Парная линейная регрессия. Уравнение регрессии

Наиболее простой с точки зрения понимания, интерпретации и техники расчетов является линейная форма регрессии .

Уравнение линейной парной регрессии , где

a 0 , a 1 - параметры модели, ε i - случайная величина (величина остатка).

Параметры модели и их содержание:


Уравнение регрессии дополняется показателем тесноты связи. В качестве такого показателя выступает линейный коэффициент корреляции , который рассчитывают по формуле:

или .

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:

,

где

.

Соответственно величина характеризует долю дисперсии , вызванную влиянием остальных, неучтенных в модели, факторов.

После того как уравнение регрессии построено, выполняется проверка его адекватности и точности.Эти свойства модели исследуются на основе анализа ряда остатков ε i (отклонений расчетных значений от фактических).

Уровень ряда остатков

Корреляционный и регрессионный анализ проводится для ограниченной по объему совокупности. В связи с этим показатели регрессии, корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенной модели.

Проверка адекватности модели заключается в определении значимости модели и установление наличия или отсутствия систематической ошибки.

Значения у 1 соответствующие данным х i при теоретических значениях а 0 и а 1 , случайные. Случайными будут и рассчитанные по ним значения коэффициентов а 0 и а 1 .

Проверка значимостиотдельных коэффициентов регрессии проводится по t-критерию Стьюдента путем проверки гипотезы равенстве нулю каждого коэффициента регрессии. При этом выясняют, насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатом действия случайных величин. Для соответствующих коэффициентов регрессии применяют соответствующие формулы.

Формулы для определения t- критерия Стьюдента

где

S a 0 ,S a 1 - стандартные отклонения свободного члена и коэффициента регрессии. Определяются по формулам

где

S ε - стандартное отклонение остатков модели (стандартная ошибка оценки), которая определяется по формуле

Расчетные значения t-критерия сравнивают с табличным значением критерия t αγ , .которое определяется при (n — k — 1) степенях свободы и соответствующем уровне значимости α. Если расчетное значение t -критерия превосходит его табличное значение t αγ ,то параметр признается значимым. В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Оценка значимости уравнения регрессии в целом производится на основе - критерия Фишера , которому предшествует дисперсионный анализ.

Общая сумма квадратов отклонений переменной от среднего значения раскладывается на две части - «объясненную» и «необъясненную»:

Общая сумма квадратов отклонений;

Сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений);


- остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов.

Схема дисперсионного анализа имеет вид, представленный в таблице 35 ( - число наблюдений, - число параметров при переменной ).

Таблица 35 - Схема дисперсионного анализа

Компоненты дисперсии Сумма квадратов Число степеней свободы Дисперсия на одну степень свободы
Общая
Факторная
Остаточная

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину -критерия Фишера:

Для проверки значимости уравнения регрессии в целом используют F-критерий Фишера . В случае парной линейной регрессии значимость модели регрессии определяется по следующей формуле: .

Если при заданном уровне значимости расчетное значение F -критерия с γ 1 =k, γ 2 =(п - k - 1) степенями свободы больше табличного, то модель считается значимой, гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Проверка наличия или отсутствия систематической ошибки (выполнения предпосылок метода наименьших квадратов — МНК) осуществляется на основе анализа ряда остатков. Расчет случайных ошибок параметров линейной регрессии и коэффициента корреляции производят по формулам

,

Для проверки свойства случайности ряда остатков можно использовать критерий поворотных точек (пиков). Точка считается поворотной, если выполняются следующие условия: ε i -1 < ε i > ε i +1 или ε i -1 > ε i < ε i +1

Далее подсчитывается число поворотных точек р. Критерием случайности с 5 % уровнем значимости, т.е. с доверительной вероятностью 95%, является выполнение неравенства:

Квадратные скобки означают, что берется целая часть числа, заключенного в скобки. Если неравенство выполняется, то модель считается адекватной.

Для проверки равенства математического ожидания остаточной последовательности нулю вычисляется среднее значение ряда остатков:

Если = 0, то считается, что модель не содержит постоянной систематической ошибки и адекватна по критерию нулевого среднего.

Если ≠ 0, то проверяется нулевая гипотеза о равенстве нулю математического ожидания. Для этого вычисляют t -критерий Стьюдента по формуле:

где S ε — стандартное отклонение остатков модели (стандартная ошибка).

Значение t -критерий сравнивают с табличным t αγ . Если выполняется неравенство t > t αγ , то модель неадекватна по данному критерию

Дисперсия уровней ряда остатков должна быть одинаковой для всех значений х (свойство гомоскедастичности ).Если это условие не соблюдается, то имеет место гетероскедастичность .

Для оценки гетероскедастичности при малом объеме выборки можно использовать метод Гольдфельда—Квандта , суть которого заключается в том, что необходимо:

Расположить значения переменной х в порядке возрастания;

Разделить совокупность упорядоченных наблюдений на две группы;

По каждой группе наблюдений построить уравнения регрессии;

Определить остаточные суммы квадратов для первой и второй групп по формулам: ; , где

n 1 - число наблюдений в первой группе;

n 2 - число наблюдений во второй группе.

Рассчитать критерий или (в числителе должна быть большая сумма квадратов). При выполнении нулевой гипотезы о гомоскедастичности критерий F расч будет удовлетворять F-критерию со степенями свободы γ 1 =n 1 -m, γ 2 =n - n 1 - m) для каждой остаточной суммы квадратов (где mчисло оцениваемых параметров в уравнении регрессии). Чем больше величина F расч превышает табличное значение F- критерия, тем больше нарушена предпосылка о равенстве дисперсий остаточных величин.

