Реферат: Характеристика основных оболочек Земли. Географические оболочки Земли: виды и характеристики

В ХХ веке путем многочисленных исследований человечество раскрыло тайну земных недр, строение земли в разрезе стало известно каждому школьнику. Для тех, кто еще не знает, из чего состоит земля, каковы ее основные слои, их состав, как называется самая тонкая часть планеты, мы перечислим ряд значимых фактов.

Вконтакте

Форма и размеры планеты Земля

Вопреки всеобщему заблуждению наша планета не круглая . Ее форма называется геоид и представляет собой слегка сплюснутый шар. Места, у которых земной шар сдавлен, называются полюсами. Через полюса проходит ось земного вращения, наша планета совершает один оборот вокруг нее за 24 часа — земные сутки.

Посередине планету опоясывает – воображаемая окружность, разделяющая геоид на Северное и Южное полушария.

Кроме экватора, существуют меридианы — окружности , перпендикулярные экватору и проходящие через оба полюса. Один из них, проходящий через Гринвичскую обсерваторию, называют нулевым – он служит точкой отсчета географической долготы и часовых поясов.

К основным характеристикам земного шара можно отнести:

  • диаметр (км.): экваториальный – 12 756, полярный (у полюсов) – 12 713;
  • длина (км.) экватора – 40 057, меридиана – 40 008.

Итак, наша планета представляет собой своеобразный эллипс — геоид, вращающийся вокруг своей оси проходящей через два полюса – Северный и Южный.

Центральная часть геоида опоясана экватором – окружностью разделяющей нашу планету на два полушария. Для того, чтобы определить, каков радиус земли, используют половинные значения его диаметра у полюсов и экватора.

А теперь о том из чего состоит земля, какими оболочками она покрыта и каково строение земли в разрезе .

Земные оболочки

Основные оболочки земли выделяют в зависимости от их содержимого. Так как наша планета имеет форму шара, ее оболочки, удерживаемые силой тяжести, называются сферами. Если посмотреть на строение земли в разрезе, то можно увидеть три сферы:

По порядку (начиная от поверхности планеты) они располагаются следующим образом:

  1. Литосфера – твердая оболочка планеты, включающая минеральные слои земли.
  2. Гидросфера – содержит водные ресурсы — реки, озера, моря и океаны.
  3. Атмосфера – представляет собой воздушную оболочку, окружающую планету.

Кроме того, выделяют и биосферу включающую в себя все живые организмы, которые заселяют другие оболочки.

Важно! Многие ученые население планеты относят к отдельной обширной оболочке под названием антропосфера.

Земные оболочки – литосфера, гидросфера и атмосфера – выделены по принципу объединения однородной составляющей. В литосфере – это твердые породы, почва, внутреннее содержимое планеты, в гидросфере – вся ее , в атмосфере – весь воздух и другие газы.

Атмосфера

Атмосфера – газовая оболочка, в ее состав входят : , азот, углекислый, газ, пыль.

  1. Тропосфера – верхний слой земли, содержащий большую часть земного воздуха и простирающийся от поверхности на высоту от 8-10 (у полюсов) до 16-18 км (у экватора). В тропосфере образуются облака и различные воздушные массы.
  2. Стратосфера — слой, в котором содержание воздуха значительно ниже, чем в тропосфере. Его толщина в среднем составляет 39-40 км. Начинается этот слой с верхней границы тропосферы и заканчивается на высоте около 50 км.
  3. Мезосфера – слой атмосферы, простирающийся с 50-60 по 80-90 км над земной поверхностью. Характеризуется устойчивым понижением температуры.
  4. Термосфера – расположена в 200-300 км от поверхности планеты, отличается от мезосферы ростом температуры по мере увеличения высоты.
  5. Экзосфера – начинается с верхней границы, лежащей ниже термосферы, и постепенно переходит в открытый космос, для нее характерно низкое содержание воздуха, высокая солнечная радиация.

Внимание! В стратосфере на высоте порядка 20-25 км находится тонкий слой озона, предохраняющий все живое на планете от губительных для него ультрафиолетовых лучей. Без него все живое бы очень скоро погибло.

Атмосфера – земная оболочка, без которой жизнь на планете была бы невозможна.

Она содержит в себе необходимый для дыхания живых организмов воздух, определяет подходящие погодные условия, защищает планету от негативного влияния солнечной радиации.

Атмосфера состоит из воздуха, в свою очередь воздух приблизительно на 70% состоит из азота, 21% — кислород, 0,4% углекислый газ и остальные редкие газы.

Кроме этого, в атмосфере есть важный озоновый слой, примерно на высоте 50 км.

Гидросфера

Гидросфера — все жидкости на планете.

