Происхождение планет. Гипотезы происхождения солнечной системы

Возьми фломастер и нарисуй на надувном шарике несколько «галактик» разной формы. Когда шарик высохнет, начни его надувать — и ты увидишь, как «галактики» разбегаются. Чем больше шарик раздувается, тем дальше убегают они друг от друга. То же самое происходит и во Вселенной. Это одна из моделей, предложенных учеными для иллюстрации расширения Вселенной.

Миллиарды лет назад солнечная система начала своё формирование с образования газопылевого облака. Центром системы является Солнце, вокруг которого под силой тяготения движется огромное число других объектов - планет, астероидов, комет, метеоритов и крайне много космической пыли. Солнце настолько массивно, что по сути составляет большую часть массы всей системы.

Строение Солнечной системы

Всего в солнечной системе выделяют восемь планет. Так называемые планеты земной группы - Меркурий, Венера, Земля и Марс являются внутренними планетами, в отличии от четырех планет гигантов, которые отделены поясом астероидов - Юпитер, Сатурн, Уран и Нептун. Планеты земной группы в основном состоят из твердых веществ, в то время как внешние планеты - это в основном газовые планеты. Причем последние во много раз крупнее и массивнее.

Из-за чего именно образовался огромный пояс астероидов между внутренними и внешними планетами до сих пор остается загадкой, но ученые сходятся во мнение, что если бы не гравитационные поля Юпитера - то возможно они бы объединились в планету. Но догадок на этот счет очень много, некоторые даже считают, что пояс астероидов образовался из-за столкновения планеты с каким-то другим небесным телом.

Хотя строение солнечной системы казалось бы уже было изучено, однако ученые до сих пор вносят поправки, например в 2005 году была принята поправка в определении «что такое планета» из-за которой Плутон перестал быть планетой стал называться карликовой планетой, которых у солнечной системы довольно много.

Расположение планет Солнечной системы

Планеты в Солнечной системе располагаются по такой схеме:

Солнце > Меркурий > Венера > Земля > Марс > Пояс астероидов > Юпитер > Сатурн > Уран > Нептун

Происхождение Солнечной системы

Самая популярная версия состоит в том, что как и большинство галактик, планет и звезд, наша система образовалась после Большого взрыва, произошедшего 15 миллиардов лет назад. Огромное количество материи вырвавшееся наружу постепенно охлаждалось и образовывались космические тела, включая нашу галактику. Достоверно не известно в результате каких процессов, но около 5 миллиардов лет назад сгустки материи из пыли и газа, в результате действия силы притяжения начали сжиматься и крутиться друг вокруг друга. В центре этого действа и образовалось Солнце. Но внутри этого вихря начали объединяться другие части, образовывая «уплотнения», которые в дальнейшем и стали планетами.

Но все же происхождение солнечной системы до сих пор достоверно не изучено, потому что существуют некоторые загадки и нестыковки в теориях ученых, например не совсем понятно почему Венера вращается в другую сторону, относительно других планет. На этот счет есть гипотезы о том, что она столкнулась со своим спутником и он изменил направления её движения, но убедительных доказательств этому так и нет.

Солнечная система видео презентация:


Введение………………………………………………………………………………2

1. Строение солнечной системы…………………………………………………….2

1.1.Солнце - центральное тело планетной системы……………………………3

1.2.Планеты земной группы……………………………………………………..5

1.3.Планеты-гиганты……………………………………………………………..9

1.4. Другие объекты Солнечной системы………………………………………13

2. Происхождение Солнечной системы……………………………………………14

2.1.Небулярные гипотезы………………………………………………………...15

2.2. Гипотезы захвата …………………………………………………………….18

2.3. Другие гипотезы……………………………………………………………..19

Заключение……………………………………………….………………………….21

Список литературы………………………………………………………………….23

ВВЕДЕНИЕ

Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир. На протяжении веков и даже тысячелетий ученые пытались выяснить прошлое, настоящее и будущее Вселенной, в том числе и Солнечной системы. Решение проблемы происхождения Солнечной системы имеет естественно-научное, мировоззренческое и философское значение.

