Отсюда был сделан вывод, что мембрана эритроцитов состоит из липидных молекул, расположенных в два слоя. Активный транспорт веществ

Кровь и эритроциты. Продолжаем публикацию материалов о крови.

Как выглядит эритроцит? При нормальных физиологических условиях в кровяном русле эритроциты имеют двояковогнутую форму с равномерными утолщениями по краям и с центральной более светлой частью – пэллором.

При светооптическом исследовании рутинно окрашенный кислыми красителями нормальный эритроцит имеет форму диска диаметром 6,9-7,7 и до 9,0 мкм. В зависимости от размеров эритроциты подразделяются на микро- и макроциты, но основная масса их представлена нормоцитами/дискоцитами.

Морфофункционалъные свойства эритроцита

Эритроцит – безъядерная двояковогнутая клетка средним объемом 90,0 мкм 3 и площадью 142 мкм 2 . Наибольшая толщина его 2,4 мкм, минимальная – 1 мкм.

В высушенном препарате средний размер эритроцита равен 7,55 мкм; 95% его сухого вещества приходится на железосодержащий белок гемоглобин и лишь 5 % – на долю других веществ (другие белки и липиды). Такие клетки представляют абсолютное большинство – свыше 85% – эритроцитов здорового человека.

Ядерные формы эритроцитарного ростка легко отличаются от большинства клеток лейкоцитарного ряда отсутствием в их цитоплазме гранул (ошибки возможны лишь при идентификации бластных клеток). Эритробласты отличаются более гранулированным и плотным ядерным хроматином.

На центральную впадину (пэллор) диска эритроцита приходится от 35 до 55 % его поверхности, и на поперечном срезе эритроцит имеет форму бублика, что с одной стороны, обеспечивает им сохранение гемоглобина и, с другой – позволяет эритроциту проходить даже через самые тонкие капилляры. Имеющиеся к настоящему времени модели строения эритроцита соответствуют представлению о специфических свойствах этой клетки, особенно его оболочки, обеспечивающей, при всей ее чувствительности к деформирующему давлению, противостояние сгибу и возрастанию суммарной поверхности.

Данные литературы свидетельствуют, что размеры и деформируемость мембраны эритроцитов являются их наиважнейшими характеристиками, с которыми связывают нормальное функционирование этих клеток, в том числе высокую миграционную возможность, участие в обменных процессах (в первую очередь – в обмене кислорода).

Изменение микроэластометрических свойств эритроцитов и «преображение» дискоцитов в другие морфологические формы могут вызывать различные агенты. Так, появление поверхностных выростов приводит к уменьшению эластичности мембраны, что, возможно, обусловлено противоположными силами, возникающими в самом процессе деформации эритроцита; деформация усиливается при уменьшении концентрации в клетках АТФ.

Если целостность мембраны клетки нарушается, то эритроцит утрачивает характерную для него форму и превращается в сферопласт, который, в свою очередь, гемолизируется. Структура мембраны эритроцита (дискоцита) одинакова на всем протяжении; и несмотря на то, что впадины и выпуклости могут возникать в ее различных участках, изменения внутри- или внеклеточного давления с разбросом ±15 % не вызывает сморщивания всей клетки, ибо она имеет значительный запас «антидеформабельности». Мембрана эритроцита обладает достаточной эластичностью, чтобы противостоять воздействию разнообразных факторов, возникающих во время циркуляции эритроцита по кровяному руслу.

В состав мембраны эритроцита входят: фосфолипиды (36,3%), сфингомиелины (29,6%), холестерин (22,2%) и гликолипиды (11,9%). Первые два элемента представляют собой амфифильные молекулы в водной среде, формирующие характерный липидный бислой, который к тому же пронизывается интегральными молекулами белков, связанных внутри эритроцита с его цитоскелетом.

Мембранные липиды пребывают в жидком состоянии, обладают незначительной вязкостью (всего в 10-100 раз превышающей вязкость воды). На внешней поверхности мембраны расположены липиды, сиаловая кислота, антигенные олигосахариды, адсорбированные белки; внутренняя поверхность мембраны представлена гликолитическими ферментами, натрием и кальцием, АТФазой, гликопротеинами и гемоглобином.

