Постройте дискретный вариационный ряд. Правила построения дискретных и интервальных рядов распределения

Математическая статистика - раздел математики, посвященный математическим методам обработки, систематизации и использования статистических данных для научных и практических выводов.

3.1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

В медико-биологических задачах часто приходится исследовать распределение того или иного признака для очень большого числа индивидуумов. У разных индивидуумов этот признак имеет различное значение, поэтому он является случайной величиной. Например, любой лечебный препарата имеет различную эффективность при его применении к разным пациентам. Однако для того чтобы составить представление об эффективности данного препарата, нет необходимости применять его ко всем больным. Можно проследить результаты применения препарата к сравнительно небольшой группе больных и на основании полученных данных выявить существенные черты (эффективность, противопоказания) процесса лечения.

Генеральная совокупность - подлежащая изучению совокупность однородных элементов, характеризуемых некоторым признаком. Этот признак является непрерывной случайной величиной с плотностью распределения f(x).

Например, если нас интересует распространенность какого-либо заболевания в некотором регионе, то генеральная совокупность - все население региона. Если же мы хотим выяснить подверженность этому заболеванию мужчин и женщин по отдельности, то следует рассматривать две генеральные совокупности.

Для изучения свойств генеральной совокупности отбирают некоторую часть ее элементов.

Выборка - часть генеральной совокупности, выбираемая для обследования (лечения).

Если это не вызывает недоразумений, то выборкой называют как совокупность объектов, отобранных для обследования, так и совокупность

значений исследуемого признака, полученных при обследовании. Эти значения могут быть представлены несколькими способами.

Простой статистический ряд - значения исследуемого признака, записанные в том порядке, в котором они были получены.

Пример простого статистического ряда, полученного при измерении скорости поверхностной волны (м/с) в коже лба у 20 пациентов приведен в табл. 3.1.

Таблица 3.1. Простой статистический ряд

Простой статистический ряд - основной и самый полный способ записи результатов обследования. Он может содержать сотни элементов. Окинуть такую совокупность одним взглядом весьма затруднительно. Поэтому большие выборки обычно подвергают разбиению на группы. Для этого область изменения признака разбивают на несколько (N) интервалов равной ширины и подсчитывают относительные частоты (n/n) попадания признака в эти интервалы. Ширина каждого интервала равна:

Границы интервалов имеют следующие значения:

Если какой-то элемент выборки является границей между двумя соседними интервалами, то его относят к левому интервалу. Сгруппированные таким образом данные называют интервальным статистическим рядом.

- это таблица, в которой приведены интервалы значений признака и относительные частоты попадания признака в эти интервалы.

В нашем случае можно образовать, например, такой интервальный статистический ряд (N = 5, d = 4), табл. 3.2.

Таблица 3.2. Интервальный статистический ряд

Здесь к интервалу 28-32 отнесены два значения равные 28 (табл. 3.1), а к интервалу 32-36 - значения 32, 33, 34 и 35.

Интервальный статистический ряд можно изобразить графически. Для этого по оси абсцисс откладывают интервалы значений признака и на каждом из них, как на основании, строят прямоугольник с высотой, равной относительной частоте. Полученная столбцовая диаграмма называется гистограммой.

Рис. 3.1. Гистограмма

На гистограмме статистические закономерности распределения признака просматриваются достаточно отчетливо.

При большом объеме выборки (несколько тысяч) и малой ширине столбцов форма гистограммы близка к форме графика плотности распределения признака.

Число столбцов гистограммы можно выбрать по следующей формуле:

Построение гистограммы вручную - процесс долгий. Поэтому разработаны компьютерные программы для их автоматического построения.

3.2. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СТАТИСТИЧЕСКОГО РЯДА

Многие статистические процедуры используют выборочные оценки для математического ожидания и дисперсии (или СКО) генеральной совокупности.

Выборочное среднее (Х) - это среднее арифметическое всех элементов простого статистического ряда:

Для нашего примера Х = 37,05 (м/с).

Выборочное среднее - это наилучшая оценка генерального среднего М.

Выборочная дисперсия s 2 равна сумме квадратов отклонений элементов от выборочного среднего, поделенной на n - 1:

В нашем примере s 2 = 25,2 (м/с) 2 .

Обратите внимание, что при вычислении выборочной дисперсии в знаменателе формулы стоит не объем выборки n, а n-1. Это связано с тем, что при вычислении отклонений в формуле (3.3) вместо неизвестного математического ожидания используется его оценка - выборочное среднее.

Выборочная дисперсия - это наилучшая оценка генеральной дисперсии (σ 2).

Выборочное среднеквадратическое отклонение (s) - это квадратный корень из выборочной дисперсии:

Для нашего примера s = 5,02 (м/с).

Выборочное среднеквадратическое отклонение - это наилучшая оценка генерального СКО (σ).

При неограниченном увеличении объема выборки все выборочные характеристики стремятся к соответствующим характеристикам генеральной совокупности.

Для вычисления выборочных характеристик используют компьютерные формулы. В приложении Excel эти вычисления выполняют статистические функции СРЗНАЧ, ДИСП. СТАНДОТКЛОН.

3.3. ИНТЕРВАЛЬНАЯ ОЦЕНКА

Все выборочные характеристики являются случайными величинами. Это означает, что для другой выборки того же объема значения выборочных характеристик получатся другими. Таким образом, выборочные

характеристики являются лишь оценками соответствующих характеристик генеральной совокупности.

Недостатки выборочного оценивания компенсирует интервальная оценка, представляющая числовой интервал, внутри которого с заданной вероятностью Р д находится истинное значение оцениваемого параметра.

Пусть U r - некоторый параметр генеральной совокупности (генеральное среднее, генеральная дисперсия и т.д.).

Интервальной оценкой параметра U r называется интервал (U 1 , U 2), удовлетворяющий условию:

P(U < Ur < U2) = Рд. (3.5)

Вероятность Р д называется доверительной вероятностью.

Доверительная вероятность Р д - вероятность того, что истинное значение оцениваемой величины находится внутри указанного интервала.

При этом интервал (U 1 , U 2) называется доверительным интервалом для оцениваемого параметра.

Часто вместо доверительной вероятности используют связанную с ней величину α = 1 - Р д, которая называется уровнем значимости.

Уровень значимости - это вероятность того, что истинное значение оцениваемого параметра находится за пределами доверительного интервала.