Долгое время единственным источником сведений о звездах и Вселенной был для астрономов видимый свет. Наблюдая невооруженным глазом или с помощью телескопов, они использовали только очень небольшой интервал волн из всего многообразия электромагнитного излучения, испускаемого небесными телами. Астрономия преобразилась с середины xx века, когда прогресс физики и техники предоставил ей новые приборы и инструменты, позволяющие вести наблюдения в самом широком диапазоне волн – от метровых радиоволн до гамма-лучей. Это вызвало нарастающий поток астрономических данных.

Сопоставляя многочисленные данные наблюдений с физическими процессами, которые могут происходить при различных условиях в космическом пространстве, учёные пытаются объяснить, как возникают небесные тела. Единой, завершённой Солнечной системы пока не существует. Проблемы, с которыми столкнулись учёные, подчас трудно разрешимы. Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных систем мы пока не наблюдаем. Нашу солнечную систему не с чем пока ещё сравнивать, хотя системы, подобные ей, должны быть достаточно распространены и их возникновение должно быть не случайным, а закономерным явлением.

Целью данной работы является рассмотрение строения Солнечной системы и изучение гипотез ее происхождения.

1. СТРОЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ

Солнечная система состоит из Солнца, планет, спутников планет, астероидов и их осколков, комет и межпланетной среды. Внешняя граница, по-видимому, находится на расстоянии около 200 тыс. а.е. от Солнца. Возраст Солнечной системы около 5 млрд. лет. Расположена вблизи плоскости галактики на расстоянии около 26 тыс. световых лет (около 250 тыс. млрд. км) от галактического центра и вращается вокруг него с линейной скоростью около 220 км/с

Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, восемь больших планет со спутниками, более 100000 планет (астероидов), порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями, так и в виде отдельных частиц.

Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Масса солнца приблизительно в 750 раз превосходит массу всех остальных тел, входящих в эту систему. Гравитационное притяжение звезды является главной силой, определяющей движение всех обращающихся вокруг него тел Солнечной системы. Среднее расстояние от солнца до самой далекой от него планеты Плутон 39,5 а.е., что очень мало по сравнению с расстоянием до ближайших звезд. Только некоторые кометы удаляются от солнца на 10 5 а.е. и подвергаются воздействию притяжения звезд.

В Солнечной системе наблюдается огромный диапазон масс, особенное, если учесть наличие в межпланетном пространстве космической пыли. Различие в массах между солнцем и какой-нибудь пылинкой в тысячную долю миллиграмма будет составлять около 40 порядков (иначе говоря, отношение их масс будет выражаться числом с 40 нулями.).

Планеты Солнечной системы делятся на две группы как по массе и другим физическим признакам, так и по расстояниям от солнца эти группы: планеты гиганты и планеты земной группы. К первой группе относятся Юпитер, Сатурн, Уран, Нептун, ко второй - Меркурий, Венера, Земля и Марс. Плутон в 2006 году был исключен из ряда больших планет Солнечной системы.

1.1 Солнце - центральное тело планетной системы

Солнце - ближайшая к Земле звезда, представляющая собой раскаленный плазменный шар. Это гигантский источник энергии: мощность излучения его очень велика - около 3,8610 23 кВт. Ежесекундно Солнце излучает такое количество тепла, которого вполне хватило бы, чтобы растопить слой льда, окружающий земной шар, толщиной в тысячу км. Солнце играет исключительную роль в возникновении и развитии жизни на Земле. На Землю попадает ничтожная часть солнечной энергии, благодаря которой поддерживается газообразное состояние земной атмосферы, постоянно нагреваются поверхности суши и водоемов, обеспечивается жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти, природного газа.

