Парная линейная регрессия. Парная линейная регрессия (с демо)

И корреляция

1.1. Понятие регрессии

Парной регрессией называется уравнение связи двух переменных у и х

вида y = f (x ),

где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением: y = a + b × x +e .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но ли-

нейных по оцениваемым параметрам:

· полиномы разных степеней

· равносторонняя гипербола:

Примеры регрессий, нелинейных по оцениваемым параметрам:

· степенная

· показательная

· экспоненциальная

Наиболее часто применяются следующие модели регрессий:

– прямой

– гиперболы

– параболы

– показательной функции

– степенная функция

1.2. Построение уравнения регрессии

Постановка задачи. По имеющимся данным n наблюдений за совместным

изменением двух параметров x и y {(xi ,yi ), i=1,2,...,n} необходимо определить

аналитическую зависимость ŷ=f(x) , наилучшим образом описывающую данные наблюдений.

Построение уравнения регрессии осуществляется в два этапа (предполагает решение двух задач):

– спецификация модели (определение вида аналитической зависимости

ŷ=f(x) );

– оценка параметров выбранной модели.

1.2.1. Спецификация модели

Парная регрессия применяется, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной.

Применяется три основных метода выбора вида аналитической зависимости:

– графический (на основе анализа поля корреляций);

– аналитический, т. е. исходя из теории изучаемой взаимосвязи;

– экспериментальный, т. е. путем сравнения величины остаточной дисперсии D ост или средней ошибки аппроксимации , рассчитанных для различных

моделей регрессии (метод перебора).

1.2.2. Оценка параметров модели

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

В случае линейной регрессии параметры а и b находятся из следующей

системы нормальных уравнений метода МНК:

(1.1)

Можно воспользоваться готовыми формулами, которые вытекают из этой

(1.2)

Для нелинейных уравнений регрессии, приводимых к линейным с помощью преобразования (x , y ) → (x’ , y’ ), система нормальных уравнений имеет

вид (1.1) в преобразованных переменных x’ , y’ .

Коэффициент b при факторной переменной x имеет следующую интерпретацию: он показывает, на сколько изменится в среднем величина y при изменении фактора x на 1 единицу измерения .

Гиперболическая регрессия :

x’ = 1/x ; y’ = y .

Уравнения (1.1) и формулы (1.2) принимают вид

Экспоненциальная регрессия:

Линеаризующее преобразование: x’ = x ; y’ = lny .

Модифицированная экспонента : , (0 < a 1 < 1).

Линеаризующее преобразование: x’ = x ; y’ = ln y – К│.

Величина предела роста K выбирается предварительно на основе анализа

поля корреляций либо из качественных соображений. Параметр a 0 берется со

знаком «+», если y х > K и со знаком «–» в противном случае.

Степенная функция:

Линеаризующее преобразование: x’ = ln x ; y’ = ln y .

Показательная функция:

Линеаризующее преобразование: x’ = x ; y’ = lny .

https://pandia.ru/text/78/146/images/image026_7.jpg" width="459" height="64 src=">

Парабола второго порядка :

Парабола второго порядка имеет 3 параметра a 0, a 1, a 2, которые определяются из системы трех уравнений

1.3. Оценка тесноты связи

Тесноту связи изучаемых явлений оценивает линейный коэффициент

парной корреляции rxy для линейной регрессии (–1 ≤ r xy ≤ 1)

и индекс корреляции ρxy для нелинейной регрессии

Имеет место соотношение

Долю дисперсии, объясняемую регрессией , в общей дисперсии результативного признака у характеризует коэффициент детерминации r2xy (для линейной регрессии) или индекс детерминации (для нелинейной регрессии).

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

Для оценки качества построенной модели регрессии можно использовать

показатель (коэффициент, индекс) детерминации R 2 либо среднюю ошибку аппроксимации.

Чем выше показатель детерминации или чем ниже средняя ошибка аппроксимации, тем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение

расчетных значений от фактических

Построенное уравнение регрессии считается удовлетворительным, если

значение не превышает 10–12 %.

1.4. Оценка значимости уравнения регрессии, его коэффициентов,

коэффициента детерминации

Оценка значимости всего уравнения регрессии в целом осуществляется с

помощью F -критерия Фишера.

F- критерий Фишера заключается в проверке гипотезы Но о статистической незначимости уравнения регрессии. Для этого выполняется сравнение

фактического F факт и критического (табличного) F табл значений F- критерия

Фишера.

F факт определяется из соотношения значений факторной и остаточной

дисперсий, рассчитанных на одну степень свободы

где n – число единиц совокупности; m – число параметров при переменных.

Для линейной регрессии m = 1 .

Для нелинейной регрессии вместо r 2 xy используется R 2.

F табл – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы k1 = m , k2 = n – m – 1 (для линейной регрессии m = 1) и уровне значимости α.

Уровень значимости α вероятность отвергнуть правильную гипотезу

при условии, что она верна. Обычно величина α принимается равной 0,05 или

Если F табл < F факт, то Н0 -гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии и линейного коэффициента парной корреляции применяется

t- критерий Стьюдента и рассчитываются доверительные интервалы каждого

из показателей.

Согласно t- критерию выдвигается гипотеза Н0 о случайной природе показателей, т. е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия t факт для оцениваемых коэффициентов регрессии и коэффициента корреляции путем сопоставления их значений с величиной стандартной ошибки

Стандартные ошибки параметров линейной регрессии и коэффициента

корреляции определяются по формулам

Сравнивая фактическое и критическое (табличное) значения t- статистики

t табл и t факт принимают или отвергают гипотезу Но.

t табл – максимально возможное значение критерия под влиянием случайных факторов при данной степени свободы k = n– 2 и уровне значимости α.