Проверку независимости последовательности остатков (отсутствие автокорреляции) осуществляют с помощью d-критерия Дарбина—Уотсона . Он определяется по формуле:

Расчетное значение критерия сравнивается с нижним d 1 и верхним d 2 критическими значениями статистики Дарбина—Уотсона. Возможны следующие случаи:

1) если d < d 1 , то гипотеза о независимости остатков отвергается и модель признается неадекватной по критерию независимости остатков;

2) если d 1 < d < d 2 (включая сами эти значения), то считается, что нет достаточных оснований сделать тот или иной вывод. Необходимо использовать дополнительный критерий, например первый коэффициент автокорреляции:

Если расчетное значение коэффициента по модулю меньше табличного значения г 1кр, то гипотеза об отсутствии автокорреляции принимается; в противном случае эта гипотеза отвергается;

3) если d 2 < d < 2, то гипотеза о независимости остатков принимается и модель признается адекватной по данному критерию;

4) если d> 2, то это свидетельствует об отрицательной автокорреляции остатков. В этом случае расчетное значение критерия необходимо преобразовать по формуле d′= 4 - dи сравнивать с критическим значением d′, а не d.

Проверку соответствия распределения остаточной последовательности нормальному закону распределенияможно осуществить с помощью R/S - критерия, который определяется по формуле:

где S ε — стандартное отклонение остатков модели (стандартная ошибка). Расчетное значение R/S - критерия сравнивают с табличными значениями (нижней и верхней границами данного отношения), и если значение не попадает в интервал между критическими границами, то с заданным уровнем значимости гипотеза о нормальности распределения отвергается; в противном случае гипотеза принимается

Для оценки качества регрессионных моделей целесообразно также использовать индекс корреляции (коэффициент множественной корреляции).

Формула определения индекса корреляции

где

Общая сумма квадратов отклонений зависимой переменной от ее среднего значения. Определяется по формуле:

Сумма квадратов отклонений, объясненная регрессией. Определяется по формуле:

Остаточная сумма квадратов отклонений. Вычисляется по формуле:

Уравнение можно представить следующим образом:

Индекс корреляции принимает значение от 0 до 1. Чем выше значение индекса, тем ближе расчетные значения результативного признака к фактическим. Индекс корреляции используется при любой форме связи переменных; при парной линейной регрессии он равен парному коэффициенту корреляции.

В качестве меры точности модели применяют точностные характеристики: Для определения меры точности модели рассчитывают:

- максимальная ошибка - соответствует отклонению расчетному отклонению расчетных значений от фактических

- средняя абсолютная ошибка - ошибка показывает, насколько в среднем отклоняются фактические значения от модели

- дисперсия ряда остатков (остаточная дисперсия)

где - среднее значение ряда остатков. Определяется по формуле

- средняя квадратическая ошибка . Представляет собой корень квадратный из дисперсии: , чем меньше значение ошибки, тем точнее модель

- средняя относительная ошибка аппроксимации .

Средняя ошибка аппроксимации не должна превышать 8-10%.

Если модель регрессии признана адекватной, а параметры модели значимы, то переходят к построению прогноза.

Прогнозируемое значение переменной у получается при подстановке в уравнение регрессии ожидаемой величины независимой переменной х прогн.

Данный прогноз называется точечным. Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большой надежностью.

Доверительные интервалы прогноза зависят от стандартной ошибки, удаления х прогн от своего среднего значения , количества наблюдений n и уровня значимости прогноза α. Доверительные интервалы прогноза рассчитывают по формуле: или

где

t табл - определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы γ=n-k-1.

Пример13 .

По данным проведенного опроса восьми групп семей известны данные связи расходов населения на продукты питания с уровнем доходов семьи (таблица 36).

Таблица 36 - Связи расходов населения на продукты питания с уровнем доходов семьи

Расходы на продукты питания, , тыс. руб. 0,9 1,2 1,8 2,2 2,6 2,9 3,3 3,8
Доходы семьи, , тыс. руб. 1,2 3,1 5,3 7,4 9,6 11,8 14,5 18,7

Предположим, что связь между доходами семьи и расходами на продукты питания линейная. Для подтверждения нашего предположения построим поле корреляции (рисунок 8).

По графику видно, что точки выстраиваются в некоторую прямую линию.

Для удобства дальнейших вычислений составим таблицу 37.

Рассчитаем параметры линейного уравнения парной регрессии . Для этого воспользуемся формулами:

Рисунок 8 - Поле корреляции.

Получили уравнение:

Т.е. с увеличением дохода семьи на 1000 руб. расходы на питание увеличиваются на 168 руб.

Расчет линейного коэффициента корреляции .

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Парной регрессией называется уравнение связи двух переменных

у и х Вида y = f (x ),

где у - зависимая переменная (результативный признак);

х - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Метод наименьших квадратов МНК

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

5. Оценка статистической значимости показателей корреляции, параметров уравнения парной линейной регрессии, уравнения регрессии в целом.

6. Оценка степени тесноты связи между количественными переменными. Коэффициент ковариации. Показатели корреляции: линейный коэффициент корреляции, индекс корреляции (= теоретическое корреляционное отношение).

Коэффициент ковариации

Мч(у) - Т.е. получим корреляционную зависимость.