В настоящее время принято считать, что в недрах Солнца при огромнейших температурах - около 15 млн. градусов - и чудовищных давлениях протекают термоядерные реакции, которые сопровождаются выделением огромного количества энергии. Одной из таких реакций может быть синтез ядер водорода, при котором образуются ядра атома гелия. Подсчитано, что в каждую секунду в недрах Солнца 564 млн т водорода преобразуются в 560 млн т гелия, а остальные 4 млн т водорода превращаются в излучение. Термоядерная реакция будет происходить до тех пор, пока не иссякнут запасы водорода. В настоящее время они составляют около 60 % массы Солнца. Такого резерва должно хватить по меньшей мере на несколько миллиардов лет.

Почти вся энергия Солнца генерируется в его центральной области, откуда переносится излучением, а затем во внешнем слое - передается конвекцией. Эффективная температура поверхности Солнца - фотосферы - около 6000 К.

Наше Солнце - источник не только света и тепла: его поверхность излучает потоки невидимых ультрафиолетовых и рентгеновских лучей, а также элементарных частиц. Хотя количество тепла и света, посылаемого на Землю Солнцем, на протяжение многих сотен миллиардов лет остается постоянным, интенсивность его невидимых излучений значительно меняется: она зависит от уровня солнечной активности.

Наблюдаются циклы, в течение которых солнечная активность достигает максимального значения. Их периодичность составляет 11 лет. В годы наибольшей активности увеличивается число пятен и вспышек на солнечной поверхности, на Земле возникают магнитные бури, усиливается ионизация верхних слоев атмосферы и т. д. Длина вспышки может достигать до и чуть свыше 100.000 км. Во время вспышки происходит выброс заряженных частиц, которые долетают даже до отдаленных планет.

Солнце оказывает заметное влияние не только на такие природные процессы, как погода, земной магнетизм, но и на биосферу - животный и растительный мир Земли, в том числе и на человека.

Предполагается, что возраст Солнца не менее 5 млрд. лет. Такое предположение основано на том, что в соответствии с геологическими данными наша планета существует не менее 5 млрд. лет, а Солнце образовалось еще раньше.

Диаметр солнца равен 1500000 км. Сейчас нельзя сказать, что диаметр солнца 5 млрд. лет назад был таким же, как и сейчас и его температура 5 млрд. лет была тоже не такой как сейчас. После рождения солнца каждые 1 миллиард лет оно становится все больше, все горячее.

Через 5 млрд. лет солнце начнет расширяться, превращаясь в красного гиганта. Красный свет звезды объясняется его охлаждением. Но скорость расширения солнца будет во много раз выше скорости охлаждения. Поэтому, чем больше солнце, тем выше его температура. Когда солнце сбросит с себя всю массу, раскаленное ядро раскроется, а затем угаснет, превратившись в карлика.

1.2 Планеты земной группы

Планеты земной группы - 4 планеты Солнечной системы: Меркурий, Венера, Земля и Марс. Планеты земной группы обладают высокой плотностью и состоят преимущественно из силикатов и металлического железа (в отличие от газовых планет и каменно-ледяных карликовых планет, объектов пояса Корпера и облака Оорта). Наибольшая планета земной группы - Земля - более чем в 14 раз уступает по массе наименее массивной газовой планете - Урану, но при этом примерно в 400 раз массивнее наибольшего известного объекта пояса Койпера.

Планеты земной группы состоят главным образом из кислорода, кремния, железа, магния, алюминия и других тяжёлых элементов.

Все планеты земной группы имеют следующее строение:

    в центре ядро из железа с примесью никеля.

    мантия, состоит из силикатов.

    кора, образовавшаяся в результате частичного плавления мантии и состоящая также из силикатных пород, но обогащённая несовместимыми элементами.

Из планет земной группы коры нет у Меркурия, что объясняют её разрушением в результате метеоритной бомбардировки. Земля отличается от других планет земной группы высокой степенью химической дифференциации вещества и широким распространением гранитов в коре.

Две дальние из планет земной группы (Земля и Марс) имеют спутники и (в отличие от всех планет-гигантов) ни одна из них не имеет колец.