Иногда α и Р д выражают в процентах, например, 5% вместо 0,05 и 95% вместо 0,95.

При интервальном оценивании сначала выбирают соответствующую доверительную вероятность (обычно 0,95 или 0,99), а затем находят соответствующий интервал значений оцениваемого параметра.

Отметим некоторые общие свойства интервальных оценок.

1. Чем ниже уровень значимости (чем больше Р д), тем шире интервальная оценка. Так, если при уровне значимости 0,05 интервальная оценка генерального среднего есть 34,7 < М < 39,4, то для уровня 0,01 она будет гораздо шире: 33,85 < М < 40,25.

2. Чем больше объем выборки n, тем уже интервальная оценка с выбранным уровнем значимости. Пусть, например, 5 - процентная оценка генеральной средней (β=0,05), полученная по выборке из 20 элементов, тогда 34,7 < М < 39,4.

Увеличив объем выборки до 80, мы при том же уровне значимости получим более точную оценку: 35,5 < М < 38,6.

В общем случае построение надежных доверительных оценок требует знания закона, по которому оцениваемый случайный признак распределен в генеральной совокупности. Рассмотрим, как строится интервальная оценка генерального среднего признака, который распределен в генеральной совокупности по нормальному закону.

3.4. ИНТЕРВАЛЬНАЯ ОЦЕНКА ГЕНЕРАЛЬНОГО СРЕДНЕГО ДЛЯ НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ

Построение интервальной оценки генерального среднего М для генеральной совокупности с нормальным законом распределения основано на следующем свойстве. Для выборки объема n отношение

подчиняется распределению Стьюдента с числом степеней свободы ν = n - 1.

Здесь Х - выборочное среднее, а s - выборочное СКО.

Используя таблицы распределения Стьюдента или их компьютерный аналог, можно найти такое граничное значение что c заданной доверительной вероятностью выполняется неравенство:

Этому неравенству соответствует неравенство для М:

где ε - полуширина доверительного интервала.

Таким образом, построение доверительного интервала для М проводится в следующей последовательности.

1. Выбирают доверительную вероятность Р д (обычно 0,95 или 0,99) и для нее по таблице распределения Стьюдента находят параметр t

2. Рассчитывают полуширину доверительного интервала ε:

3. Получают интервальную оценку генерального среднего с выбранной доверительной вероятностью:

Кратко это записывается так:

Для нахождения интервальных оценок разработаны компьютерные процедуры.

Поясним, как пользоваться таблицей распределения Стьюдента. Эта таблица имеет два «входа»: левый столбец, называемый числом степеней свободы ν = n - 1, и верхняя строка - уровень значимости α. На пересечении соответствующей строки и столбца находят коэффициент Стьюдента t.

Применим этот метод к нашей выборке. Фрагмент таблицы распределения Стьюдента представлен ниже.

Таблица 3.3. Фрагмент таблицы распределения Стьюдента

Простой статистический ряд для выборки из 20 человек (n = 20, ν =19) представлен в табл. 3.1. Для этого ряда расчеты по формулам (3.1-3.3) дают: Х = 37,05; s = 5,02.

Выберем α = 0,05 (Р д = 0,95). На пересечении строки «19» и столбца «0,05» найдем t = 2,09.

Вычислим точность оценки по формуле (3.6): ε = 2,09?5,02/λ /20 = 2,34.

Построим интервальную оценку: с вероятностью 95% неизвестное генеральное среднее удовлетворяет неравенству:

37,05 - 2,34 < М < 37,05 + 2,34, или М = 37,05 ± 2,34 (м/с), Р д = 0,95.

3.5. МЕТОДЫ ПРОВЕРКИ СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Статистические гипотезы

Прежде чем сформулировать, что такое статистическая гипотеза, рассмотрим следующий пример.

Для сравнения двух методик лечения некоторого заболевания были отобраны две группы пациентов по 20 человек, лечение которых проводилось по этим методикам. Для каждого пациента фиксировалось количество процедур, после которого достигался положительный эффект. По этим данным для каждой группы находились выборочные средние (Х), выборочные дисперсии (s 2) и выборочные СКО (s).

Результаты представлены в табл. 3.4.

Таблица 3.4

Количество процедур, необходимое для получения положительного эффекта, - случайная величина, вся информация о которой на данный момент содержится в приведенной выборке.

Из табл. 3.4 видно, что выборочное среднее в первой группе меньше, чем во второй. Означает ли это, что и для генеральных средних имеет место такое же соотношение: М 1 < М 2 ? Достаточно ли статистических данных для такого вывода? Ответы на эти вопросы и дает статистическая проверка гипотез.

Статистическая гипотеза - это предположение относительно свойств генеральных совокупностей.

Мы будем рассматривать гипотезы о свойствах двух генеральных совокупностей.

Если генеральные совокупности имеют известные, одинаковые распределения оцениваемой величины, а предположения касаются величин некоторого параметра этого распределения, то гипотезы называются параметрическими. Например, выборки извлечены из генеральных совокупностей с нормальным законом распределения и одинаковой дисперсией. Требуется выяснить, одинаковы ли генеральные средние этих совокупностей.

Если о законах распределения генеральных совокупностей ничего не известно, то гипотезы об их свойствах называют непараметрическими. Например, одинаковы ли законы распределения генеральных совокупностей, из которых извлечены выборки.

Нулевая и альтернативная гипотезы.

Задача проверки гипотез. Уровень значимости

Познакомимся с терминологией, применяемой при проверке гипотез.

Н 0 - нулевая гипотеза (гипотеза скептика) - это гипотеза об отсутствии различий между сравниваемыми выборками. Скептик считает, что различия между выборочными оценками, полученными по результатам исследований, - случайны;

Н 1 - альтернативная гипотеза (гипотеза оптимиста) - это гипотеза о наличии различий между сравниваемыми выборками. Оптимист считает, что различия между выборочными оценками вызваны объективными причинами и соответствуют различиям генеральных совокупностей.

Проверка статистических гипотез осуществима только тогда, когда из элементов сравниваемых выборок можно составить некоторую величину (критерий), закон распределения которой в случае справедливости Н 0 известен. Тогда для этой величины можно указать доверительный интервал, в который с заданной вероятностью Р д попадает ее значение. Этот интервал называют критической областью. Если значение критерия попадает в критическую область, то принимается гипотеза Н 0 . В противном случае принимается гипотеза Н 1 .