Связь между F- критерием Фишера (при k 1 = 1; m =1) и t- критерием Стьюдента выражается равенством

Если t табл < t факт, то Но отклоняется, т. е. a, b и не случайно отличаются

от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт, то гипотеза Но не отклоняется и признается случайная природа формирования а, b или https://pandia.ru/text/78/146/images/image041_2.jpg" width="574" height="59">

F табл определяется из таблицы при степенях свободы k 1 = 1, k 2 = n –2 и при

заданном уровне значимости α. Если F табл < F факт, то признается статистическая значимость коэффициента детерминации. В формуле (1.6) величина m означает число параметров при переменных в соответствующем уравнении регрессии.

1.5. Расчет доверительных интервалов

Рассчитанные значения показателей (коэффициенты a , b , ) являются

приближенными, полученными на основе имеющихся выборочных данных.

Для оценки того, насколько точные значения показателей могут отличаться от рассчитанных, осуществляется построение доверительных интервалов.

Доверительные интервалы определяют пределы, в которых лежат точные значения определяемых показателей с заданной степенью уверенности, соответствующей заданному уровню значимости α.

Для расчета доверительных интервалов для параметров a и b уравнения линейной регрессии определяем предельную ошибку Δ для каждого показателя:

Величина t табл представляет собой табличное значение t- критерия Стьюдента под влиянием случайных факторов при степени свободы k = n –2 и заданном уровне значимости α.

Формулы для расчета доверительных интервалов имеют следующий вид:

https://pandia.ru/text/78/146/images/image045_3.jpg" width="188" height="62">

где t γ – значение случайной величины, подчиняющейся стандартному нормальному распределению, соответствующее вероятности γ = 1 – α/2 (α – уровень значимости);

z’ = Z (rxy) – значение Z- распределения Фишера, соответствующее полученному значению линейного коэффициента корреляции rxy .

Граничные значения доверительного интервала (r– , r+ ) для rxy получаются

из граничных значений доверительного интервала (z– , z+ ) для z с помощью

функции, обратной Z- распределению Фишера

1.6. Точечный и интервальный прогноз по уравнению линейной

регрессии

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии

соответствующего (прогнозного
) значения x p

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin, уpmax интервала, содержащего точную величину для прогнозного значения https://pandia.ru/text/78/146/images/image050_2.jpg" width="37" height="44 src=">

и затем строится доверительный интервал прогноза , т. е. определяются нижняя и верхняя границы интервала прогноза

Контрольные вопросы:

1. Что понимается под парной регрессией?

2. Какие задачи решаются при построении уравнения регрессии?

3. Какие методы применяются для выбора вида модели регрессии?

4. Какие функции чаще всего используются для построения уравнения парной регрессии?

5. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае линейной регрессии?

6. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае гиперболической, показательной регрессии?

7. По какой формуле вычисляется линейный коэффициент парной корреляции r xy ?

8. Как строится доверительный интервал для линейного коэффициента парной корреляции?

9. Как вычисляется индекс корреляции?

10. Как вычисляется и что показывает индекс детерминации?

11. Как проверяется значимость уравнения регрессии и отдельных коэффициентов?

12. Как строится доверительный интервал прогноза в случае линейной регрессии?

Лабораторная работа № 1

Задание.1 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Вычислить линейный коэффициент парной корреляции.

2. Проверить значимость коэффициента парной корреляции.

3. Построить доверительный интервал для линейного коэффициента парной корреляции.

Задание. 2 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Построить предложенные уравнения регрессии, включая линейную регрессию.

2. Вычислить индексы парной корреляции для каждого уравнения.

3. Проверить значимость уравнений регрессии и отдельных коэффициентов линейного уравнения.

4. Определить лучшее уравнение регрессии на основе средней ошибки аппроксимации.

5. Построить интервальный прогноз для значения x = x max для линейного

уравнения регрессии.

Требования к оформлению результатов

Отчет о лабораторной работе должен содержать разделы:

1. Описание задания;

2. Описание решения лабораторной работы (по этапам);

3. Изложение полученных результатов.

Таблица П1

Исходные данные к лабораторным работам № 1, 2

Наличие предметов длительного пользования в домашних хозяйствах по регионам Российской Федерации (европейская часть территории без республик Северного Кавказа) (по материалам выборочного обследования бюджетов домашних хозяйств; на 100 домохозяйств; штук)

Парная линейная регрессия

Предварительные расчеты :

;
;
;
;
;

;
.

Построение таблицы вида

Среднее значение

Формулы для расчетов параметров:

,
.

Линейн

Оценка тесноты связи :

а) коэффициент корреляции
, или
;

При компьютерном подборе использовать встроенную функцию Коррел

б) коэффициент эластичности
;

в) коэффициент детерминации .

Оценка значимости уравнения регрессии в целом:

Предварительные расчеты с построением таблицы вида

а) F -критерий Фишера при числе степеней свободы
и
и уровне значимости 0,05 смотреть в таблице. Расчетное значение критерия:

.

Если расчетное значение F- критерия больше табличного, нулевая гипотеза об отсутствии значимой связи признаков x и y отклоняется, и делается вывод о существенности этой связи.

б) Средняя ошибка аппроксимации

.

Оценка значимости параметров регрессии:

а) Стандартная ошибка параметра a рассчитывается по формуле

, где
.

б) Стандартная ошибка коэффициента регрессии b рассчитывается по формуле

.