Меркурий

Меркурий – это ближайшая к Солнцу планета. Температура поверхности стороны планеты, повёрнутой к светилу, достигает 427 °С. Из-за отсутствия атмосферы поверхность в тени быстро остывает до -173°С на «ночной» стороне. У полюсов в некоторые кратеры никогда не заглядывает Солнце, поэтому под поверхностью там может сохраняться лёд. Вода могла попасть на Меркурий при столкновениях с ледяными кометами.

Снимки космического зонда «Маринер-10» 1974-1975гг. показали, что поверхность планеты похожа на лунную. Она покрыта кратерами и бассейнами. У Меркурия огромное железное ядро, вероятно, служащее источником магнитного поля, которое в 100 раз слабее земного.

Год на меркурии длится 88 земных суток, а земные сутки в 59 раз длиннее земных. Астронавт на планете увидит рассвет раз в 176 земных суток.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Солнечная система образовалась около 4,6 млрд. лет назад. Она состоит из небесных тел - это звезды, в том числе и Солнце, 8 планет и их спутников, а так же астероиды и кометы. Планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Все небесные тела обращаются вокруг массивной звезды (Солнце) по эллиптическим(рис.15) орбитам.

Центральным объектом Солнечной системы является Солнце, к которой сосредоточена подавляющая часть всей массы системы, оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе. Иногда Солнечную систему разделяют на регионы. Внутренняя часть Солнечной системы включает четыре планеты земной группы и пояс астероидов. Внешняя часть начинается за пределами пояса астероидов и включает четыре газовых гиганта. Планеты внутри области астероидов иногда называют внутренними, а вне пояса — внешними.

Один из важных вопросов, связанных с изучением нашей планетной системы — проблема ее происхождения. В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. Наша цель - установить хронологию развития представлений о происхождении Солнечной системы.

Анализ развития гипотез о происхождении Солнечной системы

ПОЧЕМУ ТАК НАЗЫВАЕТСЯ

Меркурием римляне звали вестника богов

РАССТОЯНИЕ ОТ СОЛНЦА

58 млн. км.

ДИАМЕТР

МАССА

55% массы Земли

АТМОСФЕРА


НАШЕ МЕСТО ВО ВСЕЛЕННОЙ

Это сейчас люди достаточно "легко" представляют себе свое место в безграничных просторах Космоса.
Они шли к таким представлениям многие тысячи лет - от первых вопрошающих взглядов первобытного человека на ночное небо Земли, до создания мощнейших телескопов во всех диапазонах частот ЭМ-колебаний.

Для исследования свойств космического пространства сейчас используются так же другие типы волновых процессов (гравитационные волны) и элементарные частицы (нейтринные телескопы). Используются космические разведчики - межпланетные космические аппараты, которые продолжают свою работу уже за пределами Солнечной системы и несут сведения о нашей планете тем обитателям Галактики (Вселенной), которые станут обладателями этих КА в будущем.

Изучая природу (др. греч. φύσις ), человечеству пришлось переходить от простого созерцания и мудрствования (натуральная философия) к созданию полноценной науки — физики — экспериментальной и теоретической (Г. Галилей). Физика смогла предсказывать будущее в развитии природных процессов.

Физика по своей сути является основой для всех наук, в том числе и математики, которая не может существовать отдельно от природы, поскольку черпает свои темы из природы и является инструментом для ее исследования. По мере разгадывания тайн движения планет были созданы новые разделы математики (И. Ньютон, Г. Лейбниц), которые с большим успехом используют сейчас во всех без исключения разделах деятельности людей, в том числе и в познании законов мироздания. Понимание этих законов и позволило определить наше место во Вселенной.

Процесс познания продолжается и не может остановиться, пока существует человек и его природное любопытство - он хочет знать, из чего всё сделано и как устроено (галактики, звезды, планеты, молекулы, атомы, электроны, кварки...), откуда всё берётся (физический вакуум), куда исчезает (чёрные дыры) и т.д. Для этого учёными создаются новые физико-математические теории, например, теория суперструн (М– теория)
(Э. Виттен, П. Таунсенд, Р. Пенроуз и др.), которые объясняют устройство и Макро– и Микромиров.