В медицинских исследованиях используют Р д = 0,95 или Р д = 0,99. Этим значениям соответствуют уровни значимости α = 0,05 или α = 0,01.

При проверке статистических гипотез уровнем значимости (α) называется вероятность отклонения нулевой гипотезы, когда она верна.

Обратите внимание на то, что по своей сути процедура проверки гипотез направлена на обнаружение различий, а не на подтверждение их отсутствия. При выходе значения критерия за пределы критической области мы можем с чистым сердцем сказать «скептику» - ну что, Вы еще хотите?! Если бы различия отсутствовали, то с вероятностью 95% (или 99%) расчетное значение было бы в указанных пределах. Так ведь нет!..

Ну а если значение критерия попадает в критическую область, то нет никаких оснований считать что гипотеза Н 0 верна. Это, скорее всего, указывает на одну из двух возможных причин.

1. Объемы выборок недостаточно велики, чтобы обнаружить имеющиеся различия. Вполне вероятно, что продолжение экспериментов принесет успех.

2. Различия есть. Но они настолько малы, что не имеют практического значения. В этом случае продолжение экспериментов не имеет смысла.

Перейдем к рассмотрению некоторых статистических гипотез, используемых в медицинских исследованиях.

3.6. ПРОВЕРКА ГИПОТЕЗ О РАВЕНСТВЕ ДИСПЕРСИЙ, F-КРИТЕРИЙ ФИШЕРА

В некоторых клинических исследованиях о положительном эффекте свидетельствует не столько величина исследуемого параметра, сколько его стабилизация, уменьшение его колебаний. В этом случае возникает вопрос о сравнении двух генеральных дисперсий по результатам выборочного обследования. Эта задача может быть решена с помощью критерия Фишера.

Постановка задачи

нормальным законом распределения. Объемы выборок -

n 1 и n 2 , а выборочные дисперсии равны s 1 и s 2 2 генеральные дисперсии.

Проверяемые гипотезы:

Н 0 - генеральные дисперсии одинаковы;

Н 1 - генеральные дисперсии различны.

Показано, если выборки извлечены из генеральных совокупностей с нормальным законом распределения, то при справедливости гипотезы Н 0 отношение выборочных дисперсий подчиняется распределению Фишера. Поэтому в качестве критерия для проверки справедливости Н 0 берется величина F, вычисляемая по формуле:

где s 1 и s 2 - выборочные дисперсии.

Это отношение подчиняется распределению Фишера с числом степеней свободы числителя ν 1 = n 1 - 1 и числом степеней свободы знаменателя ν 2 = n 2 - 1. Границы критической области находятся по таблицам распределения Фишера или с помощью компьютерной функции БРАСПОБР.

Для примера, представленного в табл. 3.4, получим: ν 1 = ν 2 = 20 - 1 = 19; F = 2,16/4,05 = 0,53. При α = 0,05 границы критической области равны соответственно: = 0,40, = 2,53.

Значение критерия попало в критическую область, поэтому принимается гипотеза Н 0: генеральные дисперсии выборок одинаковы.

3.7. ПРОВЕРКА ГИПОТЕЗ ОТНОСИТЕЛЬНО РАВЕНСТВА СРЕДНИХ, t-КРИТЕРИЙ СТЬЮДЕНТА

Задача сравнения средних двух генеральных совокупностей возникает, когда практическое значение имеет именно величина исследуемого признака. Например, когда сравниваются сроки лечения двумя различными методами или количества осложнений, возникающих при их применении. В этом случае можно использовать t-критерий Стьюдента.

Постановка задачи

Получены две выборки {Х 1 } и {Х 2 }, извлеченные из генеральных совокупностей с нормальным законом распределения и одинаковыми дисперсиями. Объемы выборок - n 1 и n 2 , выборочные средние равны Х 1 и Х 2, а выборочные дисперсии - s 1 2 и s 2 2 соответственно. Требуется сравнить между собой генеральные средние.

Проверяемые гипотезы:

Н 0 - генеральные средние одинаковы;

Н 1 - генеральные средние различны.

Показано, что в случае справедливости гипотезы Н 0 величина t, вычисляемая по формуле:

распределена по закону Стьюдента с числом степеней свободы ν = ν 1 + + ν2 - 2.

Здесь где ν 1 = n 1 - 1 - число степеней свободы для первой выборки; ν 2 = n 2 - 1 - число степеней свободы для второй выборки.

Границы критической области находят по таблицам t-распределения или с помощью компьютерной функции СТЬЮДРАСПОБР. Распределение Стьюдента симметрично относительно нуля, поэтому левая и правая границы критической области одинаковы по модулю и противоположны по знаку: -и

Для примера, представленного в табл. 3.4, получим:

ν 1 = ν 2 = 20 - 1 = 19; ν = 38, t = -2,51. При α = 0,05 = 2,02.

Значения критерия выходит за левую границу критической области, поэтому принимаем гипотезу Н 1: генеральные средние различны. При этом среднее генеральной совокупности первой выборки МЕНЬШЕ.

Применимость t-критерия Стьюдента

Критерий Стьюдента применим только к выборкам из нормальных совокупностей с одинаковыми генеральными дисперсиями. Если хотя бы одно из условий нарушено, то применимость критерия сомнительна. Требование нормальности генеральной совокупности обычно игнорируют, ссылаясь на центральную предельную теорему. Действительно, разность выборочных средних, стоящая в числителе (3.10), может считаться нормально распределенной при ν > 30. Но вопрос о равенстве дисперсий проверке не подлежит, и ссылки на то, что критерий Фишера не обнаружил различий, принимать во внимание нельзя. Тем не менее t-критерий достаточно широко применяется для обнаружения различий в средних значениях генеральных совокупностей, хотя и без достаточных оснований.

Ниже рассматривается непараметрический критерий, который с успехом используют для этих же целей и который не требует ни нормальности, ни равенства дисперсий.