в) Стандартная ошибка коэффициента корреляции рассчитывается по формуле

.

t -критерий Стъюдента при числе степеней свободы
и уровне значимости 0,05 смотреть в таблице.

Фактические значения t -статистики:

,
,
.

Если фактическое значение по абсолютной величине превышает табличное, гипотезу о несущественности параметра регрессии можно отклонить, параметр признается значимым.

Связь между F -критерием Фишера и t -критерием Стъюдента выражается равенством

.

Расчет доверительных интервалов для параметров регрессии:

Доверительный интервал для параметра a определяется как
;

доверительный интервал для коэффициента регрессии определяется как
.

При компьютерном анализе использовать в Excel Сервис/Анализ данных/Регрессия.

Интервальный прогноз на основе линейного уравнения регрессии:

Пусть – прогнозное значение факторного признака;
– точечный прогноз результативного признака. Тогда

а) средняя ошибка прогноза :

;

б) доверительный интервал прогноза

с помощью табличного редактора MS Excel

Активизация надстройки Пакет анализа

Для активизации надстройки Пакет анализа необходимо выполнить следующие действия:

1. Выбрать команду Сервис/Надстройки.

2. В появившемся диалоговом окне установить флажок Пакет анализа.

В соответствии с вариантом задания, используя статистический материал, необходимо :

2. Оценить тесноту связи зависимой переменной (результативного фактора) с объясняющей переменной с помощью показателей корреляции и детерминации.

3. Оценить с помощью F -критерия Фишера статистическую надежность моделирования.

4. Оценить статистическую значимость параметров регрессии и корреляции.

5. Определить среднюю ошибку аппроксимации.

6. Используя коэффициент эластичности, выполнить количественную оценку влияния объясняющего фактора на результат.

7. Выполнить точечный и интервальный прогноз результативного признака при увеличении объясняющего признака на 25% от его среднего значения (достоверность прогноза 95%).

8. На одной диаграмме изобразить поле корреляции исходных данных и прямую регрессии.

Пример

Имеются данные о годовой цене программы «Мастер делового администрирования» и числе слушателей в образовательном учреждении.

I. Вводим исходные данные в документ Excel .

II. Вызываем надстройку Анализ данных в меню Сервис.

III. Выбираем инструмент Регрессия .

IV. Заполняем соответствующие позиции окна Регрессия.

V. После нажатия Ок получаем протокол решения задачи.

VI. Анализируем полученный протокол.

1) Коэффициент регрессии ;

Свободный член уравнения регрессии
.

Примечание . При необходимости результаты округляются с нужной точностью. Требование по округлению можно провести изначально, задав количество знаков после запятой в меню Формат ячейки.

Уравнение парной линейной регрессии имеет вид: .

2) Коэффициент корреляции
, что свидетельствует о тесной связи признаковy и x . Коэффициент детерминации
. Полученное уравнение регрессии объясняет 53% вариации признакаy , остальные 47% изменчивости этого признака обусловлены влиянием неучтенных в модели факторов.

3) Оценим статистическую значимость (надежность моделирования) уравнения в целом. Расчетное значение критерия Фишера указано в протоколе,
. Критическое значение этого критерия можно найти с помощь статистической функцииF РАСПОБР табличного редактора Е xcel .

Входными параметрами этой функции являются:

– уровень значимости (вероятность), имеется в виду вероятность ошибки отвергнуть верную гипотезу о статистической незначимости построенного уравнения регрессии. Как правило, выбирают уровень значимости, равный 0,05 или 0,01;

– число степеней свободы 1 – совпадает с количеством параметров при переменной в уравнении регрессии, для парной линейной регрессии
это число равно единице;

– число степеней свободы 2 равно для парной линейной регрессии
, гдеn – объем исходных статистических данных.

Выполняем действия Вставка/Функция , выбираем нужное.

Поскольку расчетное значение F-критерия больше табличного, равного 4,84, нулевая гипотеза об отсутствии значимой связи признаков x и y отклоняется и делается вывод о существенности этой связи.

4) Оценим статистическую значимость параметров a и b в уравнении регрессии с помощью t - критерия Стъюдента.

Расчетные значения статистики Стъюдента
,
. Соответствующее табличное значение можно определить через статистическую функциюСТЪЮДРАСПОБР , число степеней свободы равно
.

Поскольку фактические значения по абсолютной величине превышают табличное, равное 2,2, гипотезу о несущественности параметров регрессии можно отклонить.

5) Определим среднюю ошибку аппроксимации,
. Понадобится выполнение вспомогательных расчетов, оформленных в виде таблицы.

Таким образом, средняя ошибка аппроксимации по данному уравнению регрессии составляет 12,66%, модель парной линейной регрессии можно признать удовлетворительной и пригодной для прогнозирования.

6) Выполним количественную оценку влияния фактора x на фактор y , используя коэффициент эластичности. Для парной линейной регрессии его можно найти по формуле
. Имеем

.

Следовательно, при увеличении количества слушателей на 1% годовая цена уменьшится на 0,4%.

7) Выполним расчет прогноза y при увеличении фактора x на 25% от среднего.

Прогнозное значение .

Точечный прогноз признака y : .

Средняя ошибка прогноза равна ,

где
– остаточная дисперсия,
–дисперсия фактораx .

Численное значение суммы
в протоколе обозначено как остаточноеSS.

Тогда
,
.

Самый быстрый способ получения вспомогательных характеристик – среднего значения фактораx и - дисперсии, воспользоваться инструментомОписательная статистика в пакете Анализ данных.

Протокол вывода результатов имеет вид

Доверительный интервал прогноза: , где– соответствующее табличное значение критерия Стъюдента (найдено ранее по функцииСТЪЮДРАСПОБР ,
).