Данная оболочка по месторасположению водных ресурсов и степени их солености включает:

  • мировой океан – огромное пространство занятое соленой водой и включающее в себя четыре и 63 моря;
  • поверхностные воды континентов – пресноводные, а также изредка солоноватые водоемы. Подразделяются по степени текучести на водоемы с течением – реки на и водоемы со стоячей водой — озера, пруды, болота;
  • подземные воды – находящиеся под земной поверхностью пресные воды. Глубина их залегания колеблется от 1-2 до 100-200 и более метров.

Важно! Огромное количество пресной воды на настоящее время находится в виде льда – на сегодняшний день в зонах вечной мерзлоты в виде ледников, огромных айсбергов, постоянного не тающего снега, содержится около 34 млн. км3 запасов пресной воды.

Гидросфера – это, прежде всего , источник пресной питьевой воды, один из основных климатообразующих факторов. Водные ресурсы используются в качестве путей сообщения и объектов туризма и рекреации (отдыха).

Литосфера

Литосфера — это твердые (минеральные) слои земли. Толщина данной оболочки составляет от 100 (под морями) до 200 км (под континентами). Литосфера включает в себя земную кору и верхнюю часть мантии.

То, что расположено ниже литосферы, является непосредственно внутренним строением нашей планеты.

Плиты литосферы преимущественно состоят из базальта, песка и глины, камня, а также грунтового слоя.

Схема строения земли вместе с литосферой представлена следующими слоями:

  • земная кора — верхний, состоящий из осадочных, базальтовых, метаморфических пород и плодородной почвы. В зависимости от места нахождения, различают континентальную и океаническую кору;
  • мантия – находится под земной корой. Весит около 67% от общей массы планеты. Мощность данного слоя составляет около 3000 км. Верхний слой мантии вязкий, залегает на глубине 50-80 км (под океанами) и 200-300 км (под материками). Нижние слои более твердые и плотные. В состав мантии входят тяжелые железистые и никелевые материалы. Процессами, происходящими в мантии, обусловлены многие явления на поверхности планеты (сейсмические процессы, извержение вулканов, формирование месторождений);
  • Центральную часть земли занимает ядро, состоящее из внутренней твердой и наружной жидкой части. Толщина внешней части составляет около 2200 км, внутренней – 1300 км. Расстояние от поверхности до ядра земли составляет около 3000-6000 км. Температура в центре планеты составляет около 5000 Сº. По мнению многих ученых, ядро земли по составу представляет собой тяжелый железно-никелевой расплав с примесью других, сходных по свойствам с железом, элементов.

Важно! Среди узкого круга ученых, помимо классической модели с полурасплавленным тяжелым ядром, существует и теория о том, что в центре планеты располагается внутреннее светило, окруженное со всех сторон внушительным слоем воды. Данная теория, кроме небольшого круга приверженцев в научной среде, нашла широкое распространение в фантастической литературе. Примером может послужить роман В.А. Обручева «Плутония», повествующий об экспедиции русских ученых к полости внутри планеты с собственным небольшим светилом и миром вымерших на поверхности животных и растений.

Такая общепринятая схема строения земли, включающая земную кору, мантию и ядро, с каждым годом все более и более совершенствуется и уточняется.

Многие параметры модели с совершенствованием методов исследований и появлением нового оборудования будут обновлены еще не раз.

Так, например, для того, чтобы узнать точно, сколько километров до внешней части ядра, понадобятся еще годы научных изысканий.

На данный момент наиболее глубокая шахта в земной коре, прорытая человеком составляет около 8 километров, поэтому изучение мантии, а тем более ядра планеты, возможно лишь в теоретическом разрезе.

Послойное строение Земли

Изучаем из каких слоев состоит Земля внутри

Вывод

Рассмотрев строение земли в разрезе, мы убедились в том, насколько интересна и сложна наша планета. Изучение ее строения в будущем поможет человечеству разобраться в загадках природных явлений, позволит более точно прогнозировать разрушительные стихийные бедствия, открывать новые, пока не разработанные месторождения полезных ископаемых.

Представления о внутренней неоднородности строения Земли и о её концентрически-зональном строении основаны на результатах комплексных геофизических исследований. Прямые свидетельства глубинного строения земных недр относятся к небольшим глубинам. Они получены в процессе изучения естественных разрезов (обнажений ) горных пород, разрезов карьеров, шахт и буровых скважин. Самая глубокая в мире скважина на Кольском полуострове углубилась в недра на 12 километров. Это составляет всего лишь 0,2% радиуса Земли (радиус Земли около 6 тыс. км.) (рис. 3.5.). Продукты вулканических извержений дают возможность судить о температурах и составе вещества на глубинах 50-100 км.