Наличие корреляционной зависимости не может ответить на вопрос о причине связи. Корреляция устанавливает лишь меру этой связи, т.е. меру согласованного варьирования.

Меру взаимосвязи му 2 мя переменными можно найти с помощью ковариации.

, ,

Величина показателя ковариации зависит от единиц в γ измеряется переменная. Поэтому для оценки степени согласованного варьирования используют коэффициент корреляции - безразмерную характеристику имеющую определенный пределы варьирования..

7. Коэффициент детерминации. Стандартная ошибка уравнения регрессии.

Коэффициент детерминации (rxy2) - характеризует долю дисперсии результативного признака y, объясняемую дисперсией, в общей дисперсии результативного признака. Чем ближе rxy2 к 1, тем качественнее регрессионная модель, то есть исходная модель хорошо аппроксимирует исходные данные.

8. Оценка стат значимости показателей корр-ии, параметров уравнения парной линейной регрессии, уравнения регрессии в целом: t -критерий Стьюдента, F -критерий Фишера.

9. Нелинейные модели регрессии и их линеаризация.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно исключенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным , но линейных по оцениваемым параметрам:


Нелинейные модели регрессии и их линеаризация

При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются по МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

,

мы преобразовываем ее в линейный вид:

где переменные выражены в логарифмах.

Далее обработка МНК та же: строится система нормальных уравнений и определяются неизвестные параметры. Потенцируя значение , находим параметр a и соответственно общий вид уравнения степенной функции.

Вообще говоря, нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Эта оценка определяется, как и в линейной регрессии, МНК. Так, в двухфакторном уравнении нелинейной регрессии

может быть проведена линеаризация, введением в него новых переменных . В результате получается четырехфактороное уравнение линейной регрессии

10.Мультиколлинеарность. Методы устранения мультиколлинеарности.

Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью . Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности.

Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК).

Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам:

ü затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

ü оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений, что делает модель непригодной для анализа и прогнозирования

Методы устранения мультиколлинеарности

- исключение переменной (ых) из модели;

Однако нужна определенная осмотрительность при применении данного метода. В этой ситуации возможны ошибки спецификации.

- получение дополнительных данных или построение новой выборки;

Иногда для уменьшения мультиколлинеарности достаточно величить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных уменьшает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серъезными издержками. Кроме того, такой подход может увеличить

автокорреляцию.

- изменение спецификации модели;

В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо меняется форма модели, либо добавляются новые объясняющие переменные, не учтенные в модели.

- использование предварительной информации о некоторых параметрах;

11.Классическая линейная модель множественной регр-ии (КЛММР). Определение параметров ур-я множественной регр-ии методом наим квадратов.

И корреляция

1.1. Понятие регрессии

Парной регрессией называется уравнение связи двух переменных у и х

вида y = f (x ),

где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением: y = a + b × x +e .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но ли-

нейных по оцениваемым параметрам:

· полиномы разных степеней

· равносторонняя гипербола:

Примеры регрессий, нелинейных по оцениваемым параметрам:

· степенная

· показательная

· экспоненциальная

Наиболее часто применяются следующие модели регрессий:

– прямой

– гиперболы

– параболы

– показательной функции

– степенная функция

1.2. Построение уравнения регрессии

Постановка задачи. По имеющимся данным n наблюдений за совместным

изменением двух параметров x и y {(xi ,yi ), i=1,2,...,n} необходимо определить

аналитическую зависимость ŷ=f(x) , наилучшим образом описывающую данные наблюдений.

Построение уравнения регрессии осуществляется в два этапа (предполагает решение двух задач):

– спецификация модели (определение вида аналитической зависимости

ŷ=f(x) );

– оценка параметров выбранной модели.

1.2.1. Спецификация модели

Парная регрессия применяется, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной.

Применяется три основных метода выбора вида аналитической зависимости:

– графический (на основе анализа поля корреляций);

– аналитический, т. е. исходя из теории изучаемой взаимосвязи;

– экспериментальный, т. е. путем сравнения величины остаточной дисперсии D ост или средней ошибки аппроксимации , рассчитанных для различных

моделей регрессии (метод перебора).

1.2.2. Оценка параметров модели

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

В случае линейной регрессии параметры а и b находятся из следующей

системы нормальных уравнений метода МНК:

(1.1)

Можно воспользоваться готовыми формулами, которые вытекают из этой

(1.2)

Для нелинейных уравнений регрессии, приводимых к линейным с помощью преобразования (x , y ) → (x’ , y’ ), система нормальных уравнений имеет

вид (1.1) в преобразованных переменных x’ , y’ .

Коэффициент b при факторной переменной x имеет следующую интерпретацию: он показывает, на сколько изменится в среднем величина y при изменении фактора x на 1 единицу измерения .

Гиперболическая регрессия :

x’ = 1/x ; y’ = y .

Уравнения (1.1) и формулы (1.2) принимают вид

Экспоненциальная регрессия:

Линеаризующее преобразование: x’ = x ; y’ = lny .

Модифицированная экспонента : , (0 < a 1 < 1).

Линеаризующее преобразование: x’ = x ; y’ = ln y – К│.

Величина предела роста K выбирается предварительно на основе анализа

поля корреляций либо из качественных соображений. Параметр a 0 берется со

знаком «+», если y х > K и со знаком «–» в противном случае.

Степенная функция:

Линеаризующее преобразование: x’ = ln x ; y’ = ln y .