Следовательно,

т.е. можно быть уверенным на 95%, что цена годового курса при 35 слушателях будет варьироваться в указанных пределах (при точечном прогнозе цены в 3,65825 тыс. долл.).

8) Для построения диаграммы выполним следующие действия:

Шаг 1 Вставка/ Диаграмма/График

Шаг 3 Ряд/Добавить/Значения/ Выделить столбец регрессионных значений фактора – .

Шаг 4 Подписи оси X / Выделить столбец значений x .

Шаг 4 Каждому из рядов присвоить имя, подписать оси координат и название диаграммы.

Примечание.

Для построения диаграммы значения фактора x должны быть отсортированы по возрастанию с сохранением соответствующего значения y . Это может быть сделано так Данные/Сортировка/ Выделить столбец, в котором необходимо сделать сортировку. Например,

Задания для самостоятельной работы

Вариант 1

x

y

Вариант 2

x – энерговооруженность на 10-ти предприятиях, кВт;

y – производительность труда, тыс. руб.

Вариант 3

x – качество земли, баллы;

y – урожайность, ц/га.

Вариант 4

x – качество земли, баллы;

y – урожайность, ц/га.

Вариант 5

x – товарооборот;

y –издержки обращения по отношению к товарообороту.

Вариант 6

x – электровооруженность на одного рабочего;

y – выпуск готовой продукции на одного рабочего.

Вариант 7

x –уровень доходов семьи;

y – расходы на продукты питания (в расчете на 100 руб. доходов).

Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Важным и нетривиальным этапом построения регрессионной модели является выбор уравнения регрессии. Этот выбор основывается на теоретических данных об изучаемом явлении и предварительном анализе имеющихся статистических данных.

Уравнение парной линейной регрессии имеет вид:

где - теоретические значения результативного признака, полученные по уравнению регрессии; - коэффициенты (параметры) уравнения регрессии.

Модель регрессии строится на основании статистических данных, причем могут использоваться как индивидуальные значения признака, так и сгруппированные данные. Для выявления связи между признаками по достаточно большому числу наблюдений статистические данные предварительно группируют по обоим признакам и строят корреляционную таблицу. При помощи корреляционной таблицы отображается только парная корреляционная связь, т.е. связь результативного признака с одним фактором. Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и требование минимальности суммы квадратов отклонений эмпирических данных от выровненных значений результативного фактора :

.

Для линейного уравнения регрессии имеем:

Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

где - объем исследуемой совокупности (число единиц наблюдения).

Решение системы нормальных уравнений позволяет найти параметры уравнения регрессии .

Коэффициент парной линейной регрессии является средним значением в точке , поэтому его экономическая интерпретация затруднена. Смысл этого коэффициента можно трактовать как усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов. Коэффициент показывает, на сколько в среднем изменяется значение результативного признака при изменении факторного признака на единицу.

После получения уравнения регрессии необходимо проверить его адекватность, то есть соответствие фактическим статистическим данным. С этой целью производится проверка значимости коэффициентов регрессии: выясняется, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом случайного стечения обстоятельств.

Для проверки значимости коэффициентов простой линейной регрессии при объеме совокупности меньше 30 единиц используется критерий Стьюдента. Сопоставляя значение параметра с его средней ошибкой, определяют величину критерия:


где - средняя ошибка параметра .

Средняя ошибка параметров и рассчитываются по следующим формулам:

; ,

– объем выборки;

Среднеквадратическое отклонение результативного признака от выровненных значений ;

Среднеквадратическое отклонение факторного признака от общей средней :

или

Тогда расчетные (фактические) значения критерия соответственно равны:

- для параметра ;

- для параметра .

Вычисленные значения критерия сравниваются с критическими значениями , которые определяют по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы , где - объем выборки, -1 ( - число факторных признаков). В социально-экономических исследованиях уровень значимости обычно принимают 0.05 или 0.01. Параметр признается значимым, если (отклоняется гипотеза о том, что параметр лишь в силу случайных обстоятельств оказался равным полученной величине, а в действительности равен нулю).

Адекватность регрессионной модели может быть оценена при помощи -критерия Фишера. Расчетное значение критерия определяется по формуле ,

где - число параметров модели;

Объем выборки.

По таблице определяется критическое значение -критерия Фишера для принятого уровня значимости и числа степеней свободы , . Если , то модель регрессии признается адекватной по этому критерию (отвергается гипотеза о несоответствии заложенных в уравнении и реально существующих связей).

Вторая задача корреляционно-регрессионного анализа – измерение тесноты зависимости результативного и факторного признака.

Для всех видов связи задача измерения тесноты зависимости может быть решена с помощью исчисления теоретического корреляционного отношения:

,

где - дисперсия в ряду выровненных значений результативного признака , обусловленная факторным признаком ;

- дисперсия в ряду фактических значений . Это общая дисперсия, которая слагается из дисперсии, обусловленной фактором (т.е. факторной дисперсии), и дисперсии остатка (отклонение эмпирических значений признака от выровненных теоретических).

На основании правила сложения дисперсий теоретическое корреляционное отношение может быть выражено через остаточную дисперсию :

.

Так как дисперсия отражает вариацию в ряду только за счет вариации фактора , а дисперсия отражает вариацию за счет всех факторов, то их отношение, именуемое теоретическим коэффициентом детерминации , показывает, какой удельный вес в общей дисперсии ряда занимает дисперсия, вызываемая вариацией фактора . Квадратный корень из отношения этих дисперсий дает теоретическое корреляционное отношение. При нелинейных связях теоретическое корреляционное отношение называют индексом корреляции и обозначают .

