Непрерывные проценты с постоянной силой роста. Действия с непрерывными процентами

При многократном начислении простых процентов начисление делается по отношению к исходной сумме и представляет собой каждый раз одну и ту же величину. Иначе говоря,

P - исходная сумма;

S - наращенная сумма (исходная сумма вместе с начисленными процентами);

i - процентная ставка, выраженная в долях;

n - число периодов начисления.

В этом случае говорят о простой процентной ставке.

При многократном начислении сложных процентов начисление каждый раз делается по отношению к сумме с уже начисленными ранее процентами. Иначе говоря, S = (1 + i) n P

В этом случае говорят о сложной процентной ставке .

Часто рассматривается следующая ситуация. Годовая процентная ставка составляет j, а проценты начисляются m раз в году по сложной процентной ставке равной j / m (например, поквартально, тогда m = 4 или ежемесячно, тогда m = 12). Тогда формула для наращенной суммы будет выглядеть:

В этом случае говорят о номинальной процентной ставке.

Иногда рассматривают ситуацию так называемых непрерывно начисляемых процентов, то есть годовое число периодов начисления m устремляют к бесконечности. Процентную ставку обозначают δ, а формула для наращенной суммы:

В этом случае номинальную процентную ставку δ называют сила роста .

Реальная и номинальная ставки

Различают номинальную и реальную процентную ставку.

Реальная процентная ставка - это процентная ставка, очищенная от инфляции. Взаимосвязь реальной, номинальной ставки и инфляции в общем случае описывается следующей (приближённой) формулой:

i r = i n − π

i n - номинальная процентная ставка; i r - реальная процентная ставка;

π - ожидаемый или планируемый уровень инфляции.

Ирвинг Фишер предложил более точную модель взаимосвязи реальной, номинальной ставок и инфляции, выражаемую названной в его честь формулой Фишера:

При небольших значениях уровня инфляции π результаты мало отличаются, но если инфляция велика, то следует применять формулу Фишера.

Формула сложных процентов

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

Проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов.

Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:



S = P + I = P + P i = P (1 + i )– за один период начисления;

S = (P + I ) (1 + i ) = P (1 + i ) (1 + i ) = P (1 + i ) 2

– за два периода начисления; отсюда, за n периодов начисления формула примет вид: S= P (1 + i ) n = P k н , где

S – наращенная сумма долга;

P – первоначальная сумма долга;

i – ставка процентов в периоде начисления;

n – количество периодов начисления;

k н – коэффициент (множитель) наращения сложных процентов.

Эта формула называется формулой сложных процентов.

Различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.

Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста. Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен: (1 + i ).

Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид: (1 + i ) n .

Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Приложении 2. Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i .



При краткосрочных ссудах начисление по простым процентам предпочтительнее, чем по сложным процентам; при сроке в один год разница отсутствует, но при среднесрочных и долгосрочных ссудах наращенная сумма, рассчитанная по сложным процентам значительно выше, чем по простым.

При любом i ,

если 0 < n < 1, то (1 + ni ) > (1 + i ) n ;

если n > 1, то (1 + ni ) < (1 + i ) n ;

если n = 1, то (1 + ni ) = (1 + i ) n .

Таким образом, для лиц, предоставляющих кредит:

Более выгодна схема простых процентов, если срок ссуды менее года (проценты начисляются однократно в конце года);

Более выгодной является схема сложных процентов, если срок ссуды превышает один год;

Обе схемы дают одинаковый результат при продолжительности периода один год и однократном начислении процентов.

Пример 1. Сумма в размере 2"000 руб. дана в долг на 2 года по ставке процента равной 10% годовых. Определить проценты и сумму, подлежащую возврату.

Решение:

Наращенная сумма

S= P (1 + i ) n = 2"000 (1 + 0,1) 2 = 2"420 руб.

S = P k н = 2"000 1,21 = 2"420 руб.,

где k н = 1,21

Сумма начисленных процентов

I = S - P = 2"420 - 2"000 = 420 руб.

Таким образом, через два года необходимо вернуть общую сумму в размере 2"420 руб., из которой 2"000 руб. составляет долг, а 420 руб. – "цена долга".

Достаточно часто финансовые контракты заключаются на период, отличающийся от целого числа лет.

В случае, когда срок финансовой операции выражен дробным числом лет, начисление процентов возможно с использованием двух методов:

-общий метод заключается в прямом расчете по формуле сложных процентов:

S = P (1 + i ) n , n = a + b,

где n – период сделки;

a – целое число лет;

b – дробная часть года.