Показательная функция:

Линеаризующее преобразование: x’ = x ; y’ = lny .

https://pandia.ru/text/78/146/images/image026_7.jpg" width="459" height="64 src=">

Парабола второго порядка :

Парабола второго порядка имеет 3 параметра a 0, a 1, a 2, которые определяются из системы трех уравнений

1.3. Оценка тесноты связи

Тесноту связи изучаемых явлений оценивает линейный коэффициент

парной корреляции rxy для линейной регрессии (–1 ≤ r xy ≤ 1)

и индекс корреляции ρxy для нелинейной регрессии

Имеет место соотношение

Долю дисперсии, объясняемую регрессией , в общей дисперсии результативного признака у характеризует коэффициент детерминации r2xy (для линейной регрессии) или индекс детерминации (для нелинейной регрессии).

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

Для оценки качества построенной модели регрессии можно использовать

показатель (коэффициент, индекс) детерминации R 2 либо среднюю ошибку аппроксимации.

Чем выше показатель детерминации или чем ниже средняя ошибка аппроксимации, тем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение

расчетных значений от фактических

Построенное уравнение регрессии считается удовлетворительным, если

значение не превышает 10–12 %.

1.4. Оценка значимости уравнения регрессии, его коэффициентов,

коэффициента детерминации

Оценка значимости всего уравнения регрессии в целом осуществляется с

помощью F -критерия Фишера.

F- критерий Фишера заключается в проверке гипотезы Но о статистической незначимости уравнения регрессии. Для этого выполняется сравнение

фактического F факт и критического (табличного) F табл значений F- критерия

Фишера.

F факт определяется из соотношения значений факторной и остаточной

дисперсий, рассчитанных на одну степень свободы

где n – число единиц совокупности; m – число параметров при переменных.

Для линейной регрессии m = 1 .

Для нелинейной регрессии вместо r 2 xy используется R 2.

F табл – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы k1 = m , k2 = n – m – 1 (для линейной регрессии m = 1) и уровне значимости α.

Уровень значимости α вероятность отвергнуть правильную гипотезу

при условии, что она верна. Обычно величина α принимается равной 0,05 или

Если F табл < F факт, то Н0 -гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии и линейного коэффициента парной корреляции применяется

t- критерий Стьюдента и рассчитываются доверительные интервалы каждого

из показателей.

Согласно t- критерию выдвигается гипотеза Н0 о случайной природе показателей, т. е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия t факт для оцениваемых коэффициентов регрессии и коэффициента корреляции путем сопоставления их значений с величиной стандартной ошибки

Стандартные ошибки параметров линейной регрессии и коэффициента

корреляции определяются по формулам

Сравнивая фактическое и критическое (табличное) значения t- статистики

t табл и t факт принимают или отвергают гипотезу Но.

t табл – максимально возможное значение критерия под влиянием случайных факторов при данной степени свободы k = n– 2 и уровне значимости α.

Связь между F- критерием Фишера (при k 1 = 1; m =1) и t- критерием Стьюдента выражается равенством

Если t табл < t факт, то Но отклоняется, т. е. a, b и не случайно отличаются

от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт, то гипотеза Но не отклоняется и признается случайная природа формирования а, b или https://pandia.ru/text/78/146/images/image041_2.jpg" width="574" height="59">

F табл определяется из таблицы при степенях свободы k 1 = 1, k 2 = n –2 и при

заданном уровне значимости α. Если F табл < F факт, то признается статистическая значимость коэффициента детерминации. В формуле (1.6) величина m означает число параметров при переменных в соответствующем уравнении регрессии.

1.5. Расчет доверительных интервалов

Рассчитанные значения показателей (коэффициенты a , b , ) являются

приближенными, полученными на основе имеющихся выборочных данных.

Для оценки того, насколько точные значения показателей могут отличаться от рассчитанных, осуществляется построение доверительных интервалов.

Доверительные интервалы определяют пределы, в которых лежат точные значения определяемых показателей с заданной степенью уверенности, соответствующей заданному уровню значимости α.

Для расчета доверительных интервалов для параметров a и b уравнения линейной регрессии определяем предельную ошибку Δ для каждого показателя:

Величина t табл представляет собой табличное значение t- критерия Стьюдента под влиянием случайных факторов при степени свободы k = n –2 и заданном уровне значимости α.

Формулы для расчета доверительных интервалов имеют следующий вид:

https://pandia.ru/text/78/146/images/image045_3.jpg" width="188" height="62">

где t γ – значение случайной величины, подчиняющейся стандартному нормальному распределению, соответствующее вероятности γ = 1 – α/2 (α – уровень значимости);

z’ = Z (rxy) – значение Z- распределения Фишера, соответствующее полученному значению линейного коэффициента корреляции rxy .

Граничные значения доверительного интервала (r– , r+ ) для rxy получаются

из граничных значений доверительного интервала (z– , z+ ) для z с помощью

функции, обратной Z- распределению Фишера

1.6. Точечный и интервальный прогноз по уравнению линейной

регрессии

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии

соответствующего (прогнозного
) значения x p

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin, уpmax интервала, содержащего точную величину для прогнозного значения https://pandia.ru/text/78/146/images/image050_2.jpg" width="37" height="44 src=">

и затем строится доверительный интервал прогноза , т. е. определяются нижняя и верхняя границы интервала прогноза

Контрольные вопросы:

1. Что понимается под парной регрессией?

2. Какие задачи решаются при построении уравнения регрессии?

3. Какие методы применяются для выбора вида модели регрессии?