Если , то это означает, что роль других факторов в вариации отсутствует, остаточная дисперсия равна нулю и отношение означает полную зависимость вариации от . Если , то это означает, что вариация никак не влияет на вариацию , и в этом случае . Следовательно, корреляционное отношение принимает значения от 0 до 1. Чем ближе корреляционное отношение к 1, тем теснее связь между признаками.

Кроме того, при линейной форме уравнения связи применяется другой показатель тесноты связи – линейный коэффициент корреляции:

.

Линейный коэффициент корреляции принимает значения от –1 до 1. Отрицательные значения указывают на обратную зависимость, положительные – на прямую. Чем ближе модуль коэффициента корреляции к единице, тем теснее связь между признаками.

Приняты следующие граничные оценки линейного коэффициента корреляции:

Связи нет;

Связь слабая;

Связь посредственная;

Связь сильная;

Связь очень сильная.

Квадрат линейного коэффициента корреляции называют линейным коэффициентом детерминации.

Факт совпадения или несовпадения теоретического корреляционного отношения и линейного коэффициента корреляции используется для оценки формы зависимости. Их значения совпадают только при наличии линейной связи. Несовпадение этих величин свидетельствует о нелинейности связи между признаками. Принято считать, что если , то гипотезу о линейности связи можно считать подтвержденной.

Показатели тесноты связи, особенно исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки их надежности (значимости), дающей возможность распространять выводы, полученные по выборочным данным, на генеральную совокупность.

Для этого рассчитывается средняя ошибка коэффициента корреляции:

Где - число степеней свободы при линейной зависимости.

Затем находится отношение коэффициента корреляции к его средней ошибке, то есть , которое сравнивается с табличным значением критерия Стьюдента.

Если фактическое (расчетное) значение больше табличного (критического, порогового), то линейный коэффициент корреляции считается значимым, а связь между и - реальной.

После проверки адекватности построенной модели (уравнения регрессии) ее необходимо проанализировать. Для удобства интерпретации параметра используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле:

Точность полученной модели может быть оценена на основании значения средней ошибки аппроксимации:

Кроме того, в некоторых информативными являются данные об остатках, характеризующих отклонение -х наблюдений от расчетных значений . Особый экономический интерес представляют значения, остатки которых имеют наибольшие положительные или отрицательные отклонения от ожидаемого уровня анализируемого показателя.

Линейная парная регрессия находит широкое применение в экономет­рике в виде четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида

или . (3.6)

Уравнение вида позволяет по заданным значени­ям фактора х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора x .

Построение парной линейной регрессии сводится к оценке ее пара­метров и . Оценки параметров линейной регрессии могут быть найдены разными методами. Например, методом наименьших квадратов (МНК).

Согласно метода наименьших квадратов оценки параметров и выбираются таким образом, чтобы сумма квадратов отклонений фактических значений ре­зультативного признака (у) от расчетных (теоретических, модельных) была ми­нимальна.Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной (рис. 3.2):

, (3.7)

Рис. 3.2. Линия регрессии с минимальной суммой квадратов расстояний по вертикали между точками и этой линией

Для дальнейших выводов в выражении (3.7) подставим модельное значение, т. е. и получим:

Чтобы найти минимум функции (3.8), надо вычислить част­ные производные по каждому из параметров и и приравнять их к нулю:

Преобразуя эту систему, получим следующую систему нор­мальных уравнений для оценки параметров и :

. (3.9)

Матричная форма записи этой системы имеет вид:

. (3.10)

Решая систему нормальных уравнений (3.10) в матричной форме получим:

Алгебраическая форма решения системы (3.11) можно записать следующим образам:

После несложных преобразовании формулу (3.12) можно записать в удобной форме:

Необходимо заметить, что оценки параметров уравнения регрессии можно получить и по другим формулам, например:

(3.14)

Здесь выборочный парный линейный коэффициент корреляции.

После вычисления параметров регрессии мы можем записать уравнение математической модели регрессии :

Необходим заметить, что параметр показывает среднее изменение результата с изменением фактора на одну единицу. Так, если в функции издержек (у - издержки (тыс. руб.), х - количество единиц продукции). То, следовательно, с увеличением объема продукции (х) на 1 ед. издержки производства возрастают в среднем на 2 тыс. руб., т. е. дополнительный прирост продукции на 1 ед. потребует увеличения затрат в среднем на 2 тыс. руб.

Возможность четкой экономической интерпретации коэф­фициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследова­ниях.

Формально - значение у при х = 0. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка свободного члена не имеет смысла. Параметр может не иметь экономического содержания. Попытки экономически интерпретировать параметр могут привести к абсурду, особен­но при < 0.

Пример 3.2 . Предположим по группе предприятий, выпускающих один и тот же вид продукции, рассматривается функция издержек: . Информация, необходимая для расчета оценок параметров и , представлена в табл. 3.1.

Таблица 3.1

Расчетная таблица

№ предприятия

Выпуск продукции, тыс. ед. ()

Затраты на производство, млн руб. ()

Система нормальных уравнений будет иметь вид:

.

Решение этой системы по формуле (4.13) дает результат:

Запишем модель уравнения регрессии (4.16):

Подставив в уравнение значения x , найдем теоретические (модельные) значения у, (см. последнюю графу табл. 3.1).

В данном случае величина параметра не имеет экономичес­кого смысла.

В рассматриваемом примере имеем:

Уравнение регрессии всегда дополняется показателем тесно­ты связи. При использовании линейной регрессии в качестве та­кого показателя выступает линейный коэффициент корреляции . Существуют разные модификации формулы линейного коэф­фициента корреляции. Некоторые из них приведены ниже:

Как известно, линейный коэффициент корреляции находит­ся в границах: .

