Оценка качества уравнения регрессии. Тогда средняя ошибка аппроксимации равна

Показатели корреляции и детерминации

Линейной парной регрессии

Опираясь на вспомогательные данные, которые рассчитаны в табл. 2, рассчитываем показатель тесноты связи.

Таким показателем является выборочный линейный коэффициент корреляции, рассчитываемый с использованием формулы.

По результатам расчета коэффициента корреляции можно сделать вывод, что связь между факторным и результативным признаком прямая и сильная (по шкале Чеддока).

Квадрат коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.

Обычно, давая интерпретацию коэффициента детерминации, его выражают в процентах.

R 2 = 0.847 2 = 0.7181

т.е. в 71.81% случаев изменения факторного признака приводит к изменению и результатирующего признака. Точность подбора уравнения регрессии довольно высокая. Остальные 28.19% изменения Y объясняются факторами, не учтенными в модели.

Степенной парной регрессии

Тесноту связи результатирующего и факторного признака для степенной парной регрессии определим с использованием коэффициента корреляции:

Подставив известные данные, получим:

Показатель детерминации.

т.е. в 69% случаев изменения факторного признака приводит к изменению и результатирующего признака. Точность подбора уравнения регрессии - средняя. Остальные 31% изменения Y объясняются факторами, не учтенными в модели.

Средняя ошибка аппроксимации

Линейной парной регрессии

Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Степенной парной регрессии

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

Поскольку ошибка больше 7%, то данное уравнение не желательно использовать в качестве регрессии.

Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования

Линейной парной регрессии

Коэффициент детерминации R 2 используется для проверки существенности уравнения линейной регрессии в целом.

Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.

Если расчетное значение с k 1 =(m) и k 2 =(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:

где m=1 для парной регрессии.

Поскольку фактическое значение F >

Степенной парной регрессии

Аналогично линейной парной регрессии проведем оценку степенной парной регрессии

где m - число факторов в модели.

1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости б.

2. Определяем фактическое значение F-критерия:

где m=1 для парной регрессии.

3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.

F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.

4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.

В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Табличное значение критерия со степенями свободы:

k 1 =1 и k 2 =8, F табл = 5.32

Поскольку фактическое значение F > F табл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).

По результатам анализа делаем вывод, что коэффициенты детерминации как для линейной парной регрессии, так и для степенной парной регрессии являются статистически значимыми.

Поскольку линейная парная регрессии имеет выше коэффициент (показательно) детерминации, считаем, что именно она адекватно описывает зависимость между факторным и результатирующим признаком.

Министерство сельского хозяйства РФ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Пермская государственная сельскохозяйственная академия

имени академика Д.Н.Прянишникова»

Кафедра финансов, кредита и экономического анализа

Контрольная работа по дисциплине «Эконометрика» Вариант - 10


    Ошибки аппроксимации и ее определение………………………………….3

    Аналитический способ выравнивания временного ряда и используемые при этом функции……………………………………………………………..4

    Практическая часть……………………………………………………….....11

    1. Задание 1………………………………………………………………11

      Задание 2……………………………………………….……………...19

Список использованной литературы……………………………………….....25

  1. Ошибки аппроксимации и ее определение.

Средняя ошибка аппроксимации – это среднее отклонение расчетных данных от фактических. Она определяется в процентах по модулю.

Фактические значения результативного признака отличаются от теоретических. Чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим данным, это лучшее качество модели. Величина отклонений фактических и расчетных значений результативного признака по каждому наблюдению представляет собой ошибку аппроксимации. Их число соответствует объему совокупности. В отдельных случаях ошибка апроксимации может оказаться равной нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.

Поскольку может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю. Отклонения можно рассматривать как абсолютную ошибку аппроксимации, и как относительную ошибку аппроксимации. Чтоб иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации как среднюю арифметическую простую.

Среднюю ошибку аппроксимации рассчитают по формуле:

Возможно и иное определение средней ошибки аппроксимации:

Если А£10-12%, то можно говорить о хорошем качестве модели.