Двойной липидный слой мембраны выполняет три функции: функцию барьера для ионов и молекул, структурную основу для функционирования рецепторов и ферментов (белков, гликопротеинов, гликолипидов) и механическую. В осуществлении специализированной, дыхательной, функции – переносе кислорода или двуокиси углерода – основную роль играют белки мембраны, «встроенные» в липидный бислой. Зрелые эритроциты не способны к синтезу нуклеиновых кислот и гемоглобина; для них характерен низкий уровень обмена, что обеспечивает достаточно длительный период жизни этих клеток (120 сут).

По мере старения эритроцита площадь его поверхности уменьшается, в то время как содержание гемоглобина остается без изменения. Установлено, что в «зрелом» возрасте эритроциты длительно сохраняют постоянство химического состава, но по мере старения клеток содержание в них химических веществ постепенно понижается. Цитоскелет эритроцита образуется и контролируется мультигенными и ассоциированными с мембраной «семействами» белков, организующих специализированные мембранные домены, поддерживающие функцию и форму этой строго специализированной клетки.

Электрический потенциал эритроцита

Мембрана эритроцита содержит 50% протеина, до 45 % липидов и до 10 % углеводов. На поверхности интактных клеток «сетевое» распределение зарядов определяется гликопротеидом, содержащим сиаловую (нейтраминовую) кислоту, обусловливающую до 62 % поверхностного отрицательного заряда клетки.

Полагают, что каждый электрический заряд соответствует 1 молекуле этой кислоты. Потеря поверхностью эритроцита сиаловой кислоты приводит к понижению его электрофоретической подвижности (ЭФП) и подавлению транспорта катионов. Следовательно, на поверхности клеток существует «мозаика» зарядов, определяемая катионными и анионными группами, соотношение которых и определяет общий электрический заряд эритроцитов.

Для поддержания оптимального состояния гомеостаза форменные элементы крови должны обладать стабильным зарядом. Высокая стабильность ЭФП обеспечивается тонким механизмом ее регуляции – сбалансированности процессов перекисного окисления липидов (ПОЛ) в мембранах эритроцитов и защитного действия антиоксидантной системы.

Эмпирически установлено, что на мембране эритроцитов располагаются рецепторы для антител, и наличие на поверхности даже небольшого их количества может нарушить нормальные физиологические функции в организме и изменить ЭФП эритроцитов. Это может влиять на уровень содержания гемоглобина в последних, поскольку содержание гемоглобина и ЭФП строго скоординировано.

Необходимо также учитывать, что при экстремальных воздействиях на организм негативных факторов продукты перикисного окисления липидов влияют на электрокинетические свойства эритроцитов. В свою очередь, это отражается на скорости протекания перикисных процессов в их мембранах.

Благодаря электростатическому отталкиванию («распору» по Чижевскому) одноименно заряженных клеток эритроцитов последние беспрепятственно движутся по кровеносным сосудам, выполняя свою кислородно-транспортную функцию. Поэтому нарушение стабильности заряда можно считать интегральным показателем патологических сдвигов в организме.

Эритроци́ты также известные под названием кра́сные кровяны́е тельца́ , -клетки крови человека. Эритроциты - высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO 2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2-3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем - комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо кординируется с ионом Fe 2+ гемоглобина, образуя оксигемоглобин HbO 2:

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование - стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты - промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся. Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду.Плазмолемму пронизывают трансмембранные белки - гликофорины, которые, благодаря большому количеству остатков сиаловой кислоты, ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеидной природы - агглютиногены - факторы систем групп крови(на данный момент изучено более 15 систем групп крови: AB0, резус фактор, антиген Даффи (англ.)русск., антиген Келл, антиген Кидд (англ.)русск.), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.



Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У человека диаметр эритроцита составляет 7,2-7,5 мкм, толщина - 2 мкм, объём - 76-110 мкм³ Мембрана эритроцита представляет собой пластичную молекулярную мозаику, состоящую из белков, липопротеинов и гликопротеинов и, возможно, чисто липидных участков. Толщина ее составляет около 10 нм, она примерно в миллион раз более проницаема для анионов, чем для катионов. Перенос веществ через мембрану совершается в зависимости от их химических свойств разными способами: гидродинамически (путем диффузии), когда вещества, как в растворе, проходят через заполненные водой мембранные поры, или, если вещества растворимы в жирах, путем проникновения через липидные участки. Некоторые вещества способны вступать в легко обратимые связи со встроенными в мембрану молекулами - переносчиками, и в дальнейшем они или пассивно, или в результате так называемого активного транспорта проходят через мембрану.

45.Образование эритроцитов. Факторы, участвующие в образовании эритроцитов и гемоглобина, регуляция эритропоэза. СОЭ, ключевые факторы, определяющие величину СОЭ.

главным стимулом развития эритроцитов яв-ся гипоксия. Гипоксия – снижение сод-ия кислорода в тканях. Дефицит О2 способствует обр-ию эритропоэтинов в эпителие почек. Эритропоэтины поступают в кровь, затем в ККМ, где стимулируют диф-ку и развитие стволовых клеток в эритроциты. Регуляцией эритропоэза зан-ся витамин в12 и фолиевая кислота. Эти витамины необходимы для созревания и развития ядра клетки. Витамин в12 связывается в желудке с белком переносчиком и оьразуется транскобаламин и перенсится в 12 п.к.. Там он подвергается гидролизу, а вит. В12 с внутренним фактором кроветворения пост-ет в подвздошную кишку. В этом отделе в присутствий Са2+ связывается с мембраной энтероцита. Попадает вв кровь, и транспортируется к к-мишеням. Витамин В12 уч-ет в синтезе ДНК в эритробластах. Витамин в6 - кофермент, уч-ий в обр-ий гема в эритробластах. Витамин С – способствует метаболизму фолиевой кислоты в эритробластах. СОЭ – неспециический показатель на наличие болезни, т.к. повышается уровень белков плазмы крови и скорость оседания эритроцитов повышается. В норме от 5 до 10 мм/час.

Липосомы представляют собой в некотором роде прообраа клетки. Они служат моделью для исследований рааличных свойств клеточных мембран.

Липосомы нашли непосредственное применение в медицине. Например, можно ааключить внутрь липосом лекарственный препарат и испольаовать как фосфолипндную мнкрокапсулу для доставки лекарства в определенные органы и ткани. Липосомы не токсичны (при правильном подборе липидов), полностью усваиваются органиамом, способны преодолевать некоторые биологические барьеры. Так, инсулин, ааключенный в липосому, аащищен от действия пищеварительных ферментов. В настоящее время выясняется воаможность вводить этот препарат в липосомах перорально, что может набавить больных диабетом от необходимости систематических уколов. Проводятся работы по рааработке методов лнпосомальной терапии опухолей, ферментативной недостаточности, атеросклероаа. Научается воаможность прицельной доставки лекарственного препарата, ааключенного в липосомах, к больному органу или даже к больному участку (в частности, к пораженному участку сердца).

Для этого к липосоме присоединяется белковая молекулаантитело к соответствующему мембранному антигену органа-мишени. Липосомы с током крови рааносятся по всему органиаму и аадерживаются, окааавшись около органа-мишени.

Несмотря на ааманчивые перспективы липосомальной терапии, еще имеется достаточно много нерешенных вопросов. Ы ~Уре

с Ряс. 1. 12. Обраэование плоской бислойной лилианой мембраны

Плоские биелойиые липидиые мембраны (БЛМ) - другой тип модельных мембран. Такие мембраны получают иа маленьких отверстиях диаметром около 1 мм в пластинке ив пластика (например, фторопласта), погруженной в водную среду. На отверстие наносят каплю раствора липида (в спирте, хлороформе, гептаие или других растворителях). Раствори- тель диффундирует ив раствора в воду, и иа отверстии остается пленка липида. Эта плевка спонтанно утончается до тех пор, пока не обраэуется бимолекулярный слой толщиной около 6 нм. Лишний линия собирается в виде ободка-торуса у краев отверстия (рис. 1.12).