3.8. НЕПАРАМЕТРИЧЕСКОЕ СРАВНЕНИЕ ДВУХ ВЫБОРОК: КРИТЕРИЙ МАННА-УИТНИ

Непараметрические критерии предназначены для обнаружения различий в законах распределения двух генеральных совокупностей. Критерии, которые чувствительны к различиям генеральных средних, называют критериями сдвига. Критерии, которые чувствительны к различиям генеральных дисперсий, называют критериями масштаба. Критерий Манна-Уитни относится к критериям сдвига и используется для обнаружения различий в средних значениях двух генеральных совокупностей, выборки из которых представлены в ранговой шкале. Измеренные признаки распологаются на этой шкале в порядке возрастания, а затем нумеруются целыми числами 1, 2... Эти числа и называются рангами. Равным величинам присваивают одинаковые ранги. Значение имеет не сама величина признака, а лишь порядковое место, который она занимает среди других величин.

В табл. 3.5. первая группа из таблицы 3.4 представлена в развернутом виде (строка 1), подвергнута ранжированию (стока 2), а затем ранги одинаковых величин заменены среднеарифметическими значениями. Например, элементы 4 и 4, стоящие в первой строке, получили ранги 2 и 3, которые затем заменены на одинаковые значения 2,5.

Таблица 3.5

Постановка задачи

Независимые выборки {Х 1 } и {Х 2 } извлечены из генеральных совокупностей с неизвестными законами распределения. Объемы выборок n 1 и n 2 соответственно. Значения элементов выборок представлены в ранговой шкале. Требуется проверить, различаются ли эти генеральные совокупности между собой?

Проверяемые гипотезы:

Н 0 - выборки принадлежат к одной генеральной совокупности; Н 1 - выборки принадлежат к различным генеральным совокупностям.

Для проверки таких гипотез применяется {/-критерий Манна-Уитни.

Сначала из двух выборок составляется объединенная выборка {X}, элементы которой ранжируются. Затем находится сумма рангов, соответствующих элементам первой выборки. Эта сумма и является критерием для проверки гипотез.

U = Сумме рангов первой выборки. (3.11)

Для независимых выборок, объемы которых больше 20, величина U подчиняется нормальному распределению, математическое ожидание и СКО которого равны:

Поэтому границы критической области находятся по таблицам нормального распределения.

Для примера, представленного в табл. 3.4, получим: ν 1 = ν 2 = 20 - 1 = 19, U = 339, μ = 410, σ = 37. Для α = 0,05 получим: и лев = 338, и прав = 482.

Значение критерия выходит за левую границу критической области, поэтому принимается гипотеза Н 1: генеральные совокупности имеют различные законы распределения. При этом среднее генеральной совокупности первой выборки МЕНЬШЕ.

Результаты группировки собранных статистических данных, как правило, представляются в виде рядов распределения. Ряд распределения - это упорядоченное распределение единиц совокупности на группы по изучаемому признаку.

Ряды распределения делятся на атрибутивные и вариационные, в зависимости от признака, положенного в основу группировки. Если признак качественный, то ряд распределения называется атрибутивным. Примером атрибутивного ряда является распределение предприятий и организаций по формам собственности (см. табл. 3.1).

Если признак, по которому строится ряд распределения, количественный, то ряд называется вариационным.

Вариационный ряд распределения всегда состоит из двух частей: вариант и соответствующих им частот (или частостей). Вариантой называется значение , которое может принимать признак у единиц совокупности, частотой - количество единиц наблюдения, обладающих данным значением признака. Сумма частот всегда равна объему совокупности. Иногда вместо частот рассчитывают частости - это частоты, выраженные либо в долях единицы (тогда сумма всех частостей равна 1), либо в процентах к объему совокупности (сумма частостей будет равна 100%).

Вариационные ряды бывают дискретными и интервальными. У дискретных рядов (табл. 3.7) варианты выражены конкретными числами, чаще всего целыми.

Таблица 3.8. Распределение работников по времени работы в страховой компании
Время работы в компании, полных лет (варианты) Число работающих
Человек (частоты) в % к итогу (частости)
до года 15 11,6
1 17 13,2
2 19 14,7
3 26 20,2
4 10 7,8
5 18 13,9
6 24 18,6
Итого 129 100,0

В интервальных рядах (см. табл. 3.2) значения показателя задаются в виде интервалов. Интервалы имеют две границы: нижнюю и верхнюю. Интервалы могут быть открытыми и закрытыми. У открытых нет одной из границ, так, в табл. 3.2 у первого интервала нет нижней границы, а у последнего - верхней. При построении интервального ряда в зависимости от характера разброса значений признака используют как равные интервальные промежутки, так и неравные (в табл. 3.2 представлен вариационный ряд с равными интервалами).

Если признак принимает ограниченное число значений, обычно не больше 10, строят дискретные ряды распределения. Если вариант больше, то дискретный ряд теряет свою наглядность; в этом случае целесообразно использовать интервальную форму вариационного ряда. При непрерывной вариации признака, когда его значения в определенных пределах отличаются друг от друга на сколь угодно малую величину, также строят интервальный ряд распределения.

3.3.1. Построение дискретных вариационных рядов

Рассмотрим методику построения дискретных вариационных рядов на примере.

Пример 3.2. Имеются следующие данные о количественном составе 60 семей:

Для того чтобы получить представление о распределении семей по числу их членов, следует построить вариационный ряд. Поскольку признак принимает ограниченное число целых значений строим дискретный вариационный ряд. Для этого сначала рекомендуется выписать все значения признака (число членов в семье) в порядке возрастания (т.е. провести ранжирование статистических данных):

Затем необходимо подсчитать число семей, имеющих одинаковый состав. Число членов семей (значение варьирующего признака) - это варианты (будем их обозначать через х), число семей, имеющих одинаковый состав, - это частоты (будем их обозначать через f). Результаты группировки представим в виде следующего дискретного вариационного ряда распределения:

Таблица 3.11.
Число членов семьи (х) Число семей (y)
1 8
2 14
3 20
4 9
5 5
6 4
Итого 60

3.3.2. Построение интервальных вариационных рядов

Покажем методику построения интервальных вариационных рядов распределения на следующем примере.

Пример 3.3. В результате статистического наблюдения получены следующие данные о средней величине процентной ставки 50 коммерческих банков (%):

Таблица 3.12.
14,7 19,0 24,5 20,8 12,3 24,6 17,0 14,2 19,7 18,8
18,1 20,5 21,0 20,7 20,4 14,7 25,1 22,7 19,0 19,6
19,0 18,9 17,4 20,0 13,8 25,6 13,0 19,0 18,7 21,1
13,3 20,7 15,2 19,9 21,9 16,0 16,9 15,3 21,4 20,4
12,8 20,8 14,3 18,0 15,1 23,8 18,5 14,4 14,4 21,0

Как видим, просматривать такой массив данных крайне неудобно, кроме того, не видно закономерностей изменения показателя. Построим интервальный ряд распределения.