  1. Аналитический способ выравнивания временного ряда и используемые при этом функции.

Более совершенным приемом выявления основной тенденции развития в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. На практике по имеющемуся временному ряду задают вид и находят параметры функции y=f(t), а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости: линейная, параболическая и экспоненциальная. Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ (гармоники ряда Фурье). Применение, именно, этого метода предпочтительно, поскольку он определяет закон, по которому можно достаточно точно спрогнозировать значения уровней ряда.

Целью же аналитического выравнивания динамического ряда является определение аналитической или графической зависимости y=f(t). Функцию y=f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. Это могут быть различные функции.

Системы уравнений вида y=f(t) для оценки параметров полиномов по МНК

(кликабельно)

Графическое представление полиномов n-порядка

1. Если изменение уровней ряда характеризуется равномерным увеличением (уменьшением) уровней, когда абсолютные цепные приросты близки по величине, тенденцию развития характеризует уравнение прямой линии.

2. Если в результате анализа типа тенденции динамики установлена криволинейная зависимость, примерно с постоянным ускорением, то форма тенденции выражается уравнением параболы второго порядка.

3. Если рост уровней ряда динамики происходит в геометрической прогрессии, т.е. цепные коэффициенты роста более или менее постоянны, выравнивание ряда динамики ведется по показательной функции.

После выбора вида уравнения необходимо определить параметры уравнения. Самый распространенный способ определения параметров уравнения - это метод наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими (выравненными по выбранному уравнению) и эмпирическими уровнями.

Выравнивание по прямой (определение линии тренда) имеет выражение: yt=a0+a1t

t-условное обозначение времени;

а 0 и a1-параметры искомой прямой.

Параметры прямой находятся из решения системы уравнений:

Система уравнений упрощается, если значения t подобрать так, чтобы их сумма равнялась Σt = 0, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Если до переноса точки отсчета t = 1, 2, 3, 4…, то после переноса:

если число уровней ряда нечетное t = -4 -3 -2 -1 0 +1 +2 +3 +4

если число уровней ряда четное t = -7 -5 -3 -1 +1 +3 +5 +7

Таким образом, ∑t в нечетной степени всегда будет равна нулю.

Аналогично находятся параметры параболы 2-го порядка из решения системы урав­нений:

Выравнивание по среднему абсолютному приросту или среднему коэффициенту роста:

Δ-средний абсолютный прирост;

К-средний коэффициент роста;

У0-начальный уровень ряда;

Уn-конечный уровень ряда;

t-порядковый номер уровня, начиная с нуля.

Построив уравнение регрессии, проводят оценку его надежности. Значимость выбранного уравнения регрессии, параметров уравнения и коэффициента корреляции следует оценить, применив критические методы оценки:

F-критерий Фишера, t–критерий Стьюдента, при этом, расчетные значения критериев сравниваются с табличными (критическими) при заданном уровне значимости и числе степеней свободы. Fфакт > Fтеор - уравнение регрессии адекватно.

n - число наблюдений (уровней ряда), m - число параметров уравнения (модели) регрессии.

Проверка адекватности уравнения регрессии (качества модели в целом) осуществляется с помощью средней ошибки аппроксимации, величина которой не должна превышать 10-12% (рекомендовано).


Эмпирические коэффициенты регрессии b 0 , b 1 будем определять с помощью инструмента «Регрессия» надстройки «Анализ данных» табличного процессораMS Excel.

Алгоритм определения коэффициентов состоит в следующем.

1. Вводимисходные данные в табличный процессор MS Excel.

2. Вызываемнадстройку Анализ данных(рисунок 2).

3.Выбираем инструмент анализа Регрессия(рисунок 3).

4. Заполняем соответствующие позиции окна Регрессия (рисунок 4).