Итак, наша Галактика (Млечный путь) входит в так называемую местную группу галактик. Размеры галактик и расстояния между ними громадны и требуют специальных единиц измерения (см. в колонке справа).


наши соседи из местной группы галактик (увеличить картинку )

Наша Галактика — Млечный путь представляет собой гигантский диск, состоящий из звезд разного типа, звездных скоплений, межзвездного вещества, состоящего из различного типа излучений, элементарных частиц, атомов и молекул, тёмной материи, над тайной которой бьются сейчас астрофизики. В центре нашей Галактики существует чёрная дыра (по крайней мере одна) — ещё одна из астрофизических проблем современности.

На схема ниже показано устройство Галактики (рукава, ядро, гало), её размеры и место, которое занимают в ней Солнце, Земля и другие планеты — спутники Солнца.


расположение Солнечной системы в Галактике Млечный путь (схема)
увеличить картинку


схема рукавов (ветвей) Млечного пути (Солнечная система выделена)
увеличить картинку

КОСМОГОНИЯ (греч. κοσµογόνια от греч. κόσµος - порядок, мир, Вселенная и γονή - рождение - происхождение мира) - раздел астрономии, посвященный происхождению и развитию небесных тел.

ПРОИСХОЖДЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ

Полноценной теории образования Солнечной системы до сих пор не существует. Все гипотезы, начиная с Р. Декарта (1644), существовали определённое время, и когда они не могли объяснить некоторые явления, происходящие в Солнечной системе то, либо отвергались полностью, либо развивались и дополнялись другими учеными.

Первая серьезная космогоническая гипотеза о происхождении Солнечной системы была создана и опубликована в 1755 г. немецким философом Иммануилом Кантом (1724-1804), считавшим, что Солнце и планеты сформировались из твердых частиц огромного облака, которые сближались и слипались между собой под действием взаимного тяготения.

Вторая космогоническая гипотеза была выдвинута в 1796 г. французским физиком и астрономом Пьером Симоном Лапласом (1749-1827). Принимая кольцо Сатурна за газовое, отделившееся от планеты при ее вращении вокруг оси, Лаплас полагал, что Солнце возникло из газовой туманности, скорость вращения которой увеличивалась при ее сжатии, и из-за этого от Солнца отделялись кольца газового вещества (похожие на кольца Сатурна), породившие планеты.

Эта гипотеза просуществовала более 100 лет. Однако, подобно гипотезе Канта, она была отвергнута, так как не объясняла закономерностей Солнечной системы. А достоверная гипотеза должна объяснить следующие основные закономерности Солнечной системы:

1) планеты обращаются вокруг Солнца по почти круговым орбитам, мало наклоненным к плоскости земной орбиты, составляющей с плоскостью солнечного экватора угол в 7° (исключение - [карликовая] планета Плутон, орбита которой наклонена к плоскости земной орбиты на 17°);

2) планеты обращаются вокруг Солнца в направлении его вращения вокруг оси (с запада к востоку), и в этом же направлении вращается большинство планет (исключение - Венера, Уран и Плутон, вращающиеся с востока к западу);

3) масса Солнца составляет 99,87% массы всей Солнечной системы;

4) произведение массы каждой планеты на ее расстояние от Солнца и ее орбитальную скорость называется моментом импульса этой планеты; произведение массы Солнца на его радиус и линейную скорость вращения представляет собой момент импульса Солнца. В общей сумме эти произведения дают момент импульса Солнечной системы, из которого 98% сосредоточено в планетах, а на долю Солнца приходится лишь 2%, т.е. Солнце вращается очень медленно (линейная скорость его экватора равна 2 км/с);

5) физические свойства планет земной группы и планет-гигантов различны.