  1. Определим число интервалов.

    Число интервалов на практике часто задается самим исследователем исходя из задач каждого конкретного наблюдения. Вместе с тем его можно вычислить и математически по формуле Стерджесса

    n = 1 + 3,322lgN,

    где n - число интервалов;

    N - объем совокупности (число единиц наблюдения).

    Для нашего примера получим: n = 1 + 3,322lgN = 1 + 3,322lg50 = 6,6 " 7.

  2. Определим величину интервалов (i) по формуле

    где х max - максимальное значение признака;

    х min - минимальное значение признака.

    Для нашего примера

    Интервалы вариационного ряда наглядны, если их границы имеют "круглые" значения, поэтому округлим величину интервала 1,9 до 2, а минимальное значение признака 12,3 до 12,0.

  3. Определим границы интервалов.

    Интервалы, как правило, записывают таким образом, чтобы верхняя граница одного интервала являлась одновременно нижней границей следующего интервала. Так, для нашего примера получим: 12,0-14,0; 14,0-16,0; 16,0-18,0; 18,0-20,0; 20,0-22,0; 22,0-24,0; 24,0-26,0.

    Подобная запись означает, что признак непрерывный. Если же варианты признака принимают строго определенные значения, например, только целые, но их количество слишком велико для построения дискретного ряда, то можно создать интервальный ряд, где нижняя граница интервала не будет совпадать с верхней границей следующего интервала (это будет означать, что признак дискретный). Например, в распределении работников предприятия по возрасту можно создать следующие интервальные группы лет: 18-25, 26-33, 34-41, 42-49, 50-57, 58-65, 66 и более.

    Кроме того, в нашем примере мы могли бы сделать первый и последний интервалы открытыми, т.д. записать: до 14,0; 24,0 и выше.

  4. По исходным данным построим ранжированный ряд. Для этого запишем в порядке возрастания значения, которые принимает признак. Результаты представим в таблице: Таблица 3.13. Ранжированный ряд величин процентной ставки коммерческих банков
    Ставка банка % (варианты)
    12,3 17,0 19,9 23,8
    12,8 17,4 20,0 24,5
    13,0 18,0 20,0 24,6
    13,3 18,1 20,4 25,1
    13,8 18,5 20,4 25,6
    14,2 18,7 20,5
    14,3 18,8 20,7
    14,4 18,9 20,7
    14,7 19,0 20,8
    14,7 19,0 21,0
    15,1 19,0 21,0
    15,2 19,0 21,1
    15,3 19,0 21,4
    16,0 19,6 21,9
    16,9 19,7 22,7
  5. Подсчитаем частоты.

    При подсчете частот может возникнуть ситуация, когда значение признака попадет на границу какого-либо интервала. В таком случае можно руководствоваться правилом: данная единица приписывается к тому интервалу, для которого ее значение является верхней границей. Так, значение 16,0 в нашем примере будет относиться ко второму интервалу.

Результаты группировки, полученные в нашем примере, оформим в таблице.

Таблица 3.14. Распределение коммерческих банков по величине кредитной ставки
Краткая ставка, % Количество банков, ед. (частоты) Накопленные частоты
12,0-14,0 5 5
14,0-16,0 9 14
16,0-18,0 4 18
18,0-20,0 15 33
20,0-22,0 11 44
22,0-24,0 2 46
24,0-26,0 4 50
Итого 50 -

В последней графе таблицы представлены накопленные частоты, которые получают путем последовательного суммирования частот, начиная с первой (например, для первого интервала - 5, для второго интервала 5 + 9 = 14, для третьего интервала 5 + 9 + 4 = 18 и т.д.). Накопленная частота, например, 33, показывает, что у 33 банков кредитная ставка не превышает 20% (верхняя граница соответствующего интервала).

В процессе группировки данных при построении вариационных рядов иногда используются неравные интервалы. Это относится к тем случаям, когда значения признака подчиняются правилу арифметической или геометрической прогрессии или когда применение формулы Стерджесса приводит к появлению "пустых" интервальных групп, не содержащих ни одной единицы наблюдения. Тогда границы интервалов задаются произвольно самим исследователем исходя из здравого смысла и целей обследования либо по формулам. Так, для данных, изменяющихся в арифметической прогрессии, величина интервалов вычисляется следующим образом.

Лабораторная работа №1. Первичная обработка статистических данных

Построение рядов распределения

Упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку называется рядом распределения . При этом признак может быть как количественным, тогда ряд называется вариационным , так и качественным, тогда ряд называют атрибутивным . Так, например, население города может быть распределено по возрастным группам в вариационный ряд, или по профессиональной принадлежности в атрибутивный ряд (конечно, можно предложить еще множество качественных и количественных признаков для построения рядов распределения, выбор признака определяется задачей статистического исследования).

Любой ряд распределения характеризуется двумя элементами:

- варианта (х i ) – это отдельные значения признака единиц выборочной совокупности. Для вариационного ряда варианта принимает числовые значения, для атрибутивного – качественные (например, х=«государственный служащий»);

- частота (n i ) – число, показывающее, сколько раз встречается то или иное значение признака. Если частота выражена относительным числом (т.е. долей элементов совокупности, соответствующих данному значению варианты, в общем объеме совокупности), то она называется относительной частотой или частостью .

Вариационный ряд может быть:

- дискретным , когда изучаемый признак характеризуется определенным числом (как правило целым).

- интервальным , когда определены границы «от» и «до» для непрерывно варьируемого признака. Интервальный ряд также строят если множество значений дискретно варьируемого признака велико.

Интервальный ряд может строиться как с интервалами равной длины (равноинтервальный ряд) так и с неодинаковыми интервалами, если это диктуется условиями статистического исследования. Например, может рассматриваться ряд распределения доходов населения со следующими интервалами: <5тыс р., 5-10 тыс р., 10-20 тыс.р., 20-50 тыс р., и т.д. Если цель исследования не определяет способ построения интервального ряда, то строится равноинтервальный ряд, число интервалов в котором определяется по формуле Стерджесса:



где k – число интервалов, n – объем выборки. (Конечно, формула обычно дает число дробное, а в качестве числа интервалов выбирается ближайшее целое к полученному число.) Длина интервала в таком случае определяется по формуле

.