5. Нажимаем кнопку ОК окна Регрессия и получаем протокол решения задачи (рисунок 5)


Рисунок 3 – Выбор инструмента Регрессия




Рисунок 4 – Окно Регрессия

Рисунок 5 – Протокол решения задачи

Из рисунка 5 видно, что эмпирические коэффициенты регрессии соответственно равны

b 0 = 223,

b 1 = 0, 0088.

Тогда уравнение парной линейной регрессии, связывающая величину ежемесячной пенсии у с величиной прожиточного минимумахимеет вид

.(3.2)

Далее, в соответствии с заданием необходимо оценить тесноту статистической связи между величиной прожиточного минимума х и величиной ежемесячной пенсии у. Эту оценку можно сделать с помощью коэффициента корреляции . Величина этого коэффициента на рисунке 5 обозначена как множественный R и соответственно равна 0,038. Поскольку теоретически величина данного коэффициента находится в пределахот –1 до +1, то можно сделать вывод о не существенности статистической связимежду величиной прожиточного минимума х и величиной ежемесячной пенсии у.

Параметр «R – квадрат», представленныйна рисунке 5 представляет собой квадрат коэффициента корреляции и называется коэффициентом детерминации. Величина данного коэффициента характеризует долю дисперсии зависимой переменной у, объясненную регрессией (объясняющей переменной х). Соответственно величина 1- характеризует долю дисперсии переменной у, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных. Из рисунка 5 видно, что доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 1- 0,00145 = 0,998 или 99,8%.



На следующем этапе, в соответствии с заданием необходимо определить степень связи объясняющей переменной х с зависимой переменной у, используя коэффициент эластичности. Коэффициент эластичности для модели парной линейной регрессии определяется в виде:

Следовательно, при изменении прожиточного минимума на 1% величина ежемесячной пенсии изменяется на 0,000758%.

. (3.4)

Для этого исходную таблицу 1 дополняем двумя колонками, в которых определяем значения, рассчитанные с использованием зависимости (3.2) и значения разности .

Таблица 3.2. Расчет средней ошибки аппроксимации.

Тогда средняя ошибка аппроксимации равна

.

Из практики известно, что значение средней ошибки аппроксимации не должно превышать (12…15)%

На последнем этапе выполним оценкустатистической надежности моделирования спомощью F – критерия Фишера. Для этого выполним проверку нулевой гипотезы Н 0 о статистической не значимости полученного уравнения регрессиипо условию:

если при заданном уровне значимости a = 0,05 теоретическое (расчетное) значение F-критерия больше его критического значения F крит (табличного), то нулевая гипотеза отвергается, и полученное уравнение регрессии принимается значимым.

Из рисунка 5 следует, что F расч = 0,0058. Критическое значение F-критерия определяем с помощью использования статистической функции FРАСПОБР (рисунок 6). Входными параметрами функции является уровень значимости (вероятность) и число степеней свободы 1 и 2. Для модели парной регрессии число степеней свободы соответственно равно 1 (одна объясняющая переменная) и n-2 = 6-2=4.



Рисунок 6 – Окно статистической функции FРАСПОБР

Из рисунка 6 видно, что критическое значение F-критерия равно 7,71.

Так как F расч < F крит, то нулевая гипотеза не отвергается и полученное регрессионное уравнение статистически незначимо.

13. Построение модели множественной регрессии с использованием EXCEL.

В соответствии с вариантом задания, используя статистический материал, необходимо.

1. Построить линейное уравнение множественной регрессии пояснить экономический смысл его параметров.

2. Дать сравнительную оценку тесноты связи факторов с результативным признаком с помощью средних (общих) коэффициентов эластичности.

3. Оценить статистическую значимость коэффициентов регрессии с помощью t-критерия Стьюдента и нулевую гипотезу о значимости уравнения с помощью F-критерия.

4. Оценить качество уравнения посредством определения средней ошибки аппроксимации.

Исходные данные для построения модели парной регрессии приведены в таблице 3.3.

Таблица 3.3. Исходные данные.