-смешанный метод расчета предполагает для целого числа лет периода начисления процентов использовать формулу сложных процентов, а для дробной части года – формулу простых процентов:

S= P (1 + i ) a (1 + bi ).

Поскольку b < 1, то (1 + bi ) > (1 + i ) a , следовательно, наращенная сумма будет больше при использовании смешанной схемы.

Пример 2. В банке получен кредит под 9,5% годовых в размере 250 тыс. руб. со сроком погашения через два года и 9 месяцев. Определить сумму, которую необходимо вернуть по истечении срока займа двумя способами.

Решение:

Общий метод:

S = P (1 + i ) n = 250 (1 + 0,095) 2,9 = 320,87 тыс. руб.

Смешанный метод:

S = P (1 + i ) a (1 + bi ) =

250 (1 + 0,095) 2 (1 + 270/360 0,095) =

321,11 тыс. руб.

Таким образом, по общему методу проценты по кредиту составят

I = S - P = 320,87 - 250,00 = 70,84 тыс. руб.,

а по смешанному методу

I = S - P = 321,11 - 250,00 = 71,11 тыс. руб.

Как видно, смешанная схема более выгодна кредитору.

В практических финансово-кредитных операциях непрерывное наращение, т.е. наращение за бесконечно малые отрезки времени, применяется крайне редко. Существенно большее значение непрерывное наращение имеет в анализе сложных финансовых проблем, например, при обосновании и выборе инвестиционных решений.

Наращенная сумма при дискретных процентах определяется по формуле

S =P (1+j /m ) mn ,

где j – номинальная ставка процентов, а m – число периодов начисления процентов в году.

Чем больше m , тем меньше промежутки времени между моментами начисления процентов. Увеличение частоты начисления процентов (m ) при фиксированном значении номинальной процентной ставки j приводит к росту множителя наращения, который при непрерывном начислении процентов (m ) достигает своего предельного значения

Известно, что

где е – основание натуральных логарифмов.

Используя этот предел в выражении (2.5), окончательно получаем, что наращенная сумма по ставке j равна

S =Pe jn .

Непрерывную ставку процентов называют силой роста и обозначают символом . Тогда

S =Pe n . (2.6)

Сила роста представляет собой номинальную ставку процентов при m .

Закон наращения при непрерывном начислении процентов (2.6) совпадает по форме с (2.2) с той разницей, что в (2.2) время изменяется дискретно с шагом 1/m , а в (2.6) – непрерывно.

Легко показать, что дискретные и непрерывные ставки наращения находятся в функциональной зависимости. Из равенства множителей наращения можно получить формулу эквивалентного перехода от одних ставок к другим:

(1+i ) n =e n ,

откуда следует:

=ln(1+i ), i =e  -1.

Пример 20 . Сумма, на которую начисляются непрерывные проценты в течение 5 лет, равна 2000 ден. ед., сила роста 10%. Наращенная сумма составит S =2000·e 0,1·5 =2000·1,6487=3297,44 ден. ед.

Непрерывное наращение по ставке 10% равнозначно наращению за тот же срок сложных дискретных процентов по годовой ставке i . Находим:

i =e 0,1 -1=1,10517-1=0,10517.

В итоге получим S =2000·(1+0,10517) 5 =3297,44 ден. ед.

Дисконтирование на основе силы роста осуществляется по формуле

P =Se - n

Пример 21. Определим современную стоимость платежа из примера 17 при условии, что дисконтирование производится по силе роста 15%.

Решение. Полученная за долг сумма (современная величина) равна

P =5000·е -0,15·5 =5000·0,472366=2361,83 ден. ед.

При применении дискретной сложной учетной ставки такого же размера получили величину (см. пример 17) P =2218,53 ден. ед.

2.5. Расчет срока ссуды и размера процентных ставок

В ряде практических задач начальная (P) и конечная (S) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения и дисконтирования (для простых процентов эти задачи рассмотрены в п. 1.8.).

Срок ссуды. Рассмотрим задачу расчета n для различных условий наращения процентов и дисконтирования.

i из исходной формулы наращения (2.1) следует, что

,

где логарифм можно взять по любому основанию, поскольку он имеется и в числителе, и в знаменателе.

j m

.

d f m

;

.

При наращении по постоянной силе роста, исходя из формулы (2.6) получаем:

.

Пример 22. За какой срок в годах сумма, равная 75 тыс. ден. ед., достигнет 200 тыс. ден. ед. при начислении процентов по сложной ставке 12% раз в году и поквартально?