4. Какие функции чаще всего используются для построения уравнения парной регрессии?

5. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае линейной регрессии?

6. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае гиперболической, показательной регрессии?

7. По какой формуле вычисляется линейный коэффициент парной корреляции r xy ?

8. Как строится доверительный интервал для линейного коэффициента парной корреляции?

9. Как вычисляется индекс корреляции?

10. Как вычисляется и что показывает индекс детерминации?

11. Как проверяется значимость уравнения регрессии и отдельных коэффициентов?

12. Как строится доверительный интервал прогноза в случае линейной регрессии?

Лабораторная работа № 1

Задание.1 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Вычислить линейный коэффициент парной корреляции.

2. Проверить значимость коэффициента парной корреляции.

3. Построить доверительный интервал для линейного коэффициента парной корреляции.

Задание. 2 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Построить предложенные уравнения регрессии, включая линейную регрессию.

2. Вычислить индексы парной корреляции для каждого уравнения.

3. Проверить значимость уравнений регрессии и отдельных коэффициентов линейного уравнения.

4. Определить лучшее уравнение регрессии на основе средней ошибки аппроксимации.

5. Построить интервальный прогноз для значения x = x max для линейного

уравнения регрессии.

Требования к оформлению результатов

Отчет о лабораторной работе должен содержать разделы:

1. Описание задания;

2. Описание решения лабораторной работы (по этапам);

3. Изложение полученных результатов.

Таблица П1

Исходные данные к лабораторным работам № 1, 2

Наличие предметов длительного пользования в домашних хозяйствах по регионам Российской Федерации (европейская часть территории без республик Северного Кавказа) (по материалам выборочного обследования бюджетов домашних хозяйств; на 100 домохозяйств; штук)

Линейная парная регрессия находит широкое применение в экономет­рике в виде четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида

или . (3.6)

Уравнение вида позволяет по заданным значени­ям фактора х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора x .

Построение парной линейной регрессии сводится к оценке ее пара­метров и . Оценки параметров линейной регрессии могут быть найдены разными методами. Например, методом наименьших квадратов (МНК).

Согласно метода наименьших квадратов оценки параметров и выбираются таким образом, чтобы сумма квадратов отклонений фактических значений ре­зультативного признака (у) от расчетных (теоретических, модельных) была ми­нимальна.Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной (рис. 3.2):

, (3.7)

Рис. 3.2. Линия регрессии с минимальной суммой квадратов расстояний по вертикали между точками и этой линией

Для дальнейших выводов в выражении (3.7) подставим модельное значение, т. е. и получим:

Чтобы найти минимум функции (3.8), надо вычислить част­ные производные по каждому из параметров и и приравнять их к нулю:

Преобразуя эту систему, получим следующую систему нор­мальных уравнений для оценки параметров и :

. (3.9)

Матричная форма записи этой системы имеет вид:

. (3.10)

Решая систему нормальных уравнений (3.10) в матричной форме получим:

Алгебраическая форма решения системы (3.11) можно записать следующим образам:

После несложных преобразовании формулу (3.12) можно записать в удобной форме:

Необходимо заметить, что оценки параметров уравнения регрессии можно получить и по другим формулам, например:

(3.14)

Здесь выборочный парный линейный коэффициент корреляции.

После вычисления параметров регрессии мы можем записать уравнение математической модели регрессии :

Необходим заметить, что параметр показывает среднее изменение результата с изменением фактора на одну единицу. Так, если в функции издержек (у - издержки (тыс. руб.), х - количество единиц продукции). То, следовательно, с увеличением объема продукции (х) на 1 ед. издержки производства возрастают в среднем на 2 тыс. руб., т. е. дополнительный прирост продукции на 1 ед. потребует увеличения затрат в среднем на 2 тыс. руб.

Возможность четкой экономической интерпретации коэф­фициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследова­ниях.

Формально - значение у при х = 0. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка свободного члена не имеет смысла. Параметр может не иметь экономического содержания. Попытки экономически интерпретировать параметр могут привести к абсурду, особен­но при < 0.

Пример 3.2 . Предположим по группе предприятий, выпускающих один и тот же вид продукции, рассматривается функция издержек: . Информация, необходимая для расчета оценок параметров и , представлена в табл. 3.1.

Таблица 3.1

Расчетная таблица

№ предприятия

Выпуск продукции, тыс. ед. ()

Затраты на производство, млн руб. ()

Система нормальных уравнений будет иметь вид:

.

Решение этой системы по формуле (4.13) дает результат:

Запишем модель уравнения регрессии (4.16):

Подставив в уравнение значения x , найдем теоретические (модельные) значения у, (см. последнюю графу табл. 3.1).

В данном случае величина параметра не имеет экономичес­кого смысла.

В рассматриваемом примере имеем:

Уравнение регрессии всегда дополняется показателем тесно­ты связи. При использовании линейной регрессии в качестве та­кого показателя выступает линейный коэффициент корреляции . Существуют разные модификации формулы линейного коэф­фициента корреляции. Некоторые из них приведены ниже:

Как известно, линейный коэффициент корреляции находит­ся в границах: .

Если коэффициент регрессии , то, и, наобо­рот, при, .

По данным табл. 4.1 величина линейного коэффициента кор­реляции составила 0,993, что достаточно близко к 1 и означает наличие очень тесной зависимости затрат на производство от ве­личины объема выпущенной продукции.

Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в ее линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю еще не означает от­сутствие связи между признаками. При иной спецификации мо­дели связь между признаками может оказаться достаточно тесной.

Для оценки качества подбора линейной функции рассчиты­вается квадрат линейного коэффициента корреляции , назы­ваемый коэффициентом детерминации. Коэффициент детермина­ции характеризует долю дисперсии результативного признака у, объяснимуюрегрессией, в общей дисперсии результативного признака.

Соответственно величина характеризует долю дисперсии вызванную влиянием остальных не учтенных в модели факторов.

В нашем примере . Следовательно, уравнением регрессии объясняется 98,6% дисперсии результативного признака,а на долюпрочих факторов приходится лишь 1,4% ее дисперсии (т. е. остаточная дисперсия). Величина коэффициента детерминации служитодним из критериев оценки качества линейной модели. Чем больше доля объясненной вариации, тем соответственно меньшероль прочих факторов, и, следовательно, линейная модельхорошо аппроксимирует исходные данные и ею можно воспользоваться для прогноза значений результативного признака. Так, полагая, что объем продукции предприятия может составить 6 тыс. ед., прогнозное значение для издержек производства ока­жется 221,01 тыс. руб.

Парная линейная регрессия

ПРАКТИКУМ

Парная линейная регрессия: Практикум. –

Изучение эконометрики предполагает приобретение студентами опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели, выбора метода оценки параметров модели, оценки ее качества, интерпретации результатов, получения прогнозных оценок и пр. Практикум поможет студентам приобрести практические навыки в этих вопросах.

Утверждено редакционно-издательским советом

Составитель: М.Б. Перова, д.э.н., профессор

Общие положения

Эконометрическое исследование начинается с теории, устанавливающей связь между явлениями. Из всего круга факторов, влияющих на результативный признак, выделяются наиболее существенные факторы. После того, как было выявлено наличие взаимосвязи между изучаемыми признаками, определяется точный вид этой зависимости с помощью регрессионного анализа.

Регрессионный анализ заключается в определении аналитического выражения (в определении функции), в котором изменение одной величины (результативного признака) обусловлено влиянием независимой величины (факторного признака). Количественно оценить данную взаимосвязь можно с помощью построения уравнения регрессии или регрессионной функции.

Базисной регрессионной моделью является модель парной (однофакторной) регрессии. Парная регрессия – уравнение связи двух переменных у и х :

где – зависимая переменная (результативный признак);

–независимая, объясняющая переменная (факторный признак).

В зависимости от характера изменения у с изменением х различают линейные и нелинейные регрессии.

Линейная регрессия

Данная регрессионная функция называется полиномом первой степени и используется для описания равномерно развивающихся во времени процессов.

Наличие случайного члена (ошибки регрессии) связано с воздействием на зависимую переменную других неучтенных в уравнении факторов, с возможной нелинейностью модели, ошибками измерения, следовательно, появлениеслучайной ошибки уравнения регрессии может быть обусловлено следующими объективными причинами :

1) нерепрезентативность выборки. В модель парной регрессии включается фактор, не способный полностью объяснить вариацию результативного признака, который может быть подвержен влиянию многих других факторов (пропущенных переменных) в гораздо большей степени. Наприем, заработная плата может зависеть, кроме квалификации, от уровня образования, стажа работы, пола и пр.;

2) существует вероятность того, что переменные, участвующие в модели, могут быть измерены с ошибкой. Например, данные по расходам семьи на питание составляются на основании записей участников опросов, которые, как предполагается, тщательно фиксируют свои ежедневные расходы. Разумеется, при этом возможны ошибки.

На основе выборочного наблюдения оценивается выборочное уравнение регрессии (линия регрессии ):

,

где
– оценки параметров уравнения регрессии (
).

Аналитическая форма зависимости между изучаемой парой признаков (регрессионная функция) определяется с помощью следующих методов :

    На основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности. Например, если изучается зависимость между доходами населения и размером вкладов населения в банки, то очевидно, что связь прямая.

    Графический метод , когда характер связи оценивается визуально.

Эту зависимость можно наглядно увидеть, если построить график, отложив на оси абсцисс значения признака х , а на оси ординат – значения признака у . Нанеся на график точки, соответствующие значениям х и у , получим корреляционное поле :

а) если точки беспорядочно разбросаны по всему полю – это говорит об отсутствии зависимости между этими признаками;

б) если точки концентрируются вокруг оси, идущей от нижнего левого угла в верхний правый – то имеется прямая зависимость между признаками;

в) если точки концентрируются вокруг оси, идущей от верхнего левого угла в нижний правый – то обратная зависимость между признаками.

Если на корреляционном поле соединим точки отрезками прямой, то получим ломаную линию с некоторой тенденцией к росту. Это будет эмпирическая линия связи или эмпирическая линия регрессии . По ее виду можно судить не только о наличии, но и о форме зависимости между изучаемыми признаками.

Построение уравнения парной регрессии

Построение уравнения регрессии сводится к оценке ее параметров. Эти оценки параметров могут быть найдены различными способами. Одним их них является метод наименьших квадратов (МНК). Суть метода состоит в следующем. Каждому значению соответствует эмпирическое (наблюдаемое) значение. Построив уравнение регрессии, например уравнение прямой линии, каждому значениюбудет соответствовать теоретическое (расчетное) значение. Наблюдаемые значенияне лежат в точности на линии регрессии, т.е. не совпадают с. Разность между фактическим и расчетным значениями зависимой переменной называетсяостатком :

МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических , т.е. сумма квадратов остатков, минимальна:

Для линейных уравнений и нелинейных, приводимых к линейным, решается следующая система относительно а и b :

где n – численность выборки.