Гипотезы Канта и Лапласа не смогли объяснить всех этих закономерностей и поэтому были отвергнуты.
Так, например, Нептун удален от Солнца на среднее расстояние d = 30 а.е. и его линейная скорость по орбите v = 5,5 км/с. Следовательно, при отделении породившего его кольца Солнце должно было иметь такой же радиус и такую же линейную скорость своего экватора.
Сжимаясь далее, Солнце последовательно порождало другие планеты, и в настоящее время имеет радиус R≈0,01 а.е.
Согласно законам физики, линейная скорость солнечного экватора должна была бы быть

т.е. во много превосходить действительную скорость 2 км/с. Уже этот пример показывает несостоятельность гипотезы Лапласа.

В начале XX в. были выдвинуты и другие гипотезы, но все они оказались несостоятельными, так как не смогли объяснить всех основных закономерностей Солнечной системы.

По современным представлениям, образование Солнечной системы связано с формированием Солнца из газопылевой среды. Считается, что газопылевое облако, из которого около 5 млрд. лет назад образовалось Солнце, медленно вращалось. По мере сжатия скорость вращения облака увеличивалась, и оно приняло форму диска. Центральная часть диска дала начало Солнцу, а его внешние области - планетам. Этой схемой вполне объясняется различие в химическом составе и массах планет земной группы и планет-гигантов.

Действительно, по мере разгорания Солнца легкие химические элементы (водород, гелий) под действием давления излучения покидали центральные области облака, уходя к его периферии. Поэтому планеты земной группы сформировались из тяжелых химических элементов с малыми примесями легких и получились небольших размеров.

Из-за большой плотности газа и пыли излучение Солнца слабо проникало к периферии протопланетного облака, где царила низкая температура и пришедшие газы намерзали на твердые частицы. Поэтому далекие планеты-гиганты сформировались крупными и в основном из легких химических элементов.

Эта космогоническая гипотеза объясняет и ряд других закономерностей Солнечной системы, в частности распределение ее массы между Солнцем (99,87%) и всеми планетами (0,13%), современные расстояния планет от Солнца, их вращение и др.

Она разработана в 1944-1949 гг. советским академиком Отто Юльевичем Шмидтом (1891-1956) и впоследствии развита его сотрудниками и последователями.

Время

Личность

История личности

Суть гипотезы

384 г. до н. э.

Аристотель (рис.1)

Древнегреческий философ, ученик Платона.

Утверждал, что Земля - это центр Вселенной.

Клавдий Птолемей (рис.2)

Птолемей жил и работал в Александрии, где проводил астрономические наблюдения. Он был астрономом, астрологом, математиком, механиком, оптиком, теоретиком музыки и географом. В источниках нет никаких упоминаний о его жизни и деятельности.

Птолемей первый предложил модель Вселенной. Согласно этой модели, центральное положение во Вселенной занимает неподвижная Земля, а вокруг нее в разных сферах вращаются Солнце, Луна, планеты и звёзды. Его модель была принята христианскими богословами и, по сути, канонизирована - возведена в ранг абсолютных истин.

Николай Коперник (рис.3)

Польский астроном, математик, механик, экономист, каноник эпохи Возрождения. Он наиболее известен, как автор гелиоцентрической системы мира, положившей начало первой научной революции.Гелиоцентрическая система мира (гелиоцентризм) — это представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты.

Николай Коперник опровергнул гипотезу Клавдия Птолемея и научно доказал, что Земля не является центром Вселенной. В центр Коперник поместил Солнце и создал гелиоцентрическую модель Вселенной. Коперник боялся гонений церкви и поэтому отдал в печать свой труд незадолго до смерти. Но церковь официально запретила его книгу.

Галилео Галилей (рис.4)

Итальянский физик, механик, астроном, философ, математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий.

Галилео Галилей был сторонником учения Коперника. Он впервые использовал для изучения звездного неба телескоп и увидел, что Вселенная значительно больше, чем предполагалось раньше, и что вокруг планет есть спутники, которые, подобно планетам вокруг Солнца, вращаются вокруг своих планет. Галилей экспериментально изучал законы движения. Но церковь устроила гонения на ученого и учинила над ним суд инквизиции.