Плоские липидные мембраны, наряду с липосомами, широко испольэуются в качестве моделей для научения электрических свойств мембраны, их проницаемости и других научных исследований. С помощью модельных мембран научают ряд функций биологических мембран, а том числе, барьерную (например, селективность проницаемости - хорошую проницаемость для воды и плохую для ионов). Можно моделировать биологический транспорт, вводя в модельную мембрану молекулы-переносчики.

КОНТРОЛЪНЫВ ВОПРОСЫ, ЗАДАЧИ, ЗАДАНИЯ

1. Удельная электрическая емкость мембраны аксона, немеренная внутриклеточным микроэлектродом, окаэалась равной 0,5 микрофарад/см". По формуле плоского конденсатора оценить толщину гидрофобиого слоя мембраны с диэлектрической проницаемостью 2.

2. Какое расстояние на поверхности мембраны эритроцита проходит молекула фосфолнпида эа 1 секунду в реэультате латеральной диффуэииу Коэффициент латеральной диффуэии принять равным 10 1э м"/с. Сравните с окружностью эритроцита диаметром 8 мкм.

3. При фаэовом переходе мембранных фосфолипидов иэ жидкокристаллического состояния в гель толщина бислоя иэменяется. Как при этом пепелится электрическая емкость мембраныу Как иэменится напряженность электрического поля в мембранеу

4. С помощью спин-меченых молекул фосфолипидов установлен градиент вяэкости по толщине мембраны. Опишите эксперимент. Где вяэкость выше: у поверхности мембраны или в ее центреу

ЭРИТРОЦИТЫ

Эритроциты - красные кровяные тельца. Они наиболее часто имеют двояковогнутую форму. Диаметр эритроцита равен 7,3 мкм, а поверхность -145 мкм2. Двояковогнутую форму имеют эритроциты - нормоцитыЗЙри та­кой форме в эритроците нет ни одной точки, которая отстояла бы более чем на 0,85 мкм от его поверхности^ Ее л и бы эритроциты имели форму шара, то центр клетки находился бы на расстоянии 25 мкм, а общая поверхность была бы на 20 % меньше. Соотношение площади к объему, равное 1,5, благопри­ятствует деформируемости эритроцитов и способствует переносу кислорода от легких к органам/ Уменьшение этого соотношения, наблюдаемое при уве­личении объема эритроцита, приобретение им сферической формы, делает его менее деформируемым. Это ведет к быстрому разрушению эритроцита. Кроме того, такая форма позволяет эритроциту закрепляться в фибриновой сети при образовании тромба^£реди эритроцитов кроме нормоцитов встре­чаются микроциты (с d < 7,2 мкм) и макроцитьг^с d > 8-9 мкм). По форме вы­явлены дискоциты (нормоциты), планоциты (с плоской поверхностью), сто-матоциты (куполообразные), сфероциты (шаровидные), эхиноциты (шило­видные) и др.

Мембрана эритроцита состоит из 4-х слоев.

Средние два слоя состоят из фосфолипидов, стабилизированных холе­стерином. Увеличение соотношения холестерин/фосфолипиды в мембране увеличивает ее вязкость, уменьшает ее текучесть и эластичность. Снижается деформируемость эритроцита.

Фосфолипиды - главный структурно-функциональный компонент мем­бран. Различают четыре основных класса фосфолипидов, которые в эритро-цитарной мембране содержатся в следующих концентрациях: фосфатидилхо-лин - 28 %, фосфатидилэтаноламин - 27 %, сфингомиелин 26 %, фосфати-дилсерин -13 %.

Фосфолипидная молекула состоит из трех основных частей - "головки" и двух "хвостов". "Хвосты" - вытянутые цепи жирных кислотой состав фос­фолипидов эритроцитарной мембраны входят олеиновая, арахидоновая, ли-нолевая, пальмитиновая и стеариновая кислоты. В бислое гидрофильные "го­ловки", фосфолипидных молекул образуют верхнюю и нижнюю поверхности мембраны, а гидрофобные "хвосты"^ббр&шены друг к другу и скрыты в ее толще. Важной особенностью мембран является асимметрия бислоя - различ­ный состав липидов в его внутреннем и наружном слоях>Дсимметрия бислоя создается и поддерживается ферментами липидного обмена. Она обеспечива­ет межклеточные взаимодействия - фосфолипиды мембран эритроцитов об­новляются за счет их обмена с липидами плазмы крови. В течение суток об­менивается 25 % всех мембранных фосфолипидов.

