ К 100) ^ К100
Таким образом, мы получили выражение, из которого следует, что на каждую сумму, добавляемую или снимаемую
со счета, начисляются проценты с момента совершения соответствующей операции до закрытия счета. Эта схема соответствует правилу торговца, рассмотренному в разделе 6.2.
Изменение условий контракта
В практике часто возникает необходимость в изменении условий контракта: например, должник может попросить об отсрочке срока погашения долга или, напротив, изъявить желание погасить его досрочно, в ряде случаев может возникнуть потребность объединить (консолидировать) несколько долговых обязательств в одно и т.д. Во всех этих случаях применяется принцип финансовой эквивалентности старых (заменяемых) и новых (заменяющих) обязательств. Для решения задач по изменению условий контракта разрабатывается так называемое уравнение эквивалентности, в котором сумма заменяемых платежей, приведенных к какомулибо одному моменту времени, приравнивается сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных контрактов применяются простые процентные ставки, а для среднеи долгосрочных – сложные ставки.

При использовании дискретной номинальной ставки наращенная сумма определяется по формуле:

При переходе к непрерывным процентам получим:

Множитель наращения при непрерывной капитализации процентов.

Обозначая силу роста через, получим:

т.к. дискретные и непрерывные ставки функционально связаны друг с другом, то можно записать равенство множителей наращения

На первоначальный капитал 500 тыс. руб. начислили сложные проценты - 8% годовых в течении 4 лет. Определить наращенную сумму, если начисление процентов производится непрерывно.

Дисконтирование на основе непрерывных процентных ставок

В формуле (4.21) можно определить современную величину

Непрерывная процентная ставка, используемая при дисконтировании называется силой дисконта. Она равна силе роста, т.е. используется для дисконтирования силы дисконта или силы роста приводят к одному и тому же результату.

Определить современную стоимость платежа при условии, что дисконтирование производится по силе роста 12% и по дискретной сложной учетной ставке такого же размера.

Переменная сила роста

С помощью этой характеристики моделируются процессы наращения денежных сумм с изменяющейся процентной ставкой. Если сила роста описывается некоторой непрерывной функцией времени, то справедливы формулы.

Для наращенной суммы:

Современная стоимость:

1) Пусть сила роста изменяется дискретно и принимает значения: в интервалы времени, тогда по истечению срока ссуды наращенная сумма составит:

Если срок наращения равен n, а средняя величина роста: , то

Определить множитель наращения при непрерывном начислении процентов в течение 5 лет. Если сила роста изменяется дискретно и соответствует: 1 год -7%, 2 и 3 - 8%, последние 2 года - 10%.

2) Сила роста непрерывно изменяется во времени и описывается уравнением:

где - начальная сила роста (при)

а - годовой прирост или снижение.

Вычислим степень множителя наращения:

Начальное значение силы роста 8%, процентная ставка непрерывная и линейно изменяется.

Прирост за год -2%, срок наращения - 5 лет. Найти множитель наращения.

3) Сила роста изменяется в геометрической прогрессии, тогда

2.2.3. Переменная ставка процентов

Необходимо отметить, что основная формула сложных процентов предполагает постоянную процентную ставку на протяжении всего срока начисления процентов. Однако, предоставляя долгосрочную ссуду, часто используют изменяющиеся во времени, но заранее зафиксированные для каждого периода ставки сложных процентов. В случае использования переменных процентных ставок, формула наращения имеет следующий вид:

где i k – последовательные во времени значения процентных ставок;

n k – длительность периодов, в течение которых используются соответствующие ставки.

Пример. Фирма получила кредит в банке на сумму 100"000 долларов сроком на 5 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-го года предусмотрена надбавка к процентной ставке в размере 1,5%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.

Решение:

Используем формулу переменных процентных ставок:

FV = PV (1 + i 1) n 1 (1 + i 2) n 2 … (1 + i k ) n k =

100"000 (1 + 0,1) (1 + 0,115) (1 + 0,125) 3 =

174"632,51 долларов

Таким образом, сумма, подлежащая погашению в конце срока займа, составит 174"632,51 доллара, из которых 100"000 долларов являются непосредственно суммой долга, а 74"632,51 доллара – проценты по долгу.