Решив систему уравнений, получим значения а и b , что позволяет записать уравнение регрессии (регрессионное уравнение):

где – объясняющая (независимая) переменная;

–объясняемая (зависимая) переменная;

Линия регрессии проходит через точку (,) и выполняются равенства:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы уравнений:

где – среднее значение зависимого признака;

–среднее значение независимого признака;

–среднее арифметическое значение произведения зависимого и независимого признаков;

–дисперсия независимого признака;

–ковариация между зависимым и независимым признаками.

Выборочной ковариацией двух переменных х , у называется средняя величина произведения отклонений этих переменных от своих средних

Параметр b при х имеет большое практическое значение и носит название коэффициента регрессии. Коэффициент регрессии показывает, на сколько единиц в среднем изменяется величина у х на 1 единицу своего измерения.

Знак параметра b в уравнении парной регрессии указывает на направление связи:

если
, то связь между изучаемыми показателями прямая, т.е. с увеличением факторного признаках увеличивается и результативный признак у , и наоборот;

если
, то связь между изучаемыми показателями обратная, т.е. с увеличением факторного признаках результативный признак у уменьшается, и наоборот.

Значение параметра а в уравнении парной регрессии в ряде случаев можно трактовать как начальное значение результативного признака у . Такая трактовка параметра а возможна только в том случае, если значение
имеет смысл.

После построения уравнения регрессии, наблюдаемые значения y можно представить как:

Остатки , как и ошибки, являются случайными величинами, однако они, в отличие от ошибок, наблюдаемы. Остаток есть та часть зависимой переменнойy , которую невозможно объяснить с помощью уравнения регрессии.

На основании уравнения регрессии могут быть вычислены теоретические значения у х для любых значений х .

В экономическом анализе часто используется понятие эластичности функции. Эластичность функции
рассчитывается как относительное изменениеy к относительному изменению x . Эластичность показывает, на сколько процентов изменяется функция
при изменении независимой переменной на 1%.

Поскольку эластичность линейной функции
не является постоянной величиной, а зависит отх , то обычно рассчитывается коэффициент эластичности как средний показатель эластичности.

Коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится величина результативного признака у при изменении факторного признака х на 1% от своего среднего значения:

где
– средние значения переменныхх и у в выборке.

Оценка качества построенной модели регрессии

Качество модели регрессии – адекватность построенной модели исходным (наблюдаемым) данным.

Чтобы измерить тесноту связи, т.е. измерить, насколько она близка к функциональной, нужно определить дисперсию, измеряющую отклонения у от у х и характеризующую остаточную вариацию, обусловленную прочими факторами. Они лежат в основе показателей, характеризующих качество модели регрессии.

Качество парной регрессии определяется с помощью коэффициентов, характеризующих

1) тесноту связи – индекса корреляции, парного линейного коэффициента корреляции;

2) ошибку аппроксимации;

3) качество уравнения регрессии и отдельных его параметров – средние квадратические ошибки уравнения регрессии в целом и отдельных его параметров.

Для уравнений регрессии любого вида определяется индекс корреляции , который характеризует только тесноту корреляционной зависимости, т.е. степень ее приближения к функциональной связи:

,

где – факторная (теоретическая) дисперсия;

–общая дисперсия.

Индекс корреляции принимает значения
, при этом,

если

если
– то связь между признакамих и у является функциональной, Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками. Если
, то связь можно считать тесной

Дисперсии, необходимые для вычисления показателей тесноты связи вычисляются:

Общая дисперсия , измеряющая общую вариацию за счет действия всех факторов:

Факторная (теоретическая) дисперсия, измеряющая вариацию результативного признака у за счет действия факторного признака х :

Остаточная дисперсия , характеризующая вариацию признака у за счет всех факторов, кроме х (т.е. при исключенном х ):

Тогда по правилу сложения дисперсий:

Качество парной линейной регрессии может быть определено также с помощью парного линейного коэффициента корреляции :

,

где
– ковариация переменныхх и у ;

–среднеквадратическое отклонение независимого признака;

–среднеквадратическое отклонение зависимого признака.

Линейный коэффициент корреляции характеризует тесноту и направление связи между изучаемыми признаками. Он измеряется в пределах [-1; +1]:

если
– то связь между признаками прямая;

если
– то связь между признаками обратная;

если
– то связь между признаками отсутствует;

если
или
– то связь между признаками является функциональной, т.е. характеризуется полным соответствием междух и у . Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками.

Если индекс корреляции (парный линейный коэффициент корреляции) возвести в квадрат, то получим коэффициент детерминации.

Коэффициент детерминации – представляет собой долю факторной дисперсии в общей и показывает, на сколько процентов вариация результативного признака у объясняется вариацией факторного признака х :

Он характеризует не всю вариацию у от факторного признака х , а лишь ту ее часть, которая соответствует линейному уравнению регрессии, т.е. показывает удельный вес вариации результативного признака, линейно связанной с вариацией факторного признака.

Величина
– доля вариации результативного признака, которую модель регрессии учесть не смогла.

Рассеяние точек корреляционного поля может быть очень велико, и вычисленное уравнение регрессии может давать большую погрешность в оценке анализируемого показателя.

Средняя ошибка аппроксимации показывает среднее отклонение расчетных значений от фактических:

Максимально допустимое значение 12–15%.

