Подвижные формы тяжелых металлов в почве. Тяжелые металлы в почвах

Почва – это поверхность земли, имеющая свойства, которые характеризуют как живую, так и неживую природу.

Почва является индикатором общей . Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами.

К группе тяжелых металлов относятся все с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.

Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью.

Источники загрязнения тяжелыми металлами – это . Существует методика, по которой рассчитывается допустимая норма содержания металлов. При этом учитывается суммарная величина нескольких металлов Zc.

  • допустимая;
  • умеренно опасная;
  • высоко-опасная;
  • чрезвычайно опасная.

Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.

Тяжелые металлы, загрязняющие почву

Существует три класса опасности тяжелых металлов. Всемирная организация здравоохранения самыми опасными считает заражение свинцом, ртутью и кадмием. Но не менее вредна и высокая концентрация остальных элементов.

Ртуть

Загрязнение почвы ртутью происходит с попаданием в нее пестицидов, различных бытовых отходов, например люминесцентных ламп, элементов испорченных измерительных приборов.

По официальным данным годовой выброс ртути составляет более пяти тысяч тонн. Ртуть может поступать в организм человека из загрязненной почвы.

Если это происходит регулярно, могут возникнуть тяжелые расстройства работы многих органов, в том числе страдает и нервная система.

При ненадлежащем лечении возможен летальный исход.

Свинец

Очень опасным для человека и всех живых организмов является свинец.

Он чрезвычайно токсичен. При добыче одной тонны свинца двадцать пять килограммов попадает в окружающую среду. Большое количество свинца поступает в почву с выделением выхлопных газов.

Зона загрязнения почвы вдоль трасс составляет свыше двухсот метров вокруг. Попадая в почву, свинец поглощается растениями, которые употребляют в пищу человек и животные, в том числе и скот, мясо которого также присутствует в нашем меню. От избытка свинца поражается центральная нервная система, головной мозг, печень и почки. Он опасен своим канцерогенным и мутагенным действием.

Кадмий

Огромной опасностью для организма человека является загрязнение почвы кадмием. Попадая в пищу, он вызывает деформацию скелета, остановку роста у детей и сильные боли в спине.

Медь и цинк

Высокая концентрация в почве этих элементов становится причиной того, что замедляется рост и ухудшается плодоношение растений, что приводит в конечном итоге к резкому уменьшению урожайности. У человека происходят изменения в мозге, печени и поджелудочной железе.

Молибден

Избыток молибдена вызывает подагру и поражения нервной системы.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Сурьма

Присутствует в некоторых рудах.

Входит в состав сплавов, используемых в различных производственных сферах.

Ее избыток вызывает тяжелые пищевые расстройства.

Мышьяк

Основным источником загрязнения почвы мышьяком являются вещества, с помощью которых борются с вредителями сельскохозяйственных растений, например гербициды, инсектициды. Мышьяк – это накапливающийся яд, вызывающий хронические . Его соединения провоцируют заболевания нервной системы, мозга, кожных покровов.

Марганец

В почве и растениях наблюдается высокое содержание этого элемента.

При попадании в почву дополнительного количества марганца быстро создается его опасный избыток. На организме человека это сказывается в виде разрушения нервной системы.

Не менее опасен переизбыток и остальных тяжелых элементов.

Из вышесказанного можно сделать вывод, что накопление тяжелых металлов в почве влечет за собой тяжелые последствия для состояния здоровья человека и окружающей среды в целом.

Основные методы борьбы с загрязнением почв тяжелыми металлами

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими. Среди них можно выделить следующие способы:

  • Увеличение кислотности почвы повышает возможность Поэтому внесение органических веществ и глины, известкование помогают в какой-то мере в борьбе с загрязнением.
  • Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным.
  • Проведение детоксикации подземных вод, ее откачивание и очистка.
  • Прогнозирование и устранение миграции растворимой формы тяжелых металлов.
  • В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.

Самым опасным из всех перечисленных металлов является свинец. Он имеет свойство, накапливаясь ударять по организму человека. Ртуть не опасна если попадет в организм человека один раз или несколько, особо опасны лишь пары ртути. Я считаю, что промышленные предприятия должны использовать более усовершенствованные технологии производства не столь губительные для всего живого. Задуматься должен не один человек, а масса, тогда мы придем к хорошему результату.

Тяжелые металлы – это, пожалуй, одно из самых серьезных загрязнений почв, которое грозит нам массой нежелательных и, более того, пагубных последствий.