2.2.4. Непрерывное начисление процентов

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно , за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

k н = (1 + j / m ) m = (1 + j / 365) 365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j :

где e ≈ 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV e j n = P e δ n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом δ , в отличие от ставки дискретных процентов (j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Решение:

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100"000 (1 + 0,08) 3 = 125"971,2 долларов;

ежедневное начисление процентов

FV = 100"000 (1 + 0,08 / 365) 365 3 = 127"121,6 долларов

непрерывное начисление процентов

FV = 100"000 e 0,08 3 = 127"124,9 долларов.

Графически изменение наращенной суммы в зависимости от частоты начисления имеет следующий вид:

При дискретном начислении каждая "ступенька" характеризует прирост основной суммы долга в результате очередного начисления процентов. Обратите внимание, что высота "ступенек" все время возрастает.

В рамках одного года одной "ступеньке" на левом графике соответствует две "ступеньки" на среднем графике меньшего размера, но в сумме они превышают высоту "ступеньки" однократного начисления. Еще более быстрыми темпами идет наращение при непрерывном начислении процентов, что и показывает график справа.

Таким образом, в зависимости от частоты начисления процентов наращение первоначальной суммы осуществляется с различными темпами, причем максимально возможное наращение осуществляется при бесконечном дроблении годового интервала.

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов

2.2.5. Определение срока ссуды и величины процентной ставки

Так же как для простых процентов, для сложных процентов необходимо иметь формулы, позволяющие определить недостающие параметры финансовой операции:

    срок ссуды:

n = / = / ;

    ставка сложных процентов:

Таким образом, увеличение вклада за три года в три раза эквивалентно годовой процентной ставке в 44,3%, поэтому размещение денег под 46% годовых будет более выгодно.

2.3. Эквивалентность ставок и замена платежей

2.3.1. Эквивалентность процентных ставок

Достаточно часто в практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций и коммерческих сделок. Условия финансово-коммерческих операций могут быть весьма разнообразными и напрямую несопоставимыми. Для сопоставления альтернативных вариантов ставки, используемые в условиях контрактов, приводят к единообразному показателю.

Эквивалентная процентная ставка – это ставка, которая для рассматриваемой финансовой операции даст точно такой же денежный результат (наращенную сумму), что и применяемая в этой операции ставка.

Классическим примером эквивалентности являются номинальная и эффективная ставка процентов:

i = (1 + j / m ) m - 1.

j = m [(1 + i ) 1 / m - 1].

Эффективная ставка измеряет тот относительный доход, который может быть получен в целом за год, т.е. совершенно безразлично – применять ли ставку j при начислении процентов m раз в год или годовую ставку i , – и та, и другая ставки эквивалентны в финансовом отношении.

Поэтому совершенно не имеет значения, какую из приведенных ставок указывать в финансовых условиях, поскольку использование их дает одну и ту же наращенную сумму. В США в практических расчетах применяют номинальную ставку, а в европейских странах предпочитают эффективную ставку процентов.

Если две номинальные ставки определяют одну и ту же эффективную ставку процентов, то они называются эквивалентными.

Пример. Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 25%?

Решение:

Находим номинальную ставку для полугодового начисления процентов:

j = m [(1 + i ) 1 / m - 1] = 2[(1 + 0,25) 1/2 - 1] = 0,23607.

Находим номинальную ставку для ежемесячного начисления процентов:

j = m [(1 + i ) 1 / m - 1] = 4[(1 + 0,25) 1/12 - 1] = 0,22523.

Таким образом, номинальные ставки 23,61% с полугодовым начислением процентов и 22,52% с ежемесячным начислением процентов являются эквивалентными.

При выводе равенств, связывающих эквивалентные ставки, приравниваются друг к другу множители наращения, что дает возможность использовать формулы эквивалентности простых и сложных ставок:

простая процентная ставка:

i = [(1 + j / m ) m n - 1] / n ;

сложная процентная ставка:

Пример. Предполагается поместить капитал на 4 года либо под сложную процентную ставку 20% годовых с полугодовым начислением процентов, либо под простую процентную ставку 26% годовых. Найти оптимальный вариант.

Решение:

Находим для сложной процентной ставки эквивалентную простую ставку:

i = [(1 + j / m ) m n - 1] / n = [(1 + 0,2 / 2) 2 4 - 1] / 4 = 0,2859.

Таким образом, эквивалентная сложной ставке по первому варианту простая процентная ставка составляет 28,59% годовых, что выше предлагаемой простой ставки в 26% годовых по второму варианту, следовательно, выгоднее разместить капитал по первому варианту, т.е. под 20% годовых с полугодовым начислением процентов.




Top