Решение. По формулам для вычисления срока при наращении по сложным ставкам наращения получим:

n =(log(200/75)/log(1+0,12))=3,578 года;

n =(log(200/75)/(4·log(1+0,12/4))=3,429 года;

Расчет процентных ставок. Из тех же исходных формул, что и выше, получим формулы для расчета ставок при различных условиях наращения процентов и дисконтирования.

При наращении по сложной годовой ставке i из исходной формулы наращения (2.1) следует, что

i =(S /P ) 1/ n –1=
.

При наращении по номинальной ставке процентов m раз в году из формулы (2.2) получаем:

j =m ((S /P ) 1/ mn –1)=
.

При дисконтировании по сложной годовой учетной ставке d и по номинальной учетной ставке f m раз в году из формул (2.3) и (2.4) соответственно получаем:

d =1– (P /S ) 1/ n =
;

f = m (1– (P /S ) 1/ mn =
.

При наращении по постоянной силе роста, исходя из формулы (2.6), получаем:

.

Пример 23. Сберегательный сертификат куплен за 100 тыс. ден. ед., его выкупная сумма – 160 тыс. ден. ед., срок 2,5 года. Каков уровень доходности инвестиции в виде годовой ставки сложных процентов?

Решение. Воспользовавшись полученной формулой для годовой ставки i , получим: i =(160/100) 1/2,5 –1=1,2068–1=0,20684, т.е. 20,684%.

Пример 24. Срок до погашения векселя равен 2 годам. Дисконт при его учете составил 30%. Какой сложной годовой учетной ставке соответствует этот дисконт?

Решение. По данным задачи P /S =0,7. Тогда d =1–
=0,16334, т.е. 16,334%.

В практически финансово-кредитных операциях непрерывное наращение, т.е. наращение за бесконечно малые отрезки времени, применяется крайне редко. Существенно большее значение непрерывное наращение имеет в анализе сложных финансовых проблем, например, при обосновании и выборе инвестиционных решений, в финансовом проектировании.

При непрерывном наращении процентов применяют особый вид процентной ставки – силу роста.

Сила роста характеризует относительный прирост наращенной суммы за бесконечно малый промежуток времени. Она может быть постоянной или изменяться во времени.

Для того чтобы отличить непрерывную ставку от дискретной, обозначим силу роста как δ . Тогда наращенная сумма по непрерывной ставке составит:

Дискретные и непрерывные ставки наращения находятся в функциональной зависимости. Из равенства множителей наращения

следует: ,

.

Пример: Сумма, на которую начисляются непрерывные проценты, равна 2 млн. руб., сила роста 10%, срок 5 лет. Определить наращенную сумму.

Непрерывное наращение по ставке = 10% равнозначно наращению за тот же срок дискретных сложных процентов по годовой ставке:

В итоге получим:

Формула дисконтирования:

.

Дисконтный множитель равен .

Пример: Определить современную стоимость платежа, если наращенная стоимость равна 5000 тыс. руб. при условии дисконтирования по силе роста 12%. Срок платежа – 5 лет.

1. Постоянная сила роста

При использовании дискретной номинальной ставки наращенная сумма определяется по формуле:

При переходе к непрерывным процентам получим:

Множитель наращения при непрерывной капитализации процентов.

Обозначая силу роста через, получим:

т.к. дискретные и непрерывные ставки функционально связаны друг с другом, то можно записать равенство множителей наращения

На первоначальный капитал 500 тыс. руб. начислили сложные проценты - 8% годовых в течении 4 лет. Определить наращенную сумму, если начисление процентов производится непрерывно.

Дисконтирование на основе непрерывных процентных ставок

В формуле (4.21) можно определить современную величину

Непрерывная процентная ставка, используемая при дисконтировании называется силой дисконта. Она равна силе роста, т.е. используется для дисконтирования силы дисконта или силы роста приводят к одному и тому же результату.

Определить современную стоимость платежа при условии, что дисконтирование производится по силе роста 12% и по дискретной сложной учетной ставке такого же размера.

Анализ финансовых результатов деятельности предприятия ООО "СМР"

Резервы роста прибыли - это количественно измеримые возможности ее увеличения за объема продукции рассчитывается по формуле: , (1.22) где: - резерв роста прибыли за счет увеличения объема продукции; структуры производственной системы...