По своей природе почва представляет собой это сочетание различных глинистых минералов органической и неорганической природы происхождения. В зависимости от состава почвы, географических данных, а также удаленности от промышленных зон в почве могут содержаться различные виды тяжелых металлов, каждый из которых представляет ту или иную степень опасности для окружающей среды. В связи с тем, что в разных местах структура почвы также может быть различна, окислительно-восстановительные условия, реакционная способность, а также механизмы связывания тяжелых металлов в почве также различны.

Наибольшую опасность для почвы несут в себе техногенные факторы. Различные производства, отходами которых являются частицы тяжелых металлов, к сожалению, оборудованы таким образом, что даже самые лучшие фильтры пропускают элементы тяжелых металлов, которые сначала оказываются в атмосфере, а потом вместе с производственным мусором проникают в почву. Такой вид загрязнения носит название техногенный. В данном случае огромное значение имеет механический состав почвы, содержание карбонатов и способность к впитыванию. Различаются тяжелые металлы не только степенью воздействия на почву, но и состоянием, в котором они в ней находятся.

В настоящее время известно, что практически все частицы тяжелых металлов могут находиться в почве в следующих состояниях: в виде смеси изоморфных частиц, окисленными, в виде отложения солей, в кристаллической решетке, растворимой форме, непосредственно в почвенном растворе и даже являться частью органических веществ. При этом стоит учитывать, что в зависимости от окислительно-восстановительных условия, состава почвы и уровня содержания углекислого газа поведение частиц металлов может меняться.

Тяжелые металлы страшны не только своим наличием в почвенном составе, а тем, что они способны двигаться, изменяться и проникать в растения, чем могут причинить существенный вред окружающей среде. Подвижность частиц тяжелых металлов может меняться в зависимости от того, есть ли разница между элементами в твердой и жидкой фазе. Загрязняющие вещества, в данном случае элементы тяжелых металлов могут нередко при проникновении в слои почвы принимают прочнофиксированную форму. В таком виде металлы недоступны для растений. Во всех остальных случаях металлы легко проникают в растения.

Очень быстро проникают в почву водорастворимые элементы металлов. Причем, они не просто поступают в почвенный слой, они способны мигрировать по нему. Со школьных занятий всем известно о том, что со временем в почве образуются низкомолекулярные водорастворимые минеральные соединения, которые мигрируют в нижнюю часть пласта. А вместе с ними мигрируют и соединения тяжелых металлов, образуя низкомолекулярные комплексы, то есть, трансформируясь в другое состояние.

Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах - твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза. .

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Класс опасности

ОДК по группам почв

Извлекаемые ацетатно-аммонийным буфером (рН=4,8)

Песчаные, супесчаные

Суглинистые, глинистые

рН ксl < 5,5

рН ксl > 5,5

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается . Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной - интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д. .

Никель(Ni) - элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу .

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.) .

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л. .

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие - благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось . Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе .

Главные источники тяжелых металлов — отходы промышленных предприятий, различные типы электростанций, заводы из добывающей и перерабатывающей отрасли, а также выхлопы автомобильной и некоторой иной техники. Чаще всего тяжелые металлы попадают в окружающую среду в виде аэрозолей или таких химических соединений как сульфаты, сульфиды, карбонаты, оксиды и др.

Какие из тяжелых металлов чаще всего загрязняют почву? Наиболее распространенным металлами из группы тяжелых в промышленных отходах являются ртуть, свинец и кадмий. Также нередко встречается среди вредных выбросов мышьяк, цинк, железо, медь и марганец.

Тяжелые металлы могут попадать в окружающую среду в нерастворимых и растворимых формах.

Пути засорения почвы тяжелыми металлами

Первый способ загрязнения тяжелыми металлами почвы — попадание в воду и дальнейшее распространение этой воды в грунте.

Другой вариант — попадание тяжелых металлов в атмосферу и выпадение в осадок посредством сухого осаждения или мокрого осаждения.


Взаимодействие почвы с тяжелыми металлами

Почва является адсорбентом различных типов химических элементов, в том числе и тяжелых металлов. На протяжении длительного периода они находятся в грунте, проходя постепенную дезактивацию. Для некоторых тяжелых металлов эти сроки могут составлять несколько сотен или даже тысяч лет.

