Отличия государств друг от друга. Чем отличаются народы друг от друга: внешние отличия, культура, страны, языки

Оксиды – соединения, состоящие из двух элементов, одним из которых является кислород в степени окисления –2.

Например, СаО – оксид кальция, SО3 – оксид серы (VI).

Следует отличать оксиды от пероксидов, в составе которых кислород находится в степени окисления –1. В этих соединениях атомы кислорода связаны друг с другом. Примеры: Н 2 О 2 – пероксид водорода, ВаО 2 – пероксид бария. По своей природе пероксиды представляют собой соли очень слабой кислоты пероксида (перекиси) водорода Н 2 О 2 .

Ионными можно считать практически лишь оксиды ще­лочных и щелочноземельных металлов, остальные оксиды – ковалентные соединения (тип связи – ковалентная поляр­ная). В случае ковалентной связи кристаллическая решетка оксида может быть атомной (например, в SiО 2) или молеку­лярной (если рассматривать оксиды в твердом состоянии). Примерами последних могут быть: СО 2 , SО 2 и т. д.

2.2.2 Классификация и номенклатура оксидов.

По функциональным признакам оксиды подразделяются на солеобразующие и несолеобразующие (без­различные). Солеобразующие оксиды, в свою очередь, делятся на основ­ные, кислотные и амфотерные (таблица 2).

Таблица 2 – Классификация солеобразующих оксидов по их кислотно-основному характеру

Солеобразующие оксиды

Основные

Амфотерные

Кислотные

Гидраты* основных оксидов – основа­ния

Гидраты амфотерных оксидов – ам­фотерные гидроксиды

Гидраты кислотных оксидов – кис­лоты

Основные оксиды образованы метал­лами, причем сте­пень окисления ме­талла в оксиде, как правило, равна +1 или +2.

Na 2 О, MgO , MnO

Существуют исклю­чения, например: BeO, ZnO, SnO (относятся к амфотерным оксидам)

Амфотерные окси­ды образованы ме­таллами, причем степень окисления металла в оксиде равна +3 или +4.

А1 2 О 3 , Сг 2 О 3 , М n О 2

Исключение: ВеО, ZnO, SnO – амфо­терные оксиды

Кислотные оксиды образованы:

– неметаллами Р 2 О 5 , СО 2 , S О 3

– металлами, при­чем степень окис­ления металла в оксиде равна +5, +6, +7

V 2 О 5 , Cr О 3 , М n 2 О 7

* Примечание: гидраты – продукты соединения с водой, получаемые присоеди­нением воды к данному веществу прямо или косвенно

Иногда оксиды металлов, в которых степень окисления металла равна +2, являются амфотерными, например: ВеО, ZnO, SnO, PbO.

В то же время, некоторые оксиды, в которых степень окисления металла равна +3, являются основными, напри­мер: Y 2 О 3 , La 2 О 3 .

Несолеобразующие (безразличные) оксиды не имеют со­ответствующих гидратов, которые бы являлись кислотами или основаниями. Примеры: NO, N 2 О, CO, SiO.

Такие оксиды не проявляют ни кислотных, ни основных свойств.

Номенклатура оксидов соответствует номенклатуре бинарных соединений (см. пункт 2.1). Существуют т.н. двойные оксиды – оксиды, содержащие атомы элементов в различных степенях окисления:

Fe 3 О 4 – оксид железа (II, III) – FeО∙Fe 2 О 3 ;

Pb 2 O 3 – оксид свинца (II, IV) – PbOPbO 2 .

Оксиды - сложные вещества, состоящие из двух элементов, один из которых кислород (в степени окисления −2).

Оксиды делят на кислотные, осно́вные, амфотерные и несолеобразующие (безразличные).

Кислотным оксидам соответствуют кислоты. Кислотными свойствами обладают большинство оксидов неметаллов и оксиды металлов в высшей степени окисления, например CrO 3 .