Белки являются другим наряду с фосфолипидамй важным компонентом мембраны. Они различаются по степени погружения в липидный бислой: не­которые располагаются поверхностно, образуя наружный слой мембраны; другие пронизывают его насквозь; третьи - поддерживают бислой со сторо­ны цитоплазмы, образуя внутренний слой. Взаимодействуя друг с другом, белки создают каркас мембраны, обеспечивая ее прочность? Между белками и липидами существует тесная взаимосвязь. Липиды определяют подвиж­ность белков и отвечают за пластичность и деформабельность мембран.

Основные классы мембранных белков представлены интегральными и периферическими протеинами.

Интегральные белки тесно связаны с липидным бислоем, пронизыва­ют его насквозь и могут включать в свой состав липидные и углеводные фрагменты.

(Протеин-3 является основным интегральным белком. Он, взаимодей­ствуя с анкирино"м> расположенным на внутренней стороне мембраны, обес­печивает прочную связь липидного бислоя с периферическими белками. Функции протеина-3 следующие: он является основным переносчиком анио­нов, Додержит участки для связывания глицеральдегидфосфатдегидрогеназы, альдолазы, гемоглобина. На его наружной поверхности имеется антигенная система, определяющая групповую принадлежность эритроцита.

Гликофорины образуют большие сиалогликопептидные молекулы: Гликозилированные части гликофоринов, неся на себе заряженные группьГ или рецепторы, способствуют их распространению на значительные расстоя­ния кнаружи от поверхности мембранц. ГликофориньАусиливают действие трансмембранных протеинов, способствуют укреплению и стабилизации ци-тоскелета.

Мембранные АТФ-азы - их 3. На*-К+-АТФ-аза выводит из эритроцита Na+, а вводит К+. Са2+-АТФ-аза - перемещает Са2+ из эритроцита, когда он связан с белком кальмодулином. При повышении концентрации Са2* в цито­плазме усиливается работа кальциевого насоса, предупреждается распад мембранного скелетач_1\^2+-АТФ-аза может быть модулятором изменения формы эритроцитов. Функция всех мембранных АТФ-аз заключается в энер­гетическом обеспечении активного транспорта ионов.

Периферические белки отличаются меньшей глубиной проникновения в бислой и слабым взаимодействием с ним.

Спектрин - главный протеин мембранного скелета., В состав последне­го входят также и другие периферические белки: актин, протеин-4.1 и про-теин-4.9 (связывает актин). Все они локализуются на цитозольной поверхно­сти мембраны и образует основу скелета мембраны, имеющего прочную, жё­сткую структуру.

Ацетилхолинэстераза - фермент, катализирующий расщепление аце-тилхолина,) находится на наружной стороне эритроцитарной мембраны. Большинство ферментов гликолиза ориентировано на цитоскелете эритроци­тарной мембраны.

Белки, образующие мембрану эритроцитов, выполняют множество функций: обеспечивают прочность цитоскелета, контролируют постоянство ионного состава цитоплазмы при участии транспортных АТФ-аз, участвуют в специфическом узнавании биологически активных веществ, регулируют внутриклеточный метаболизм, определяют иммунные свойства, а также обеспечивают энергетические потребности клетки.

В отличие от мембран других клеток, мембрана эритроцитов имеет вы­сокую проницаемость для С>2, ССЬ, НСОз", СГ.Она плохо проницаема для ка­тионов Na+, К+, которые медленно проходят через трансмембранные поры.

Эритроциты млекопитающих - безъядерные образования с очень низ­ким собственным дыханием. Без ядра эритроцит потребляет в 200 раз меньше U2, чем ядерные клетки. Снижение потребления Oi ведет к увеличению про­должительности жизни эритроцита. Основным источником энергии у них яв-

ляется глюкоза. Энергия, необходимая для сохранении структуры и стабили­зации гемоглобина, образуется за счет гликолиза и пентозного шунта.




Top