Ионы тяжелых и других металлов могут вступать в реакцию с компонентами почвы, утилизируясь путем выщелачивания, с помощью эрозии, дефляции и благодаря растениям.

Какие существуют методы определения тяжелых металлов в почве?

Прежде всего, надо понимать, что состав почвы неоднородный, поэтому даже на одном и том же земельном участке почвенные показатели могут сильно различаться в различных его частях. Поэтому нужно брать несколько проб и либо исследовать каждую в отдельности, либо смешивать их в единую массу и брать образец для исследования оттуда.

Количество методов определения металлов в почве достаточно велико, например некоторые из них:

  • метод определения подвижных форм.
  • метод определения обменных форм.
  • метод выявления растворимых в кислотах (техногенных) форм.
  • метод валового содержания.

С помощью данных методик производится процесс вытяжки металлов из почвы. Впоследствии нужно определить процент содержания тех или иных металлов в самой вытяжке, для чего применяются три основных технологии:

2) Масс-спектрометрия с индуктивно-связанной плазмой.

3) Электрохимические методы.

Прибор для соответствующей технологии выбирается в зависимости от того, какой элемент исследуется и какая его концентрация предполагается в почвенной вытяжке.

Спектрометрические методы исследования тяжелых металлов в почве

1) Атомно-абсорбционная спектрометрия.

Проба грунта растворяется в специальном растворителе, после чего реагент связывается с определенным металлом, выпадает в осадок, высушивается и прокаливается, чтобы вес стал постоянным. Затем производится взвешивание с использованием аналитических весов.

К недостаткам этого метода относится значительное количество времени, требуемое на анализ, и высокий уровень квалификации исследователя.

2) Атомно-абсорбционная спектрометрия с плазменной атомизацией.

Это более распространенный метод, позволяющий определить сразу несколько различных металлов за один прием. Также отличается точностью. Суть метода заключается в следующем: пробу нужно перевести в газообразное атомное состояние, затем анализируется степень поглощения атомами газов излучения — ультрафиолетового или видимого.

Электрохимические методы исследования тяжелых металлов в почве

Подготовительный этап заключается в растворении образца почвы в водном растворе. В дальнейшем применяются такие технологии определения в нем тяжелых металлов:

  • потенциометрия.
  • вольтамперометрия.
  • кондуктометрия.
  • кулонометрия.

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

2.1.7. ПОЧВА, ОЧИСТКА НАСЕЛЕННЫХ МЕСТ, ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ САНИТАРНАЯ ОХРАНА ПОЧВЫ

Предельно допустимые концентрации (ПДК) химических веществ в почве

Гигиенические нормативы
ГН 2.1.7.2041-06

1. Подготовлены коллективом авторов в составе: Н.В. Русаков, И.А. Крятов, Н.И. Тонкопий, Ж.Ж. Гумарова, Н.В. Пиртахия (ГУ НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН); А.П. Веселое (Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека).

2. Рекомендованы к утверждению Бюро Комиссии по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол № 2 от 16 июня 2005 г.).

3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онишенко 19 января 2006 г.

4. Введены в действие постановлением Главного государственного санитарного врача Российской Федерации от 23 января 2006 г. № 1 с 1 апреля 2006 г.

5. Введены взамен гигиенических нормативов «Перечень предельно допустимых концентраций (ПДК) и ориентировочно-допустимых количеств (ОДК) химических веществ в почве» № 6229-91 и ГН 2.1.7.020-94 (дополнение 1 к № 6229-91).

6. Зарегистрированы в Министерстве юстиции Российской Федерации (регистрационный номер 7470 от 7 февраля 2006 г.).

Федеральный закон Российской Федерации
«О санитарно-эпидемиологическом благополучии населения»
№ 52-ФЗ от 30 марта 1999 г.

«Государственные санитарно-эпидемиологические правила и нормативы (далее - санитарные правила) - нормативные правовые акты, устанавливающие санитарно-эпидемиологические требования (в том числе критерии безопасности и (или) безвредности факторов среды обитания для человека, гигиенические и иные нормативы), несоблюдение которых создает угрозу жизни или здоровью человека, а также угрозу возникновения и распространения заболеваний» (статья 1).

«Соблюдение санитарных правил является обязательным для граждан, индивидуальных предпринимателей и юридических лиц» (статья 39, п. 3).