Рис. 3.5. Внутренние оболочки земли

Сейсмические волны. Главным методом исследования недр является сейсмический метод. Он основан на измерении скорости прохождения механических колебаний разных типов через вещество Земли. Этот процесс сопровождается выделением большого количества энергии и возникновением механических колебаний, которые распространяются в виде сейсмических волн во все стороны от места возникновения. Скорость распространения сейсмических волн весьма велика и в плотных телах, например в камне (в горных породах) достигает нескольких километров в секунду. Различают две группы сейсмических волн – объемные и поверхностные (рис. 3.6. и 3.7.). Слагающие Землю горные породы упруги и поэтому могут деформироваться и испытывать колебания при резком приложении давления (нагрузок). Внутри объема горных пород распространяются объемные волны. Они делятся на два типа: продольные (Р) и поперечные (S ) . Продольные волны в теле Земли (как и в любых других физических телах) возникают как реакция на изменение объёма. Подобно звуковым волнам в воздухе, они попеременно сжимают и растягивают вещество горных пород в направлении своего движения. Волны другого типа – поперечные возникают как реакция на изменение формы тела. Они колеблют среду, через которую они проходят, поперек пути своего движения.

На границе двух сред с разными физическими свойствами сейсмические волны испытывают преломление или отражение(P,S, PcP, PkP и т.д.). Геофизические исследования были дополнены термодинамическими расчетами и результатами физического моделирования и данными изучения метеоритов.

Полученные данные свидетельствуют о наличии в недрах Земли многочисленных субгоризонтальных границ раздела. На этих границах происходит изменение скоростей и направлений распространения физических волн (сейсмических, электромагнитных и др.) при их распространении вглубь планеты.

Рис. 3.6. Распространение сейсмических волн (О – очаг землетрясения).

Эти границы отделяют друг от друга отдельные оболочки – «геосферы», которые отличается друг от друга по химическому составу и по агрегатному состоянию вещества в них. Эти границы, отнюдь, не представляют собой привычные геометрически правильные бесконечно тонкие плоскости. Любая из этих границ – это некий объём недр, сравнительно небольшой по сравнению с объёмом разделяемых геосфер. В пределах каждого такого объёма происходит быстрая, но постепенная смена химического состава и агрегатного состояния вещества.

Недра Земли. По существующим представлениям земной шар разделен на ряд концентрических оболочек (геосфер), как бы вложенных друг в друга (рис.3.7., табл. 3.5.). «Внешние» оболочки и «внутренние» оболочки (иногда последние называют просто «недрами») отделены друг от друга поверхностью земли. Внутренние оболочки представлены, соответственно ядром, мантией и земной корой. Каждая из этих геосфер, в свою очередь имеет сложное строение. В модели Гутенберга-Буллена использована индексация гео­сфер, популярная и в настоящее время. Авторы выделяют: земную кору (слой А) - граниты, метаморфические породы, габбро; верх­нюю мантию (слой В); переходную зону (слой С); нижнюю мантию (слой D), состоящую из кислорода, кремнезема, магния и железа. На глубине 2900 км проводят границу между мантией и ядром. Ниже находится внешнее ядро (слой Е), а с глубины 5120 м - внутреннее ядро (слой G), сложенное железом:

- земная кора – тонкая внешняя каменная оболочка Земли. Она распространена от поверхности Земли вглубь до 35-75 км, слой A: Ср. толщина 6-7 км – под океанами; 35-49 км – под равнинными платформенными территориями континентов; 50-75 км – под молодыми горными сооружениями. Это самая верхняя из внутренних оболочек Земли.

    мантия - промежуточную оболочку (35-75 км. до 2900 км) (слои В, С, D) (греч. “мантион” - покрывало): слои B (75-400 км) и C (400-1000 км) соответствуют верхней мантии; переходный слой D (1000-2900 км) - нижней мантии.

-ядро – (2900 км. – 6371 км.) слои E, F, G где: Е (2900-4980 км) – внешнее ядро; F (4980-5120 км) – переходная оболочка; G (5120-6371 км) – внутреннее ядро.