Графически вариационные ряды могут быть представлены в виде гистограммы (над каждым интервалом интервального ряда выстраивается «столбик» высоты, соответствующей частоте в этом интервале), полигона распределения (ломаная линия, соединяющая точки (х i ;n i ) либо кумуляты (строится по накопленным частотам, т.е. для каждого значения признака берется частота появления в совокупности объектов со значением признака меньшим данного).

При работе в Excel для построения вариационных рядов могут быть использованы следующие функции:

СЧЁТ(массив данных ) – для определения объема выборки. Аргументом является диапазон ячеек, в котором находятся выборочные данные.

СЧЁТЕСЛИ(диапазон; критерий ) – может быть использована для построения атрибутивного или вариационного ряда. Аргументами являются диапазон массива выборочных значений признака и критерий – числовое или текстовое значение признака или номер ячейки, в которой оно находится. Результатом является частота появления этого значения в выборке.

ЧАСТОТА(массив данных; массив интервалов ) – для построение вариационного ряда. Аргументами являются диапазон массива выборочных данных и столбец интервалов. Если требуется построить дискретный ряд, то здесь указываются значения варианты, если интервальный – то верхние границы интервалов (их еще называют «карманами»). Поскольку результатом является столбец частот, введение функции следует завершить нажатием сочетания клавиш CTRL+SHIFT+ENTER. Заметим, что задавая массив интервалов при введении функции, последнее значение в нем можно и не указывать – в соответствующий «карман» будут помещены все значения, не попавшие в предыдущие «карманы». Иногда это помогает избежать ошибки, состоящей в том, что наибольшее выборочное значение не помещается автоматически в последний «карман»

Кроме того, для сложных группировок (по нескольким признакам) используют инструмент «сводные таблицы». Для построения атрибутивных и вариационных рядов их тоже можно использовать, но это излишне усложняет задачу. Также для построения вариационного ряда и гистограммы существует процедура «гистограмма» из надстройки «Пакет анализа» (чтобы использовать надстройки в Excel, их нужно сначала загрузить, по умолчанию они не устанавливаются)

Проиллюстрируем процесс первичной обработки данных на следующих примерах.

Пример 1.1 . имеются данные о количественном составе 60 семей.

Построить вариационный ряд и полигон распределения

Решение .

Откроем таблицы Excel. Введем массив данных в диапазон А1:L5. Если Вы изучаете документ в электронной форме (в формате Word, например), для этого достаточно выделить таблицу с данными и скопировать ее в буфер, затем выделить ячейку А1 и вставить данные – они автоматически займут подходящий диапазон. Подсчитаем объем выборки n – число выборочных данных, для этого в ячейку В7 введем формулу =СЧЁТ(А1:L5). Заметим, что для того, чтобы в формулу ввести нужный диапазон, необязательно вводить его обозначение с клавиатуры, достаточно его выделить. Определим минимальное и максимальное значение в выборке, введя в ячейку В8 формулу =МИН(А1:L5), и в ячейку В9: =МАКС(А1:L5).

Рис.1.1 Пример 1. Первичная обработка статистических данных в таблицах Excel

Далее, подготовим таблицу для построения вариационного ряда, введя названия для столбца интервалов (значений варианты) и столбца частот. В столбец интервалов введем значения признака от минимального (1) до максимального (6), заняв диапазон В12:В17. Выделим столбец частот, введем формулу =ЧАСТОТА(А1:L5;В12:В17) и нажмем сочетание клавиш CTRL+SHIFT+ENTER

Рис.1.2 Пример 1. Построение вариационного ряда

Для контроля вычислим сумму частот при помощи функции СУММ (значок функции S в группе «Редактирование» на вкладке «Главная»), вычисленная сумма должна совпасть с ранее вычисленным объемом выборки в ячейке В7.

Теперь построим полигон: выделив полученный диапазон частот, выберем команду «График» на вкладке «Вставка». По умолчанию значениями на горизонтальной оси будут порядковые числа - в нашем случае от 1 до 6, что совпадает со значениями варианты (номерами тарифных разрядов).

Название ряда диаграммы «ряд 1» можно либо изменить, воспользовавшись той же опцией «выбрать данные» вкладки «Конструктор», либо просто удалить.

Рис.1.3. Пример 1. Построение полигона частот

Пример 1.2 . Имеются данные о выбросах загрязняющих веществ из 50 источников:

10,4 18,6 10,3 26,0 45,0 18,2 17,3 19,2 25,8 18,7
28,2 25,2 18,4 17,5 41,8 14,6 10,0 37,8 10,5 16,0
18,1 16,8 38,5 37,7 17,9 29,0 10,1 28,0 12,0 14,0
14,2 20,8 13,5 42,4 15,5 17,9 19, 10,8 12,1 12,4
12,9 12,6 16,8 19,7 18,3 36,8 15,0 37,0 13,0 19,5

Составить равноинтервальный ряд, построить гистограмму

Решение

Внесем массив данных в лист Excel, он займет диапазон А1:J5 Как и в предыдущей задаче, определим объем выборки n, минимальное и максимальное значения в выборке. Поскольку теперь требуется не дискретный, а интервальный ряд, и число интервалов в задаче не задано, вычислим число интервалов k по формуле Стерджесса. Для этого в ячейку В10 введем формулу =1+3,322*LOG10(B7).

Рис.1.4. Пример 2. Построение равноинтервального ряда

Полученное значение не является целым, оно равно примерно 6,64. Поскольку при k=7 длина интервалов будет выражаться целым числом (в отличие от случая k=6) выберем k=7, введя это значение в ячейку С10. Длину интервала d вычислим в ячейке В11, введя формулу =(В9-В8)/С10.

Зададим массив интервалов, указывая для каждого из 7 интервалов верхнюю границу. Для этого в ячейке Е8 вычислим верхнюю границу первого интервала, введя формулу =B8+B11; в ячейке Е9 верхнюю границу второго интервала, введя формулу =E8+B11. Для вычисления оставшихся значений верхних границ интервалов зафиксируем номер ячейки В11 в введенной формуле при помощи знака $, так что формула в ячейке Е9 примет вид =E8+B$11, и скопируем содержимое ячейки Е9 в ячейки Е10-Е14. Последнее полученное значение равно вычисленному ранее в ячейке В9 максимальному значению в выборке.