Если коэффициент регрессии , то, и, наобо­рот, при, .

По данным табл. 4.1 величина линейного коэффициента кор­реляции составила 0,993, что достаточно близко к 1 и означает наличие очень тесной зависимости затрат на производство от ве­личины объема выпущенной продукции.

Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в ее линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю еще не означает от­сутствие связи между признаками. При иной спецификации мо­дели связь между признаками может оказаться достаточно тесной.

Для оценки качества подбора линейной функции рассчиты­вается квадрат линейного коэффициента корреляции , назы­ваемый коэффициентом детерминации. Коэффициент детермина­ции характеризует долю дисперсии результативного признака у, объяснимуюрегрессией, в общей дисперсии результативного признака.

Соответственно величина характеризует долю дисперсии вызванную влиянием остальных не учтенных в модели факторов.

В нашем примере . Следовательно, уравнением регрессии объясняется 98,6% дисперсии результативного признака,а на долюпрочих факторов приходится лишь 1,4% ее дисперсии (т. е. остаточная дисперсия). Величина коэффициента детерминации служитодним из критериев оценки качества линейной модели. Чем больше доля объясненной вариации, тем соответственно меньшероль прочих факторов, и, следовательно, линейная модельхорошо аппроксимирует исходные данные и ею можно воспользоваться для прогноза значений результативного признака. Так, полагая, что объем продукции предприятия может составить 6 тыс. ед., прогнозное значение для издержек производства ока­жется 221,01 тыс. руб.

Парная линейная регрессия

ПРАКТИКУМ

Парная линейная регрессия: Практикум. –

Изучение эконометрики предполагает приобретение студентами опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели, выбора метода оценки параметров модели, оценки ее качества, интерпретации результатов, получения прогнозных оценок и пр. Практикум поможет студентам приобрести практические навыки в этих вопросах.

Утверждено редакционно-издательским советом

Составитель: М.Б. Перова, д.э.н., профессор

Общие положения

Эконометрическое исследование начинается с теории, устанавливающей связь между явлениями. Из всего круга факторов, влияющих на результативный признак, выделяются наиболее существенные факторы. После того, как было выявлено наличие взаимосвязи между изучаемыми признаками, определяется точный вид этой зависимости с помощью регрессионного анализа.

Регрессионный анализ заключается в определении аналитического выражения (в определении функции), в котором изменение одной величины (результативного признака) обусловлено влиянием независимой величины (факторного признака). Количественно оценить данную взаимосвязь можно с помощью построения уравнения регрессии или регрессионной функции.

Базисной регрессионной моделью является модель парной (однофакторной) регрессии. Парная регрессия – уравнение связи двух переменных у и х :

где – зависимая переменная (результативный признак);

–независимая, объясняющая переменная (факторный признак).

В зависимости от характера изменения у с изменением х различают линейные и нелинейные регрессии.

Линейная регрессия

Данная регрессионная функция называется полиномом первой степени и используется для описания равномерно развивающихся во времени процессов.

Наличие случайного члена (ошибки регрессии) связано с воздействием на зависимую переменную других неучтенных в уравнении факторов, с возможной нелинейностью модели, ошибками измерения, следовательно, появлениеслучайной ошибки уравнения регрессии может быть обусловлено следующими объективными причинами :

1) нерепрезентативность выборки. В модель парной регрессии включается фактор, не способный полностью объяснить вариацию результативного признака, который может быть подвержен влиянию многих других факторов (пропущенных переменных) в гораздо большей степени. Наприем, заработная плата может зависеть, кроме квалификации, от уровня образования, стажа работы, пола и пр.;

2) существует вероятность того, что переменные, участвующие в модели, могут быть измерены с ошибкой. Например, данные по расходам семьи на питание составляются на основании записей участников опросов, которые, как предполагается, тщательно фиксируют свои ежедневные расходы. Разумеется, при этом возможны ошибки.

На основе выборочного наблюдения оценивается выборочное уравнение регрессии (линия регрессии ):

,

где
– оценки параметров уравнения регрессии (
).

Аналитическая форма зависимости между изучаемой парой признаков (регрессионная функция) определяется с помощью следующих методов :

    На основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности. Например, если изучается зависимость между доходами населения и размером вкладов населения в банки, то очевидно, что связь прямая.

    Графический метод , когда характер связи оценивается визуально.

Эту зависимость можно наглядно увидеть, если построить график, отложив на оси абсцисс значения признака х , а на оси ординат – значения признака у . Нанеся на график точки, соответствующие значениям х и у , получим корреляционное поле :

а) если точки беспорядочно разбросаны по всему полю – это говорит об отсутствии зависимости между этими признаками;

б) если точки концентрируются вокруг оси, идущей от нижнего левого угла в верхний правый – то имеется прямая зависимость между признаками;

в) если точки концентрируются вокруг оси, идущей от верхнего левого угла в нижний правый – то обратная зависимость между признаками.

Если на корреляционном поле соединим точки отрезками прямой, то получим ломаную линию с некоторой тенденцией к росту. Это будет эмпирическая линия связи или эмпирическая линия регрессии . По ее виду можно судить не только о наличии, но и о форме зависимости между изучаемыми признаками.