Многие кислотные оксиды реагируют с водой с образованием кислот. Например, оксид серы (IV), или серни́стый газ, реагирует с водой с образованием серни́стой кислоты:

SO 2 + H 2 O = H 2 SO 3

Кислотные оксиды реагируют со щелочами с образованием соли и воды. Например, оксид углерода (IV), или углекислый газ, реагирует с гидроксидом натрия с образованием карбоната натрия (соды):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

Осно́вным оксидам соответствуют основания. К осно́вным относятся оксиды щелочных металлов (главная подгруппа I группы),

магния и щелочноземельных (главная подгруппа II группы, начиная с кальция), оксиды металлов побочных подгрупп в низшей степени окисления (+1 +2).

Оксиды щелочных и щелочноземельных металлов реагируют с водой с образованием оснований. Так, оксид кальция реагирует с водой, получается гидроксид кальция:

CaO + H 2 O = Ca(OH) 2

Основные оксиды реагируют с кислотами с образованием соли и воды. Оксид кальция реагирует с соляной кислотой, получается хлорид кальция:

CaO + 2HCl = CaCl 2 + H 2 O

Амфотерные оксиды реагируют и с кислотами, и со щелочами. Так, оксид цинка реагирует с соляной кислотой, получается хлорид цинка:

ZnO + 2HCl = ZnCl 2 + H 2 O

Оксид цинка взаимодействует и с гидроксидом натрия с образованием цинката натрия:

ZnO + 2NaOH = Na 2 ZnO 2 + H 2 O

С водой амфотерные оксиды не взаимодействуют. Поэтому оксидная пленка цинка и алюминия защищает эти металлы от коррозии.

Несолеобразующим (безразличным) оксидам не соответствуют гидроксиды, они не реагируют с водой. Несолеобразующие оксиды не реагируют ни с кислотами, ни со щелочами. К ним относится оксид азота (II) NO.

Иногда к несолеобразующим относят угарный газ, но это неудачный пример, т.к. этот оксид реагирует с гидроксидом натрия с образованием соли:

CO + NaOH = HCOONa
(эта реакция не для запоминания! Изучается в 10–11 классах)

2. Задача. Вычисление массы продукта реакции, если известно количество вещества одного из исходных веществ.
Пример:

Сколько г хлорида цинка можно получить, имея 0,5 моль соляной кислоты?

Решение:

  1. Записываем уравнение реакции.
  2. Записываем над уравнением реакции имеющиеся данные, а под уравнением - число моль согласно уравнению (равно коэффициенту перед веществом):
    0,5 моль x моль
    Zn + 2HCl = ZnCl 2 + H 2
    2 моль 1 моль
  3. Составляем пропорцию:
    0,5 моль - х моль
    2 моль - 1 моль
  4. Находим x:
    x = 0,5 моль. 1 моль / 2 моль = 0,25 моль
  5. Находим молярную массу хлорида цинка:
    M(ZnCl 2) = 65 + 35,5 . 2 = 136 (г/моль)
  6. Находим массу соли:
    m (ZnCl 2) = M . n = 136 г/моль. 0,25 моль = 34 г

Оксиды - сложные вещества, состоящие из двух элементов, один из которых - атом кислорода в степени окисления -2 .
По способности образовывать соли оксиды делят на солеобразующие и несолеобразующие (СО,SiO,NO,N 2 О). Солеобразующие оксиды, в свою очередь, классифицируют на основные, кислотные и амфотерные .
Основными называются оксиды, которым соответствуют основания, кислотными - оксиды, которым отвечают кислоты. К амфотерным относятся оксиды, проявляющие химические свойства как основных, так и кислотных оксидов.
Основные оксиды образуют только элементы-металлы: щелочные (Li 2 О, Na 2 О, К 2 О, Cs 2 О, Rb 2 О), щелочноземельные (CaO, SrO, BaO, RaO) и магний (MgO), а также металлы d-семейства в степени окисления +1, +2, реже +3(Cu 2 O, CuO, Ag 2 O, СrO, FeO, MnO, СоO, NiO).