Чистый доход, млн. долларов США у Оборот капитала, мл. долл. США, х 1 Использованный капитал, мл. долл. США, х 2
6,6 6,9 83,6
2,7 93,6 25,4
1,6 10,0 6,4
2,4 31,5 12,5
3,3 36,7 14,3
1,8 13,8 6,5
2,4 64,8 22,7
1,6 30,4 15,8
1,4 12,1 9,3
0,9 31,3 18,9

Технология построения уравнения регрессии аналогична алгоритму, изложенному в пункте 3.1. Протокол построения уравнения регрессии показан на рисунке 7.

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,901759207
R-квадрат 0,813169667
Нормированный R-квадрат 0,759789572
Стандартная ошибка 0,789962026
Наблюдения
Дисперсионный анализ
df MS F
Регрессия 9,50635999 15,23357468
Остаток 0,624040003
Итого
Коэффициенты t-статистика
Y-пересечение 1,113140304 2,270238114
Переменная X 1 -0,000592199 -0,061275574
Переменная X 2 0,063902851 5,496523193

Рисунок 7. Вывод итогов.

Проверим гипотезу H 0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H 1 не равно) на уровне значимости б=0.05.

В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.

Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).

Табличное значение определяется в зависимости от уровня значимости (б) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.

Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-б) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.

Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости б.

t крит (n-m-1;б/2) = (30;0.025) = 2.042

Поскольку 1.7 < 2.042, то статистическая значимость коэффициента регрессии b не подтверждается (принимаем гипотезу о равенстве нулю этого коэффициента). Это означает, что в данном случае коэффициентом b можно пренебречь.

Поскольку 0.56 < 2.042, то статистическая значимость коэффициента регрессии a не подтверждается (принимаем гипотезу о равенстве нулю этого коэффициента). Это означает, что в данном случае коэффициентом a можно пренебречь.

Доверительный интервал для коэффициентов уравнения регрессии.

Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:

  • (b - t крит S b ; b + t крит S b)
  • (0.64 - 2.042 * 0.38; 0.64 + 2.042 * 0.38)
  • (-0.13;1.41)

Так как точка 0 (ноль) лежит внутри доверительного интервала, то интервальная оценка коэффициента b статистически незначима.

  • (a - t крит S a ; a + t крит S a)
  • (24.56 - 2.042 * 44.25; 24.56 + 2.042 * 44.25)
  • (-65.79;114.91)

С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.

Так как точка 0 (ноль) лежит внутри доверительного интервала, то интервальная оценка коэффициента a статистически незначима.

2) F-статистика. Критерий Фишера.

Коэффициент детерминации R 2 используется для проверки существенности уравнения линейной регрессии в целом.

Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.

Если расчетное значение с k 1 =(m) и k 2 =(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m - число факторов в модели.

Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:

  • 1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости б.
  • 2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.

3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.

F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.

4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.

В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Табличное значение критерия со степенями свободы k 1 =1 и k 2 =30, F табл = 4.17

Поскольку фактическое значение F < F табл, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:

Показатели качества уравнения регрессии.

Проверка на наличие автокорреляции остатков.

Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.

Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.

В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.

Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).

Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:

  • 1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
  • 2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
  • 3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
  • 4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.

Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Фактические значения интересующей нас величины отличаются от рассчитанных по уравнению регрессии. Чем меньше это отличие, чем ближе рассчитанные значения подходят к эмпирическим данным, тем лучше качество модели. Величина отклонений фактических и расчетных значений переменной величины по каждому наблюдению представляет собой ошибку аппроксимации. Так как отклонение может быть величиной как положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.

Отклонения () рассматриваются как абсолютная ошибка аппроксимации, тогда – относительная ошибка аппроксимации.

Средняя ошибка аппроксимации определяется как среднее арифметическое: . Иногда пользуются определением средней ошибки аппроксимации, имеющим вид .