Построение уравнения парной регрессии

Построение уравнения регрессии сводится к оценке ее параметров. Эти оценки параметров могут быть найдены различными способами. Одним их них является метод наименьших квадратов (МНК). Суть метода состоит в следующем. Каждому значению соответствует эмпирическое (наблюдаемое) значение. Построив уравнение регрессии, например уравнение прямой линии, каждому значениюбудет соответствовать теоретическое (расчетное) значение. Наблюдаемые значенияне лежат в точности на линии регрессии, т.е. не совпадают с. Разность между фактическим и расчетным значениями зависимой переменной называетсяостатком :

МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических , т.е. сумма квадратов остатков, минимальна:

Для линейных уравнений и нелинейных, приводимых к линейным, решается следующая система относительно а и b :

где n – численность выборки.

Решив систему уравнений, получим значения а и b , что позволяет записать уравнение регрессии (регрессионное уравнение):

где – объясняющая (независимая) переменная;

–объясняемая (зависимая) переменная;

Линия регрессии проходит через точку (,) и выполняются равенства:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы уравнений:

где – среднее значение зависимого признака;

–среднее значение независимого признака;

–среднее арифметическое значение произведения зависимого и независимого признаков;

–дисперсия независимого признака;

–ковариация между зависимым и независимым признаками.

Выборочной ковариацией двух переменных х , у называется средняя величина произведения отклонений этих переменных от своих средних

Параметр b при х имеет большое практическое значение и носит название коэффициента регрессии. Коэффициент регрессии показывает, на сколько единиц в среднем изменяется величина у х на 1 единицу своего измерения.

Знак параметра b в уравнении парной регрессии указывает на направление связи:

если
, то связь между изучаемыми показателями прямая, т.е. с увеличением факторного признаках увеличивается и результативный признак у , и наоборот;

если
, то связь между изучаемыми показателями обратная, т.е. с увеличением факторного признаках результативный признак у уменьшается, и наоборот.

Значение параметра а в уравнении парной регрессии в ряде случаев можно трактовать как начальное значение результативного признака у . Такая трактовка параметра а возможна только в том случае, если значение
имеет смысл.

После построения уравнения регрессии, наблюдаемые значения y можно представить как:

Остатки , как и ошибки, являются случайными величинами, однако они, в отличие от ошибок, наблюдаемы. Остаток есть та часть зависимой переменнойy , которую невозможно объяснить с помощью уравнения регрессии.

На основании уравнения регрессии могут быть вычислены теоретические значения у х для любых значений х .

В экономическом анализе часто используется понятие эластичности функции. Эластичность функции
рассчитывается как относительное изменениеy к относительному изменению x . Эластичность показывает, на сколько процентов изменяется функция
при изменении независимой переменной на 1%.

Поскольку эластичность линейной функции
не является постоянной величиной, а зависит отх , то обычно рассчитывается коэффициент эластичности как средний показатель эластичности.

Коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится величина результативного признака у при изменении факторного признака х на 1% от своего среднего значения:

где
– средние значения переменныхх и у в выборке.

Оценка качества построенной модели регрессии

Качество модели регрессии – адекватность построенной модели исходным (наблюдаемым) данным.

Чтобы измерить тесноту связи, т.е. измерить, насколько она близка к функциональной, нужно определить дисперсию, измеряющую отклонения у от у х и характеризующую остаточную вариацию, обусловленную прочими факторами. Они лежат в основе показателей, характеризующих качество модели регрессии.

Качество парной регрессии определяется с помощью коэффициентов, характеризующих

1) тесноту связи – индекса корреляции, парного линейного коэффициента корреляции;

2) ошибку аппроксимации;

3) качество уравнения регрессии и отдельных его параметров – средние квадратические ошибки уравнения регрессии в целом и отдельных его параметров.

Для уравнений регрессии любого вида определяется индекс корреляции , который характеризует только тесноту корреляционной зависимости, т.е. степень ее приближения к функциональной связи:

,

где – факторная (теоретическая) дисперсия;

–общая дисперсия.

Индекс корреляции принимает значения
, при этом,

если

если
– то связь между признакамих и у является функциональной, Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками. Если
, то связь можно считать тесной

Дисперсии, необходимые для вычисления показателей тесноты связи вычисляются:

Общая дисперсия , измеряющая общую вариацию за счет действия всех факторов:

Факторная (теоретическая) дисперсия, измеряющая вариацию результативного признака у за счет действия факторного признака х :

Остаточная дисперсия , характеризующая вариацию признака у за счет всех факторов, кроме х (т.е. при исключенном х ):

Тогда по правилу сложения дисперсий:

Качество парной линейной регрессии может быть определено также с помощью парного линейного коэффициента корреляции :

,

где
– ковариация переменныхх и у ;

–среднеквадратическое отклонение независимого признака;

–среднеквадратическое отклонение зависимого признака.

Линейный коэффициент корреляции характеризует тесноту и направление связи между изучаемыми признаками. Он измеряется в пределах [-1; +1]:

если
– то связь между признаками прямая;

если
– то связь между признаками обратная;

если
– то связь между признаками отсутствует;

если
или
– то связь между признаками является функциональной, т.е. характеризуется полным соответствием междух и у . Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками.

Если индекс корреляции (парный линейный коэффициент корреляции) возвести в квадрат, то получим коэффициент детерминации.

Коэффициент детерминации – представляет собой долю факторной дисперсии в общей и показывает, на сколько процентов вариация результативного признака у объясняется вариацией факторного признака х :

Он характеризует не всю вариацию у от факторного признака х , а лишь ту ее часть, которая соответствует линейному уравнению регрессии, т.е. показывает удельный вес вариации результативного признака, линейно связанной с вариацией факторного признака.

Величина
– доля вариации результативного признака, которую модель регрессии учесть не смогла.

Рассеяние точек корреляционного поля может быть очень велико, и вычисленное уравнение регрессии может давать большую погрешность в оценке анализируемого показателя.