Кислотные оксиды образуют как элементы-неметаллы (СО 2 , SO 2 , NO 2 ,Р 2 O 5 , Cl 2 O 7), так и элементы-металлы, степень окисления атома металла должна быть +5 и выше(V 2 O 5 , СrO 3 , Mn 2 O 7 , MnO 3). Амфотерные оксиды образуют только элементы металлы (ZnO, AI 2 O 3 , Fe 2 O 3 , BeO, Cr 2 O 3 , PbO, SnO, MnO 2).

В обычных условиях оксиды могут находиться в трех агрегатных состояниях: все основные и амфотерные оксиды твердые вещества, кислотные оксиды могут быть жидкими (SO 3 ,Сl 2 O7,Mn 2 O7), газообразными (CO 2 , SO 2 , NO 2) и твердыми (P 2 O 5 , SiO 2). Некоторые имеют запах (NO 2 , SO 2), однако большинство оксидов запаха не имеют. Одни оксиды окрашены: бурый газ NO 2 , вишнево-красный CrO 3 , черные CuO и Ag 2 O, красные Cu 2 O и HgO, коричневый Fe 2 O 3 , белые SiO 2 , Аl 2 O 3 и ZnO, другие - бесцветные (H 2 O, CO 2 , SO 2).

Большинство оксидов устойчивы при нагревании; легко разлагаются при нагревании оксиды ртути и серебра. Основные и амфотерные оксиды имеют , для них характерна кристаллическая решетка ионного типа. Большинство кислотных оксидов вещества (одно из немногих исключений - оксид кремния (IV), имеющий атомную кристаллическую решетку).

Al 2 O 3 +6KOH+3H 2 O=2K 3 - гексагидроксоалюминат калия;
ZnO+2NaOH+H 2 O=Na 2 - тетрагидроксоцинкат натрия;

Несолеобразующие (безразличные, индифферентные) оксиды СО, SiO, N 2 0, NO.


Солеобразующие оксиды:


Основные. Оксиды, гидраты которых являются основания ми. Оксиды металлов со степенями окисления +1 и +2 (реже +3). Примеры: Na 2 O - оксид натрия, СаО - оксид кальция, CuO - оксид меди (II), СоО - оксид кобальта (II), Bi 2 O 3 - оксид висмута (III), Mn 2 O 3 - оксид марганца (III).


Амфотерные. Оксиды, гидраты которых являются амфотерными гидроксидами. Оксиды металлов со степенями окисления +3 и +4 (реже +2). Примеры: Аl 2 O 3 - оксид алюминия, Cr 2 O 3 - оксид хрома (III), SnO 2 - оксид олова (IV), МnO 2 - оксид марганца (IV), ZnO - оксид цинка, ВеО - оксид бериллия.


Кислотные. Оксиды, гидраты которых являются кислородсодержащими кислотами. Оксиды неметаллов. Примеры: Р 2 О 3 - оксид фосфора (III), СO 2 - оксид углерода (IV), N 2 O 5 - оксид азота (V), SO 3 - оксид серы (VI), Cl 2 O 7 - оксид хлора (VII). Оксиды металлов со степенями окисления +5, +6 и +7. Примеры: Sb 2 O 5 - оксид сурьмы (V). СrОз - оксид хрома (VI), МnОз - оксид марганца (VI), Мn 2 O 7 - оксид марганца (VII).

Изменение характера оксидов при увеличении степени окисления металла

Физические свойства

Оксиды бывают твердые, жидкие и газообразные, различного цвета. Например: оксид меди (II) CuO черного цвета, оксид кальция СаО белого цвета - твердые вещества. Оксид серы (VI) SO 3 - бесцветная летучая жидкость, а оксид углерода (IV) СО 2 - бесцветный газ при обычных условиях.