Джордано Бруно (рис.5)

Итальянский монах-доминиканец, философ-пантеист и поэт, а так же признан выдающимся мыслителем эпохи Возрождения.

Джордано Бруно создал учение о том, что звёзды подобны Солнцу, что вокруг звезд по орбитам движутся тоже планеты. Так же он утверждал, что во Вселенной существует множество обитаемых миров, что кроме человека во Вселенной есть и другие мыслящие существа. Но за это Джордано был осужден христианской церковью и сожжен на костре.

Рене Декарт (рис.6)

Французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики.

Декарт считал, что Вселенная целиком заполнена движущейся материей. По его представлениям, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли. Эта теория имеет заметное сходство с теорией, признанной в настоящее время.

Бюффон Жорж Луи Леклерк (рис.7)

Французский натуралист, биолог, математик, естествоиспытатель и писатель. В 1970 г. в честь Бюффона назван кратер на Луне.

В 1745 г. Бюффон предположил, что вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или звездой. Но если бы Бюффон оказался прав, то появление такой планеты, к примеру, как наша, было бы событием чрезвычайно редким, а вероятность найти жизнь где-нибудь во Вселенной стала бы ничтожно мала.

Иммануил Кант (рис.8)

Немецкий философ и родоначальник немецкой классической философии. Кантом были написаны фундаментальные философские работы, принёсшие учёному репутацию одного из выдающихся мыслителей XVIII века и оказавшие огромное влияние на дальнейшее развитие мировой философской мысли.

Известными теориями стали теории математика Лапласа и философа Канта, суть которых в том, что звезды и планеты образовались из космической пыли путем постепенного сжатия первоначальной газопылевой туманности. Но гипотезы Канта и Лапласа отличались.

Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное тело - Солнце, а потом планеты. А вот гипотеза Лапласа…

Пьер-Симон Лаплас (рис.9)

Французский математик, механик, физик и астроном. Он известен работами в области небесной механики, один из создателей теории вероятностей и “Парадокса демона Лапласа”. Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни.

Согласно Лапласу, планеты образовались раньше, чем Солнце. То есть первоначальная туманность была газовой и горячей и быстро вращалась. Из-за центробежных сил в экваториальном поясе от нее последовательно отделялись кольца. В дальнейшем эти кольца конденсировались, и получились планеты.(рис.17)

Джеймс Хопвуд Джинс (рис.10)

Британский физик-теоретик, астроном и математик. Сделал важный вклад в нескольких областях физики, включая квантовую теорию, теорию теплового излучения и эволюции звёзд.

Гипотеза Джинса полностью противоположна гипотезе Канта и Лапласа. Она объясняет образование Солнечной системы случайностью, считая ее редчайшим явлением. Вещество, из которого в дальнейшем образовались планеты, было выброшено из довольно "старого" Солнца. Благодаря приливным силам, действовавшим со стороны налетевшей звезды, которая случайно проходила вблизи Солнца, из поверхностных слоев Солнца была выброшена струя газа. Эта струя осталась в сфере притяжения Солнца. В дальнейшем струя сконденсировалась, и получились планеты. Но если бы гипотеза Джинса была правильной, то планетных систем в Галактике было бы значительно меньше. Поэтому гипотезу Джинса следует отвергнуть.(рис.16,19)

Вулфсоном предполагал, что газовая струя, из которой образовались планеты, была выброшена из пролетевшей мимо рыхлой звезды огромных размеров. Расчеты показывают, что если бы планетные системы образовывались таким образом, то их в Галактике было бы очень мало.(рис.19)

Ханнес Улоф Йёста Альвен (рис.12)

Шведский физик, специалист по физике плазмы, а так же лауреат Нобелевской премии по физике в 1970 году за работы в области теории магнитогидродинамики. В 1934 году преподавал физику в университете Уппсалы и в 1940 году стал профессором по теории электромагнетизма и электрических измерений в Королевском технологическом институте в Стокгольме.