Анализ финансовых результатов деятельности предприятия СХПК "Родина"

Государственные финансовые ресурсы России, возможности их роста в современных условиях

Второе звено финансовых ресурсов -- внебюджетные специальные фонды. Внебюджетные фонды имеют строго целевое назначение -- расширить социальные услуги населению, стимулировать развитие отсталых отраслей инфраструктуры...

Действия с непрерывными процентами

С помощью этой характеристики моделируются процессы наращения денежных сумм с изменяющейся процентной ставкой. Если сила роста описывается некоторой непрерывной функцией времени, то справедливы формулы...

Детерминанты стоимости компании

Итак, как показало проведенное исследование, детерминанты стоимости компании могут быть различного рода, и от их сочетания и развитости, а так же внешних факторов очень многое зависит. Но, нельзя забывать...

Инфляция

В настоящее время инфляция - одна из самых острых тем не только в России, но и за рубежом. Но в то время как мировое сообщество переживает спад инфляции, в России этот показатель до сих пор составляет двузначное число. Более того...

Оценка финансового состояния и эффективности функционирования предприятия ООО "Актор"

Для анализа деловой активности используем «золотое правило экономического роста»: Тбп>Твр>Твб>100%. В нашем случае: Таблица 11 Темпы прироста, % БП 110,47 ВР 98,7 ВБ 101,2 Как видим...

Политика управления заемными источниками финансирования

Модель устойчивого экономического роста (МУЭР) позволяет определить возможный прирост продаж (выручки) без нарушения финансовой устойчивости. МУЭР определяется по формуле:...

Применение различных методик по оценке налоговой нагрузки для хозяйствующих субъектов

Дополнительная формулировка: «Несоответствие темпов роста расходов по сравнению с темпом роста доходов по данным налоговой отчетности с темпами роста расходов по сравнению с темпом роста доходов, отраженными в финансовой отчетности»...

Разработка финансового плана предприятия (на примере ОАО "Ракитянский арматурный завод")

Экономический рост предприятия показывает максимум роста продаж, который может достичь предприятие, не изменяя прочие оперативные показатели. Эк. рост = коэф. реинв.*эффект фин. рычага * коэф...

Финансовый анализ деятельности компании ОАО "Промсвязьбанк"

· себестоимости и объема продаж · постоянных затрат и объема продаж · активов и объема продаж: Таблица 6 Показатели На начало периода На конец периода Темп прироста Выручка от продажи 43 754 131 49 343 607 12...

Финансовый менеджмент

Модель SGR: где g - потенциально возможный рост объема продаж, %; b - доля чистой прибыли...

Формирование финансовой политики и стратегии устойчивого роста ПАО "Фабрика №5"

Сформируем бухгалтерский баланс и отчет о прибылях и убытках организации на конец отчетного периода на основании данных таблиц А.3. Таблица 3.1 - Бухгалтерский баланс, руб...

Формирование финансовых результатов предприятия на примере ЗАО "ДС-Контролз"

Б.И. Герасимов считает, результаты факторного анализа прибыли и рентабельности позволяют выявить резервы их роста. Резервы роста прибыли - это количественно измеримые возможности ее увеличения за счет роста объема реализации продукции...

Эффект финансового рычага

В ходе масштабного исследования возможностей отечественного бизнеса по управлению структурой капитала на первом этапе исследовался вопрос, управляют ли российские компании структурой своего капитала и осознают ли...

Дискретная процентная ставка – это ставка, при которой процент начисляется за заранее установленные, или определенные, периоды. Если уменьшить период начисления процентов до бесконечно малой величины (период, за который будут произведены начисления, стремится к нулю, а количество начислений процентов – к бесконечности), то проценты будут начисляться непрерывно. В этом случае процентная ставка называется непрерывной ставкой или силой роста .

В теоретических исследованиях и на практике, когда платежи производятся многократно, удобно использовать непрерывный способ начисления процентов. Переход к пределу может быть осуществлен аналогично тому, как это делалось в пункте 2.2 при выводе формулы (2.12) или следующим способом.

Непрерывная ставка может быть постоянной или изменяющейся. Рассмотрим случай, когда непрерывная процентная ставка в разные моменты времени различна.

Пусть, а(t) – функция, описывающая зависимость непрерывной ставки (силы роста) от времени t. Приращение капитала S(t) в момент t за промежуток времени Δt равно:

S(t + Δt) – S(t) = a(t) Δt S(t)

Тогда, имеем:

При Δt →0 получим, что скорость изменения капитала пропорциональна капиталу. Тогда, сумма платежа (капитал) S(t) удовлетворяет линейному однородному дифференциальному уравнению первого порядка:

, (2.28)

– скорость изменения платежа (скорость изменения капитала);

S(t) - сумма платежа (капитал);

a(t) – непрерывный процент начисления или сила роста.