Рис.1.5. Пример 2. Построение равноинтервального ряда


Теперь заполним массив «карманов» при помощи функции ЧАСТОТА, как это было сделано в примере 1.

Рис.1.6. Пример 2. Построение равноинтервального ряда

По полученному вариационном ряду построим гистограмму: выделим столбец частот и выберем на вкладке «Вставка» «Гистограмма». Получив гистограмму, изменим в ней подписи горизонтальной оси на значения в диапазоне интервалов, для этого выберем опцию «Выбрать данные» вкладки «Конструктор». В появившемся окне выберем команду «Изменить» для раздела «Подписи горизонтальной оси» и введем диапазон значений варианты, выделив его «мышью».

Рис.1.7. Пример 2. Построение гистограммы

Рис.1.8. Пример 2. Построение гистограммы

При построении интервального ряда распределения решаются три вопроса:

  • 1. Сколько надо взять интервалов?
  • 2. Какова длина интервалов?
  • 3. Каков порядок включения единиц совокупности в границы интервалов?
  • 1. Количество интервалов можно определить по формуле Стер- джесса :

2. Длина интервала, или шаг интервала , обычно определяется по формуле

где R - размах вариации.

3. Порядок включения единиц совокупности в границы интервала

может быть разным, но при построении интервального ряда распределения обязательно строго определен.

Например, такой: [), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал , верхняя граница которого включает последнее число ранжированного ряда.

Границы интервалов бывают:

  • закрытые - с двумя крайними значениями признака;
  • открытые - с одним крайним значением признака (до такого-то числа или свыше такого-то числа).

С целью усвоения теоретического материала введем исходную информацию для решения сквозной задачи.

Имеются условные данные по среднесписочной численности менеджеров по продажам, количеству проданного ими однокачественного товара, индивидуальной рыночной цене на этот товар, а также объему продаж 30 фирм в одном из регионов РФ в I квартале отчетного года (табл. 2.1).

Таблица 2.1

Исходная информация для сквозной задачи

Численность

менеджеров,

Цена, тыс. руб.

Объем продаж, млн руб.

Численность

менеджеров,

Количество проданного товара, шт.

Цена, тыс. руб.

Объем продаж, млн руб.

На базе исходной информации, а также дополнительной сделаем постановку отдельных заданий. Затем представим методику их решения и сами решения.

Сквозная задача. Задание 2.1

Используя исходные данные табл. 2.1, требуется построить дискретный ряд распределения фирм по количеству проданного товара (табл. 2.2).

Решение:

Таблица 2.2

Дискретный ряд распределения фирм по количеству проданного товара в одном из регионов РФ в I квартале отчетного года

Сквозная задача. Задание 2.2

требуется построить ранжированный ряд 30 фирм по среднесписочной численности менеджеров.

Решение:

15; 17; 18; 20; 20; 20; 22; 22; 24; 25; 25; 25; 27; 27; 27; 28; 29; 30; 32; 32; 33; 33; 33; 34; 35; 35; 38; 39; 39; 45.

Сквозная задача. Задание 2.3

Используя исходные данные табл. 2.1, требуется:

  • 1. Построить интервальный ряд распределения фирм по численности менеджеров.
  • 2. Рассчитать частости ряда распределения фирм.
  • 3. Сделать выводы.

Решение:

Рассчитаем по формуле Стерджесса (2.5) количество интервалов :

Таким образом, берем 6 интервалов (групп).

Длину интервала , или шаг интервала , рассчитаем по формуле

Примечание. Порядок включения единиц совокупности в границы интервала такой: I), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал I ], верхняя граница которого включает последнее число ранжированного ряда.

Строим интервальный ряд (табл. 2.3).

Интервальный ряд распределения фирм но среднесписочной численности менеджеров в одном из регионов РФ в I квартале отчетного года

Вывод. Наиболее многочисленной группой фирм является группа со среднесписочной численностью менеджеров 25- 30 человек, которая включает 8 фирм (27%); в самую малочисленную группу со среднесписочной численностью менеджеров 40-45 человек входит всего одна фирма (3%).

Используя исходные данные табл. 2.1, а также интервальный ряд распределения фирм по численности менеджеров (табл. 2.3), требуется построить аналитическую группировку зависимости между численностью менеджеров и объемом продаж фирм и на основании ее сделать вывод о наличии (или отсутствии) связи между указанными признаками.

Решение:

Аналитическая группировка строится по факторному признаку. В нашей задаче факторным признаком (х) является численность менеджеров, а результативным признаком (у) - объем продаж (табл. 2.4).

Построим теперь аналитическую группировку (табл. 2.5).

Вывод. На основании данных построенной аналитической группировки можно сказать, что с увеличением численности менеджеров по продажам средний в группе объем продаж фирмы также увеличивается, что свидетельствует о наличии прямой связи между указанными признаками.

Таблица 2.4

Вспомогательная таблица для построения аналитической группировки

Численность менеджеров, чел.,

Номер фирмы

Объем продаж, млн руб., у

» = 59 f = 9,97

Я-™ 4 - Ю.22

74 ’25 1ПЙ1

У4 = 7 = 10,61

у = ’ =10,31 30

Таблица 2.5

Зависимость объемов продаж от численности менеджеров фирм в одном из регионов РФ в I квартале отчетного года

КОНТРОЛЬНЫЕ ВОПРОСЫ
  • 1. В чем суть статистического наблюдения?
  • 2. Назовите этапы статистического наблюдения.
  • 3. Каковы организационные формы статистического наблюдения?
  • 4. Назовите виды статистического наблюдения.
  • 5. Что такое статистическая сводка?
  • 6. Назовите виды статистических сводок.
  • 7. Что такое статистическая группировка?
  • 8. Назовите виды статистических группировок.
  • 9. Что такое ряд распределения?
  • 10. Назовите конструктивные элементы ряда распределения.
  • 11. Каков порядок построения ряда распределения?

2. Понятие рядов распределения. Дискретные и интервальные ряды распределения

Рядами распределения называются группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе либо удельный вес этой численности в общем итоге. Т.е. ряд распределения – упорядоченная совокупность значений признака, расположенных в порядке возрастания или убывания с соответствующими им весами. Ряды распределения могут быть построены или по количественному, или по атрибутивному признаку.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Они бывают дискретные и интервальные . Ряд распределения может быть построен по не прерывно варьирующему признаку (когда признак может принимать любые значения в рамках какого-либо интервала) и по дискретно варьирующему признаку (принимает строго определенные целочисленные значения).

Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов с соответствующими им частотами или частностями. Варианты дискретного ряда – это дискретно прерывно изменяющиеся значения признак, обычно это результат подсчета.

Дискретные

вариационные ряды строят обычно в том случае, если значения изучаемого признака могут отличаться друг от друга не менее чем на некоторую конечную величину. В дискретных рядах задаются точечные значения признака. Пример : Распределение мужских костюмов, реализованных магазинами за месяц по размерам.

Интервальным

вариационным рядомназывается упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины. Интервальные ряды предназначены для анализа распределения непрерывно изменяющегося признака, значение которого чаще всего регистрируется путем измерения или взвешивания. Варианты такого ряда – это группировка.

Пример : Распределение покупок в продуктовом магазине по сумме.

Если в дискретных вариационных рядах частотная характеристика относится непосредственно к варианту ряда, то в интервальных к группе вариантов.

Ряды распределения удобно анализировать при помощи их графического изображения, позволяющего судить и о форме распределения, о закономерностях. Дискретный ряд изображается на графике в виде ломаной линии – полигона распределения . Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные (упорядоченные) значения варьирующего признака, а по оси ординат наносится шкала для выражения частот.

Интервальные ряды изображаются в виде гистограмм распределения (то есть столбиков диаграмм).

При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам.

Любая гистограмма может быть преобразована в полигон распределений, для этого необходимо соединить между собой отрезками прямой вершины ее прямоугольников.

2. Индексный метод анализа влияния средней выработки и среднесписочной численности на изменения объема продукции

Индексный метод применяется для анализа динамики и сравнения обобщающих показателей, а так же факторов, влияющих на изменение уровней этих показателей. С помощью индексов можно выявить влияние средней выработки и среднесписочной численности на изменения объема продукции. Эта задача решается путем построения системы аналитических индексов.

Индекс объема продукции с индексом среднесписочной численности работающих и индексом средней выработки связан таким же образом, как объем производства (Q) связан с выработкой (w) и численностью (r) .

Можно заключить, что объем продукции будет равняться произведению средней выработки и среднесписочной численности:

Q = w·r, где Q – объем продукции,

w - средняя выработка,

r – среднесписочная численность.

Как видно, речь идет о взаимосвязи явлений в статике: произведение двух факторов дает общий объем результативного явления. Очевидно также, что эта связь функциональная, следовательно, динамика этой связи изучается с помощью индексов. Для приведенного примера это следующая система:

J w × J r = J wr .

Например, индекс объема продукции Jwr, как индекс результативного явления, можно разложить на два индекса-фактора: индекс средней выработки (Jw), и индекс среднесписочной численности (Jr):

Индекс Индекс Индекс

объема средней среднесписочной

продукции выработки численности

где J w - индекс производительности труда, рассчитываемый по формуле Ласпейреса;

J r - индекс численности работающих, рассчитываемый по формуле Пааше.

Индексные системы используются для определения влияния отдельных факторов на формирование уровня результативного показателя, позволяют по 2-м известным значениям индексов определить значение неизвестного.

На базе приведенной системы индексов можно найти и абсолютный прирост объема продукции, разложенный на влияние факторов.

1. Общий прирост объема продукции:

∆wr = ∑w 1 r 1 - ∑w 0 r 0 .

2. Прирост за счет действия показателя средней выработки:

∆wr/w = ∑w 1 r 1 - ∑w 0 r 1 .

3. Прирост за счет действия показателя среднесписочной численности:

∆wr/r = ∑w 0 r 1 - ∑w 0 r 0

∆wr = ∆wr/w + ∆wr/r.

Пример. Известны следующие данные

Мы можем определить, как изменился объем продукции в относительном и абсолютном выражении и как отдельные факторы повлияли на это изменение.

Объем продукции составил:

в базисном периоде

w 0 * r 0 = 2000 * 90 = 180000,

а в отчетном

w 1 * r 1 = 2100 * 100 = 210000.

Следовательно, объем продукции увеличился на 30000 или на 1,16%.

∆wr=∑w 1 r 1 -∑w 0 r 0= (210000-180000)=30000

или (210000:180000)*100%=1,16%.

Данное изменение объема продукции было обусловлено:

1) увеличением среднесписочной численности на 10 человек или на 111,1%

r 1 /r 0 = 100 / 90 = 1,11 или 111,1%.

В абсолютном выражении за счет этого фактора объем продукции увеличился на 20000:

w 0 r 1 – w 0 r 0 = w 0 (r 1 -r 0) = 2000 (100-90) = 20000.

2) увеличением средней выработки на 105% или на 10000:

w 1 r 1 /w 0 r 1 = 2100*100/2000*100 = 1,05 или 105%.

В абсолютном выражении прирост составляет:

w 1 r 1 – w 0 r 1 = (w 1 -w 0)r 1 = (2100-2000)*100 = 10000.

Отсюда, совместное влияние факторов составило:

1. В абсолютном выражении

10000 + 20000 = 30000

2. В относительном выражении

1,11 * 1,05 = 1,16 (116%)

Следовательно, прирост составляет 1,16%. Оба результата были получены ранее.

Слово «index» в переводе означает указатель, показатель. В статистике индекс трактуется как относительный показатель, характеризующий изменение явления во времени, пространстве или по сравнению с планом. Поскольку индекс относительная величина, наименования индексов созвучны с наименованием относительных величин.

В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.

Индекс постоянного (фиксированного) состава – это индекс, который характеризует динамику средней величины при одной и той же фиксированной структуре совокупности.

Принцип построения индекса постоянного состава – элиминировать влияние изменений в структуре весов на индексируемую величину путем расчета средневзвешенного уровня индексируемого показателя с одними и теми же весами.

Индекс постоянного состава по своей форме тождественен агрегатному индексу. Агрегатная форма является наиболее распространенной.

Индекс постоянного состава исчисляется с весами, зафиксированными на уровне одного какого-либо периода, и показывает изменение только индексируемой величины. Индекс постоянного состава элиминирует влияние изменений в структуре весов на индексируемую величину путем расчета средневзвешенного уровня индексируемого показателя с одними и теми же весами. В индексах постоянного состава сопоставляются показатели, рассчитанные на базе неизменной структуры явлений.




Top