Средняя ошибка аппроксимации показывает среднее отклонение расчетных значений от фактических:

Максимально допустимое значение 12–15%.

Мерой разброса зависимой переменной вокруг линии регрессии служит стандартная ошибка.Для всей совокупности наблюдаемых значений рассчитывается стандартная (среднеквадратическая) ошибка уравнения регрессии , которая представляет собой среднее квадратическое отклонение фактических значений у относительно теоретических значений, рассчитанных по уравнению регрессии у х .

,

где
– число степеней свободы;

m – число параметров уравнения регрессии (для уравнения прямой m =2).

Оценить величину средней квадратической ошибки можно сопоставив ее

а) со средним значение результативного признака у ;

б) со средним квадратическим отклонением признака у :

если
, то использование данного уравнения регрессии является целесообразным.

Отдельно оцениваются стандартные (среднеквадратические) ошибки параметров уравнения и индекса корреляции :

;
;
.

х – среднее квадратическое отклонение х .

Проверка значимости уравнения регрессии и показателей тесноты связи

Чтобы построенную модель можно было использовать для дальнейших экономических расчетов, проверки качества построенной модели недостаточно. Необходимо также проверить значимость (существенность) полученных с помощью метода наименьших квадратов оценок уравнения регрессии и показателя тесноты связи, т.е. необходимо проверить их на соответствие истинным параметрам взаимосвязи.

Это связано с тем, что исчисленные по ограниченной совокупности показатели сохраняют элемент случайности, свойственный индивидуальным значениям признака. Поэтому они являются лишь оценками определенной статистической закономерности. Необходима оценка степени точности и значимости (надежности, существенности) параметров регрессии. Под значимостью понимают вероятность того, что значение проверяемого параметра не равно нулю, не включает в себя величины противоположных знаков.

Проверка значимости – проверка предположения того, что параметры отличаются от нуля.

Оценка значимости парного уравнения регрессии сводится к проверке гипотез о значимости уравнения регрессии в целом и отдельных его параметров (a , b ), парного коэффициента детерминации или индекса корреляции.

В этом случае могут быть выдвинуты следующие основные гипотезы H 0 :

1)
– коэффициенты регрессии являются незначимыми и уравнение регрессии также является незначимым;

2)
– парный коэффициент детерминации незначим и уравнение регрессии также является незначимым.

Альтернативной (или обратной) выступают следующие гипотезы:

1)
– коэффициенты регрессии значимо отличаются от нуля, и построенное уравнение регрессии является значимым;

2)
– парный коэффициент детерминации значимо отличаются от нуля и построенное уравнение регрессии является значимым.

Проверка гипотезы о значимости уравнения парной регрессии

Для проверки гипотезы о статистической незначимости уравнения регрессии в целом и коэффициента детерминации используется F -критерий (критерий Фишера ):

или

где k 1 = m –1 ; k 2 = n m – число степеней свободы;

n – число единиц совокупности;

m – число параметров уравнения регрессии;

–факторная дисперсия;

–остаточная дисперсия.

Гипотеза проверяется следующим образом:

1) если фактическое (наблюдаемое) значение F -критерия больше критического (табличного) значения данного критерия
, то с вероятностью
основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации отвергается, и уравнение регрессии признается значимым;

2) если фактическое (наблюдаемое) значение F-критерия меньше критического значения данного критерия
, то с вероятностью (
) основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации принимается, и построенное уравнение регрессии признается незначимым.

Критическое значение F -критерия находится по соответствующим таблицам в зависимости от уровня значимости и числа степеней свободы
.

Число степеней свободы – показатель, который определяется как разность между объемом выборки (n ) и числом оцениваемых параметров по данной выборке (m ). Для модели парной регрессии число степеней свободы рассчитывается как
, так как по выборке оцениваются два параметра (
).

Уровень значимости – величина, определяемая
,

где – доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Обычно принимается 0,95. Таким образом– это вероятность того, что оцениваемый параметр не попадет в доверительный интервал, равная 0,05 (5%) .

Тогда в случае оценки значимости уравнения парной регрессии критическое значение F-критерия вычисляется как
:

.

Проверка гипотезы о значимости параметров уравнения парной регрессии и индекса корреляции

При проверке значимости параметров уравнения (предположения того, что параметры отличаются от нуля) выдвигается основная гипотеза о незначимости полученных оценок (
. В качестве альтернативной (обратной) выдвигается гипотеза о значимости параметров уравнения (
).

Для проверки выдвинутых гипотез используется t -критерий (t -статистика) Стьюдента . Наблюдаемое значение t -критерия сравнивается со значением t -критерия, определяемого по таблице распределения Стьюдента (критическим значением). Критическое значение t -критерия
зависит от двух параметров: уровня значимостии числа степеней свободы
.

Выдвинутые гипотезы проверяются следующим образом:

1) если модуль наблюдаемого значения t -критерия больше критического значения t -критерия, т.е.
, то с вероятностью
основную гипотезу о незначимости параметров регрессии отвергают, т.е. параметры регрессии не равны 0;

2) если модуль наблюдаемого значения t -критерия меньше или равен критическому значению t -критерия, т.е.
, то с вероятностью
основная гипотеза о незначимости параметров регрессии принимается, т.е. параметры регрессии почти не отличаются от 0 или равны 0.

Оценка значимости коэффициентов регрессии с помощью критерия Стьюдента проводится путем сопоставления их оценок с величиной стандартной ошибки:

;

Для оценки статистической значимости индекса (линейного коэффициента) корреляции применяется также t -критерий Стьюдента.




Top