Агрегатное состояние


CaO, СuО, Li 2 O и др. основные оксиды; ZnO, Аl 2 O 3 , Сr 2 O 3 и др. амфотерные оксиды; SiO 2 , Р 2 O 5 , СrO 3 и др. кислотные оксиды.



SO 3 , Cl 2 O 7 , Мn 2 O 7 и др..


Газообразные:


CO 2 , SO 2 , N 2 O, NO, NO 2 и др..

Растворимость в воде

Растворимые:


а) основные оксиды щелочных и щелочноземельных металлов;


б) практически все кислотные оксиды (исключение: SiO 2).


Нерастворимые:


а) все остальные основные оксиды;


б) все амфотерные оксиды


Химические свойства

1. Кислотно-основные свойства


Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые иллюстрируются следующей схемой:





(только для оксидов щелочных и щелочно-земельных металлов) (кроме SiO 2).



Амфотерные оксиды, обладая свойствами и основных и кислотных оксидов, взаимодействуют с сильными кислотами и щелочами:



2. Окислительно - восстановительные свойства


Если элемент имеет переменную степень окисления (с. о.), то его оксиды с низкими с. о. могут проявлять восстановительные свойства, а оксиды с высокими с. о. - окислительные.


Примеры реакций, в которых оксиды выступают в роли восстановителей:


Окисление оксидов с низкими с. о. до оксидов с высокими с. о. элементов.


2C +2 O + O 2 = 2C +4 O 2


2S +4 O 2 + O 2 = 2S +6 O 3


2N +2 O + O 2 = 2N +4 O 2


Оксид углерода (II) восстанавливает металлы из их оксидов и водород из воды.


C +2 O + FeO = Fe + 2C +4 O 2


C +2 O + H 2 O = H 2 + 2C +4 O 2


Примеры реакций, в которых оксиды выступают в роли окислителей:


Восстановление оксидов с высокими с о. элементов до оксидов с низкими с. о. или до простых веществ.


C +4 O 2 + C = 2C +2 O


2S +6 O 3 + H 2 S = 4S +4 O 2 + H 2 O


C +4 O 2 + Mg = C 0 + 2MgO


Cr +3 2 O 3 + 2Al = 2Cr 0 + 2Al 2 O 3


Cu +2 O + H 2 = Cu 0 + H 2 O


Использование оксидов малоактивных металлов дпя окисления органических веществ.




Некоторые оксиды, в которых элемент имеет промежуточную с. о., способны к диспропорционированию;


например:


2NO 2 + 2NaOH = NaNO 2 + NaNO 3 + H 2 O

Способы получения

1. Взаимодействие простых веществ - металлов и неметаллов - с кислородом:


4Li + O 2 = 2Li 2 O;


2Cu + O 2 = 2CuO;



4P + 5O 2 = 2P 2 O 5


2. Дегидратация нерастворимых оснований, амфотерных гидроксидов и некоторых кислот:


Cu(OH) 2 = CuO + H 2 O


2Al(OH) 3 = Al 2 O 3 + 3H 2 O


H 2 SO 3 = SO 2 + H 2 O


H 2 SiO 3 = SiO 2 + H 2 O


3. Разложение некоторых солей:


2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


CaCO 3 = CaO + CO 2


(CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O


4. Окисление сложных веществ кислородом:


CH 4 + 2O 2 = CO 2 + H 2 O


4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2


4NH 3 + 5O 2 = 4NO + 6H 2 O


5.Восстановление кислот-окислителей металлами и неметаллами:


Cu + H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O


10HNO 3 (конц) + 4Ca = 4Ca(NO 3) 2 + N 2 O + 5H 2 O


2HNO 3 (разб) + S = H 2 SO 4 + 2NO


6. Взаимопревращения оксидов в ходе окислительно-восстановительных реакций (см. окислительно-восстановительные свойства оксидов).




Top