ГЛАВНЫЙ ГОСУДАРСТВЕННЫЙ САНИТАРНЫЙ ВРАЧ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПОСТАНОВЛЕНИЕ

23.01.06 Москва №1

О введении в действие
гигиенических нормативов
ГН 2.1.7.2041-06

На основании Федерального закона от 30.03.1999 № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения» (Собрание законодательства Российской Федерации, 1999, № 14, ст. 1650; 2003, № 2, ст. 167; № 27, ст. 2700; 2004, № 35, ст. 3607) и Положения о государственном санитарно-эпидемиологическом нормировании, утвержденного постановлением Правительства Российской Федерации от 24.07.2000 № 554 (Собрание законодательства Российской Федерации, 2000, № 31, ст. 3295) с изменениями, которые внесены постановлением Правительства Российской Федерации от 15.09.2005 № 569 (Собрание законодательства Российской Федерации, 2005, № 39, ст. 3953)

ПОСТАНОВЛЯЮ:

1. Ввести в действие с 1 апреля 2006 года гигиенические нормативы ГН 2.1.7.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве», утвержденные Главным государственным санитарным врачом Российской Федерации 19 января 2006 года.

Г.Г. Онищенко

УТВЕРЖДАЮ

Руководитель Федеральной службы
по надзору в сфере защиты прав
потребителей и благополучия человека,
Главный государственный санитарный
врач Российской Федерации

Г.Г. Онищенко

2.1.7. ПОЧВА, ОЧИСТКА НАСЕЛЕННЫХ МЕСТ, ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ, САНИТАРНАЯ ОХРАНА ПОЧВЫ

Предельно допустимые концентрации (ПДК) химических веществ в почве

Гигиенические нормативы
ГН 2.1.7.2041-06

I. Общие положения и область применения

1.1. Гигиенические нормативы "Предельно допустимые концентрации (ПДК) химических веществ в почве" (далее - нормативы) разработаны в соответствии с Федеральным законом от 30.03.1999 N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения" (Собрание законодательства Российской Федерации, 1999, N 14, ст. 1650; 2003, N 2, ст. 167; N 27, ст. 2700; 2004, N 35) и Положением о государственном санитарно-эпидемиологическом нормировании, утвержденным постановлением Правительства Российской Федерации от 24.07.2000 N 554 (Собрание законодательства Российской Федерации, 2000, N 31, ст. 3295) с изменениями, которые внесены постановлением Правительства Российской Федерации от 15.09.2005 N 569 (Собрание законодательства Российской Федерации, 2005, N 39, ст. 3953)

1.2. Настоящие нормативы действуют на всей территории Российской Федерации и устанавливают предельные допустимые концентрации химических веществ в почве разного характера землепользования.

1.3. Нормативы распространяются на почвы населенных пунктов, сельскохозяйственных угодий, зон санитарной охраны источников водоснабжения, территории курортных зон и отдельных учреждений.

1.4. Настоящие нормативы разработаны на основе комплексных экспериментальных исследований опасности опосредованного воздействия вещества - загрязнителя почвы на здоровье человека, а также с учетом его токсичности, эпидемиологических исследований и международного опыта нормирования.

1.5. Соблюдение гигиенических нормативов является обязательным для граждан, индивидуальных предпринимателей и юридических лиц.

II. Предельно допустимые концентрации (ПДК) химических веществ в почве

Наименование вещества

Величина ПДК (мг/кг) с учетом фона (кларка)

Лимитирующий показатель вредности

Валовое содержание

Бенз/а/пирен

Общесанитарный

Воздушно-миграционный

Воздушно-миграционный

Общесанитарный

Ванадий+марганец

7440-62-2+7439-96-5

Общесанитарный

Диметилбензолы (1,2-диметилбензол; 1,3-диметилбензол; 1,4-диметилбензол)

Транслокационный

Комплексные гранулированные удобрения (КГУ)

Водно-миграционный

Комплексные жидкие удобрения (КЖУ)

Водно-миграционный

Марганец

Общесанитарный

Метаналь

Воздушно-миграционный

Метилбензол

Воздушно-миграционный

(1-метилэтенил)бензол

Воздушно-миграционный

(1-метилэтил)бензол

Воздушно-миграционный

(1-метилэтил)бензол + (1-метилэтенил)бензол

98-82-8 + 25013-15-4

С9Н12 + С9Н10

Воздушно-миграционный

Транслокационный

Нитраты (по NO3)