Конец работы -

Эта тема принадлежит разделу:

Эконометрика

На сайте сайт читайте: экономических специальностей..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Состав исходной информации
Основной базой исходной информации для эконометрических исследований служат данные статистики либо данные бухгалтерского учета. Исследуемые эконометрикой взаимосвязи стохастичны по своей природе, т

Интерполяционный полином Лагранжа
Пусть имеется зависимость y = f(x) между величинами x и y, для которой нам известны отдельные точки (xi,yi), i = 0,1,2,…,

Случай 1.
Через одну точку (x0, y0) можно провести пучок прямых y = y0+b(x-x0) (2.1) (а также вертикальную пря

Случай 2.
Через две различные точки (x0,y0), (x1,y1) проходит одна и только одна прямая. Если x0 ¹

Случай 3.
Многочлен второй степени (квадратичная функция), график которой проходит через три точки (x0,y0), (x1,y1), (x2

Случай n.
Теперь ясно, что интерполяционный полином Лагранжа n-ой степени, график которого проходит через n+1 точку (xi,yi), i=0,1,2,…,n, можно записать в ви

Парная линейная регрессия. Метод наименьших квадратов
Пусть имеется n пар чисел (xi, yi), i=1,2,…,n, относительно которых предполагается, что они отвечают линейной зависимости между величинами x и y:

Множественная линейная регрессия
Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Но, существует обычно нескол

Нелинейные модели
Мы изучили применение метода наименьших квадратов для определения параметров, которые входят в функциональные зависимости линейно. Поэтому для них в параграфах 3 и 4 получились сист

Системы одновременных эконометрических уравнений
Объектом статистического изучения в социально-экономических науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии

Составляющие временного ряда
Временной ряд x(t) – это множество значений величины x, отвечающих последовательности моментов времени t, т.е. это функция t®x(t), которая обычно считает

Определение составляющих временного ряда
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость последовательных значений

При этом коэффициенты ak, bk будут равны
Если функция x (t) четная, т.е. выполняется равенство x (-t) = x (t), то в

Временной ряд как случайный процесс
Пусть значение экономического показателя x(t) в любой момент времени t представляет собой случайную величину X (t). Предположим, что слу

Модели ARIMA
В эконометрике анализ временных рядов с использованием оценки спектральной плотности (спектральный анализ) играет, как правило, вспомогательную роль, помогая установить периоды хара

Учет сезонных составляющих
Обобщение модели ARIMA, позволяющие учесть периодические (сезонные) составляющие временного ряда было предложено Дж. Боксом и Г. Дженкинсом . Этот метод реализован в систе

Анализ погрешностей исходной информации
Значения экономических показателей обычно известны неточно, с некоторой погрешностью. Рассмотрим основные правила обработки данных, содержащих погрешности, или ошибки измерений. Пус

Доверительные интервалы
Введем случайную величину. (13.1) Нетрудно проверить, что xÎN(0,1), вследствие ч

Расчет погрешностей
Эмпирические данные часто подвергаются математической обработке – над ними выполняются арифметические операции сложения, вычитания, умножения и деления, в некоторых случаях

Коэффициент детерминации
Коэффициент детерминации характеризует качество регрессионной модели. Значения различных величин, получ

Принцип максимального правдоподобия. Построение регрессионных моделей при гетероскедастичности ошибок
Для нахождения неизвестных величин по результатам измерений, содержащих случайные погрешности, служит метод наименьших квадратов (МНК). Определяемые величины обычно связаны уравнениями, образующими

Статистические гипотезы
В предыдущих параграфах рассматривалась методика моделирования взаимосвязей экономических показателей и процессов. С помощью полученных уравнений регрессии моделировалась эта связь.

F – статистика
Значимость регрессионной модели определяется с помощью F-критерия Фишера. Для этого вычисляется отношение

T – статистика
Для оценки значимости отдельных параметров регрессионной модели y=a+bx+e их величина сравнивается с их стандартной ошибкой. При этом рассчитывается так называемый




Top