В другом виде уравнение запишется:

dS = a(t) S dt, (2.29)

т. е. приращение платежа пропорционально самому платежу S и приращению времени dt. Коэффициент пропорциональности а(t) суть сила роста или процент начисления.

Возможна еще одна запись дифференциального уравнения:

, (2.30)

т. е. относительное приращение суммы платежа dS/S пропорционально приращению времени dt. Причем по-прежнему, а(t) определяется процентами начисления и в общем случае может зависеть от времени. Все три уравнения для капитала (2.28), (2.29), (2.30) эквивалентны.



Рассмотрим некоторые простейшие свойства капитала, описываемого дифференциальным уравнением (2.28)-(2.30). Если функция a(t)>0 положительна, то при положительном капитале S>0 производная от капитала dS/dt >0 также положительна и, следовательно, капитал S(t) растет. В этом случае a(t) называется непрерывным процентом начисления или силой роста .

В противном случае если функция a(t)<0 отрицательна, то при положительном капитале S>0 производная от капитала dS/dt<0 отрицательна и, следовательно, капитал S(t) убывает. В этом случае абсолютная величина |a(t)| называется непрерывным дисконтом .

Решение линейного дифференциального уравнения хорошо известно. Действительно, уравнение (2.30) является уравнением с разделяющимися переменными и его можно проинтегрировать:

Вычислив интеграл, получим:

,

где - неопределенный интеграл от a(t) ,

С 1 - произвольная постоянная.

Отсюда, имеем:

Окончательно, общее решение дифференциального уравнения запишется в виде:

, (2.31)

где - новая произвольная постоянная.

Для определения произвольной постоянной С нужно знать капитал хотя бы в один какой-нибудь момент времени. Если известно что в момент времени t=t 0 капитал равен S = S 0 (т. е. S(t 0)=S 0), то произвольная постоянная С легко определяется из (2.31):

,

Подставляя полученный результат в (2.31), имеем:

.

Воспользовавшись классической формулой связи определенного и неопределенного интеграла (формулой Ньютона – Лейбница):

,

получим решение дифференциального уравнения с начальными условиями S(t 0)=S 0 в виде:

Часто отсчет времени можно производить от начального момент, тогда t 0 =0 и решение линейного дифференциального уравнения записывается в виде:

, (2.32)

S(0) – начальная сумма в момент 0;

S(t) – сумма платежа в момент t.

Очевидно, приведенные формулы при a(t)>0 соответствуют расчету кредитования, а при a(t)<0 – расчету дисконтирования.

Если сила роста постоянна на всем рассматриваемом промежутке времени, т. е. a(t)= r, то для конечного платежа в момент t имеем:

. (2.33)

Очевидно, эта формула совпадает с полученной ранее предельным переходом формулы для непрерывных процентов (2.12).

Рассмотрим некоторые примеры использования данных формул.

Пример 28.

Ссуда 200 тыс. руб. дана на 2,5 года под ставку 20 % годовых с ежеквартальным начислением. Найти сумму конечного платежа. Расчет произвести по дискретным и непрерывным процентам.

Решение.

Сумма конечного платежа удовлетворяет дифференциальному уравнению , где r=20 %=0,2 в соответствии с процентом ежегодного начисления и время t измеряется в годах. Решение линейного уравнения известно:

.

Тогда сумма конечного платежа равна:

Тыс. руб.

Расчет для дискретного случая по формулам (2.11) дает:

Тыс. руб.

Видно, что при многократных начислениях небольших процентов результаты расчетов сумм конечного платежа близки.

Рассмотрим теперь пример расчета дисконтирования в непрерывном случае.

Пример 29.

Вексель на 3 млн руб. с годовой учетной ставкой 10 % и дисконтированием 2 раза в год выдан на 2 года. Найти исходную сумму, которая должна быть выдана в долг под этот вексель. Расчет произвести по дискретным и непрерывным процентам.

Решение.

Одолженная под вексель сумма платежа удовлетворяет линейному дифференциальному уравнению, решение которого известно:

.

Расчет одолженной под вексель суммы по дискретным формулам (2.24) дает близкие результаты:

млн руб.

Таким образом, теоретические и практические вычисления по непрерывным формулам дают результаты, близкие к результатам расчета по дискретным формулам, если количество начислений велико, а процент начисления невелик.




Top