Мерой разброса зависимой переменной вокруг линии регрессии служит стандартная ошибка.Для всей совокупности наблюдаемых значений рассчитывается стандартная (среднеквадратическая) ошибка уравнения регрессии , которая представляет собой среднее квадратическое отклонение фактических значений у относительно теоретических значений, рассчитанных по уравнению регрессии у х .

,

где
– число степеней свободы;

m – число параметров уравнения регрессии (для уравнения прямой m =2).

Оценить величину средней квадратической ошибки можно сопоставив ее

а) со средним значение результативного признака у ;

б) со средним квадратическим отклонением признака у :

если
, то использование данного уравнения регрессии является целесообразным.

Отдельно оцениваются стандартные (среднеквадратические) ошибки параметров уравнения и индекса корреляции :

;
;
.

х – среднее квадратическое отклонение х .

Проверка значимости уравнения регрессии и показателей тесноты связи

Чтобы построенную модель можно было использовать для дальнейших экономических расчетов, проверки качества построенной модели недостаточно. Необходимо также проверить значимость (существенность) полученных с помощью метода наименьших квадратов оценок уравнения регрессии и показателя тесноты связи, т.е. необходимо проверить их на соответствие истинным параметрам взаимосвязи.

Это связано с тем, что исчисленные по ограниченной совокупности показатели сохраняют элемент случайности, свойственный индивидуальным значениям признака. Поэтому они являются лишь оценками определенной статистической закономерности. Необходима оценка степени точности и значимости (надежности, существенности) параметров регрессии. Под значимостью понимают вероятность того, что значение проверяемого параметра не равно нулю, не включает в себя величины противоположных знаков.

Проверка значимости – проверка предположения того, что параметры отличаются от нуля.

Оценка значимости парного уравнения регрессии сводится к проверке гипотез о значимости уравнения регрессии в целом и отдельных его параметров (a , b ), парного коэффициента детерминации или индекса корреляции.

В этом случае могут быть выдвинуты следующие основные гипотезы H 0 :

1)
– коэффициенты регрессии являются незначимыми и уравнение регрессии также является незначимым;

2)
– парный коэффициент детерминации незначим и уравнение регрессии также является незначимым.

Альтернативной (или обратной) выступают следующие гипотезы:

1)
– коэффициенты регрессии значимо отличаются от нуля, и построенное уравнение регрессии является значимым;

2)
– парный коэффициент детерминации значимо отличаются от нуля и построенное уравнение регрессии является значимым.

Проверка гипотезы о значимости уравнения парной регрессии

Для проверки гипотезы о статистической незначимости уравнения регрессии в целом и коэффициента детерминации используется F -критерий (критерий Фишера ):

или

где k 1 = m –1 ; k 2 = n m – число степеней свободы;

n – число единиц совокупности;

m – число параметров уравнения регрессии;

–факторная дисперсия;

–остаточная дисперсия.

Гипотеза проверяется следующим образом:

1) если фактическое (наблюдаемое) значение F -критерия больше критического (табличного) значения данного критерия
, то с вероятностью
основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации отвергается, и уравнение регрессии признается значимым;

2) если фактическое (наблюдаемое) значение F-критерия меньше критического значения данного критерия
, то с вероятностью (
) основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации принимается, и построенное уравнение регрессии признается незначимым.

Критическое значение F -критерия находится по соответствующим таблицам в зависимости от уровня значимости и числа степеней свободы
.

Число степеней свободы – показатель, который определяется как разность между объемом выборки (n ) и числом оцениваемых параметров по данной выборке (m ). Для модели парной регрессии число степеней свободы рассчитывается как
, так как по выборке оцениваются два параметра (
).

Уровень значимости – величина, определяемая
,

где – доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Обычно принимается 0,95. Таким образом– это вероятность того, что оцениваемый параметр не попадет в доверительный интервал, равная 0,05 (5%) .

Тогда в случае оценки значимости уравнения парной регрессии критическое значение F-критерия вычисляется как
:

.

Проверка гипотезы о значимости параметров уравнения парной регрессии и индекса корреляции

При проверке значимости параметров уравнения (предположения того, что параметры отличаются от нуля) выдвигается основная гипотеза о незначимости полученных оценок (
. В качестве альтернативной (обратной) выдвигается гипотеза о значимости параметров уравнения (
).

Для проверки выдвинутых гипотез используется t -критерий (t -статистика) Стьюдента . Наблюдаемое значение t -критерия сравнивается со значением t -критерия, определяемого по таблице распределения Стьюдента (критическим значением). Критическое значение t -критерия
зависит от двух параметров: уровня значимостии числа степеней свободы
.

Выдвинутые гипотезы проверяются следующим образом:

1) если модуль наблюдаемого значения t -критерия больше критического значения t -критерия, т.е.
, то с вероятностью
основную гипотезу о незначимости параметров регрессии отвергают, т.е. параметры регрессии не равны 0;

2) если модуль наблюдаемого значения t -критерия меньше или равен критическому значению t -критерия, т.е.
, то с вероятностью
основная гипотеза о незначимости параметров регрессии принимается, т.е. параметры регрессии почти не отличаются от 0 или равны 0.

Оценка значимости коэффициентов регрессии с помощью критерия Стьюдента проводится путем сопоставления их оценок с величиной стандартной ошибки:

;

Для оценки статистической значимости индекса (линейного коэффициента) корреляции применяется также t -критерий Стьюдента.




Top