Водно-миграционный

Водно-миграционный

Общесанитарный

Транслокационный

Общесанитарный

Свинец + ртуть

7439-92-1 + 7439-97-6

Транслокационный

Общесанитарный

Серная кислота (по S)

Общесанитарный

Сероводород (по S)

Воздушно-миграционный

Суперфосфат (по Р2О5)

Транслокационный

Водно-миграционный

Фуран-2-карбальдегид

Общесанитарный

Хлорид калия (по К2О)

Водно-миграционный

Хром шестивалентный

Общесанитарный

Воздушно-миграционны

Этенилбензол

Воздушно-миграционны

Подвижная форма

Общесанитарный

Марганец, извлекаемый 0,1 н H2SO4:

Чернозем

Дерново-подзолистая:

Извлекаемый ацетатно-аммонийным буфером с рН 4,8:

Общесанитарный

Чернозем

Дерново-подзолистая:

Общесанитарный

Общесанитарный

Общесанитарный

Транслокационный

Хром трехвалентный5

Общесанитарный

Транслокационный

Водорастворимая форма

Транслокационный

Примечания.

1. КГУ - комплексные гранулированные удобрения состава N:P:K=64:0:15. ПДК КГУ контролируется по содержанию нитратов в почве, которое не должно превышать 76,8 мг/кг абсолютно сухой почвы.

КЖУ - комплексные жидкие удобрения состава N:P:K=10:34:0 ТУ 6-08-290-74 с добавками марганца не более 0,6% от общей массы. ПДК КЖУ контролируется по содержанию подвижных фосфатов в почве, которое не должно превышать 27,2 мг/кг абсолютно сухой почвы.

2. Нормативы мышьяка и свинца для разных типов почв представлены как ориентировочно допустимые концентрации (ОДК) в другом документе.

3. ПДК ОФУ контролируется по содержанию бенз/а/пирена в почве, которое не должно превышать ПДК бенз/а/пирена.

4. Подвижная форма кобальта извлекается из почвы ацетатно-натриевым буферным раствором с рН 3,5 и рН 4,7 для сероземов и ацетатно-аммонийным буферным раствором с рН 4,8 для остальных типов почв.

5. Подвижная форма элемента извлекается из почвы ацетатно-аммонийным буферным раствором с рН 4,8.

6. Подвижная форма фтора извлекается из почвы с рН £ 6,5 0,006 н НСl, с рН >6,5 - 0,03 н K2SO4.

Примечания к разделу II

Названия индивидуальных веществ в алфавитном порядке приведены, где это было возможно, в соответствии с правилами Международного союза теоретической и прикладной химии ИЮПАК (International Union of Pure Applied Chemistry, IUРАС) (графа 2) и обеспечены регистрационными номерами Chemical Abstracts Service (CAS) (графа 3) для облегчения идентификации веществ.

В графе 4 приведены формулы веществ.

Величины Нормативов приведены в миллиграммах вещества на килограмм почвы (мг/кг) - графа 5 - для валовых и подвижных форм их содержания в почве.

Указан лимитирующий показатель вредности (графа 6), по которому установлены нормативы: воздушно-миграционный (воздушно-мигр.), водно-миграционный (водно-мигр.), общесанитарный или транслокационный.

Для удобства пользования нормативами приведен указатель основных синонимов (прилож. 1), формул веществ (прилож. 2) и номеров CAS (прилож. 3).

1. ГОСТ 26204-84, ГОСТ 28213-84 «Почвы. Методы анализа».

2. Дмитриев М.Т., Казнина Н.И., Пинигина И.А. Санитарно-химический анализ загрязняющих веществ в окружающей среде: Справочник. М.: Химия, 1989.

3. Методика определения фурфурола в почве № 012-17/145 /МЗ УзССР от 24.03.87. Ташкент, 1987.

4. Методические указания по качественному и количественному определению канцерогенных полициклических углеводородов в продуктах сложного состава № 1423-76 от 12.05.76. М., 1976.

5. Методические указания по отбору проб из объектов внешней среды и подготовка их для последующего определения канцерогенных полициклических ароматических углеводородов: № 1424-76 от 12.05.76.

6. Предельно допустимые концентрации химических веществ в почве: № 1968-79 /МЗ СССР от 21.02.79. М., 1979.

7. Предельно допустимые концентрации химических веществ в почве: № 2264-80 от 30.10.80 /МЗ СССР. М., 1980.




Top