Спасая гипотезу Канта и Лапласа, Альвен предположил, что Солнце обладало очень сильным электромагнитным полем. Туманность, окружающая Солнце, состояла из нейтральных атомов. Под действием излучений и столкновений - атомы ионизировались. А ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся Солнцем. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку.

Отто Юльевич Шмидт (рис.13)

Советский математик, географ, геофизик, астроном. Один из основателей и главный редактор Большой советской энциклопедии. С 28 февраля 1939 года по 24 марта 1942 года был вице-президентом АН СССР.

В 1944 г. Шмидт предложил гипотезу, согласно которой планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. В этой гипотезе нет трудностей с вращательным моментом.(рис.18,20)

Литлтон Реймонд Артур (рис.14)

Начиная с 1961 г., гипотезу Шмидта развивал английский космогонист Литлтон. Следует заметить: чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Попросту, Солнце должно застрять в этом облаке и двигаться вместе с ним. В этой гипотезе образование планет не связывается с процессом звездообразования.

Заключение

Вот мы и пришли к заключению проекта. Процесс образования Солнечной системы нельзя считать досконально изученным. Происхождение Солнечной системы, формирования галактик и возникновения Вселенной еще далеко до завершения. А дело в том, что ученые наблюдают за огромным количеством звезд, которые находятся на разных стадиях эволюции. О солнечной системе и ее происхождении изучаются во многих институтах мира. Этой теме уделяется важное место в жизни.

Из проекта можно выделить две теории происхождения Солнечной Системы и самой Вселенной в целом. Первая гласит о теории Большого взрыва, а вторая о том, что материя, энергия, пространство и время существовали всегда.

Все мы вправе полагать, что есть и другие планеты, на которых может существовать жизнь, в том числе и разумная. В начале проекта мы говорили, что нашей целью является установить хронологию развития представлений о происхождении Солнечной системы. И вот мы можем с уверенностью сказать, что наша цель достигнута.

Список литературы

    Агекян Т.А. Звезды, Галактики, Метагалактика. - М.: Наука, 1970.

    Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной (пер. с англ. Я. Зельдовича). - М.: Энергоиздат, 1981.

    Горелов А.А. Концепции современного естествознания. - М.: Центр, 1997.

    Каплан С.А. Физика звезд. - М.: "Наука", 1970.

    Ксанфомалити Л.В. Планеты, открытые заново. - М.: Наука, 1978.

    Новиков И.Д. Эволюция Вселенной. - М.: Наука, 1983.

    Осипов Ю.С. Гравитационный захват // Кварк. - 1985. - № 5.

    Редже Т. Этюды о Вселенной. - М.: Мир, 1985.

    Филиппов Е.М. Вселенная, Земля, жизнь. - Киев: "Наукова думка", 1983.

    Шкловский И.С. Вселенная, жизнь, разум. - М.: Наука, 1980

    http://mirznanii.com/a/183/proiskhozhdenie-solnechnoy-sistemy 1

    http://ukhtoma.ru/universe8.htm 2

    https://ru.wikipedia.org 3

4. 5. 6. 7. 8. 9.

1 Звезда проходит рядом с Солнцем,вытягивая из него вещество (рис. А и В); планеты формируются

из этого материала (рис. С)

Гипотеза об образовании Солнечной системы из газопылевого облака - небулярная гипотеза - первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва , и др.), которое стало центром гравитационного притяжения для окружающего вещества - центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться - сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX - начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем .

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник . Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой . Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между и (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и , а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·10 21 кг). Дело в том, что вода - слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. и , «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, и , представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта - в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500-600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая , со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500-600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад - почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера-Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как , и , которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга - Рассела в фазу . Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие - сильнее), форма планеты изменяется - она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Нептун и его спутник Тритон, заснятый при пролёте миссии Вояджер-2. В будущем, вероятно, этот спутник будет разорван на части приливными силами, породив новое кольцо вокруг планеты.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса (через 30-50 миллионов лет), спутник Нептуна (через 3,6 миллиарда лет), и Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и .




Top