Ядро Земли . Ядро составляет 16,2% ее объёма и 1/3 массы. Оно, видимо, сжато у полюсов на 10 км. На границе мантии и ядра (2900 км) происходит скачкообразное понижение скорости продольных волн с 13,6 до 8,1 км/с. Поперечные волны ниже этой границы раздела не проникают. Ядро не пропускает их сквозь себя. Это дало повод сделать вывод, что во внешней части ядра вещество находится в жидком (расплавленном) состоянии. Ниже границы мантии и ядра скорость продольных волн вновь нарастает - до 10,4 км/с. На границе внешнего и внутреннего ядра (5120 км) скорость продольных волн достигает 11,1 км/с. А потом до центра Земли почти не изменяется. На этом основании предполагается, что с глубины 5080 км вещество ядра вновь приобретает свойства очень плотного тела, и выделяется твердое внутреннее "ядрышко " с радиусом 1290 км. По мнению одних ученых, земное ядро состоит из никелистого железа. Другие утверждают, что железо, кроме никеля содержит примесь легких элементов - кремния, кислорода, возможно, серы и др. В любом случае железо как хороший проводник электричества может служить источником динамо-эфекта и образования магнитного поля Земли.

Действительно, с точки зрения физики, Земля в некотором приближении является магнитным диполем, т.е. своеобразным магнитом с двумя полюсами: южным и северным.

Японские ученые доказывают, что ядро Земли постепенно увеличивается за счет дифференциации вещества мантии 12 . составляет 82,3% объема Земли. О ее строении и вещественном составе могут быть высказаны лишь гипотетические предположения. Они основаны на сейсмологических данных и материалах экспериментального моделирования физико-химических процессов, происходящих в недрах при высоких давлениях и температурах. Скорость продольных сейсмических волн в мантии нарастает до13,6 км/с, поперечных – до 7,2-7,3 км/с.

Мантия Земли (верхняя и нижняя ). Ниже раздела Мохоровичича между земной корой и ядром Земли находится мантия (до глубины около 2900 км). Это самая массивная из оболочек Земли – она составляет 83% объёма Земли и около 67% её массы. В мантии Земли по строению, составу и свойствам выделяют три слоя: слой Гуттенберга – В до глубины 200–400 км, слой Галицина – С до 700-900 км и слой D до 2900 км. В первом приближении слои В и С обычно объединяют в верхнюю мантию, а слой D рассматривают в качестве нижней мантии. В целом в пределах мантии плотность вещества и скорость сейсмических волн быстро возрастают.

Верхняя мантия. Считается, что верхняя мантия сложена магматическими горными породами, сильно обедненными кремнеземом, но обогащенными железом и магнием (так называемыми ультраосновными породами), главным образом перидотитом. Перидотит на 80% состоит из минерала оливина (Mg,Fe) 2 и на 20% из пироксена (Mg,Fe) 2 .

Земная кора отличается от нижележащих оболочек своим строе­нием и химическим составом. Подошва земной коры очерчивается сейсмической границей Мохоровичича, на которой скорости рас­пространения сейсмических волн резко возрастают и достигают 8 - 8,2 км/с.

Таблица 3.5. Распространенность горных пород в земной коре

(по А.Б. Ронову, А.А.Ярошевскому, 1976. и по В.В. Добровольскому, 2001)

Группы пород

Распространенность, % объема земной коры

Масса, 10 18 т

Пески и песчаные породы

Глины, глинистые сланцы, кремнистые породы

Карбонаты

Соленосные отложения (сульфатные и галоидные горные породы)

Гранитоиды, гранитогнейсы, кислые эффузивы и их метаморфические эквиваленты

Габбро, базальты и их метаморфические эквиваленты

Дуниты, перидотиты, серпентиниты

Метапесчаники

Парагнейсы и кристаллические сланцы

Метаморфизованные карбонатные породы

Железистые породы

Земная поверхность и примерно 25-километровая часть земной коры формируются под воздействием:

1)эндогенных процессов (текто­нические или механические и магматические процессы), благода­ря которым создается рельеф земной поверхности и формируются толщи магматических и метаморфических горных пород;

2) экзо­генных процессов , вызывающих денудацию (разрушение) и вы­равнивание рельефа, выветривание и перенос обломков горных пород и переотложение их в пониженных частях рельефа. В резуль­тате протекания весьма разнообразных экзогенных процессов фор­мируются осадочные горные породы, составляющие самый верх­ний слой земной коры.

Выделяют два основных типа земной коры: континентальный (гранито-гнейсовый) и океанский (базаль­товый) с прерывистым осадочным слоем. Переход от коры континентального типа к коре оке­анического типа представлен на рис. 3.8.

В континентальной коре выделяют три слоя: верхний - осадоч­ный и два нижних , сложенных кристаллическими породами. Мощ­ность верхнего осадочного слоя меняется в широких пределах: от практически полного отсутствия на древних щитах до 10 - 15 км на шель­фах пассивных окраин континентов и в краевых прогибах плат­форм. Средняя мощность осадков на стабильных платформах со­ставляет около 3 км.

Под осадочным слоем находятся толщи с преобладанием в них магматических и метаморфических горных пород гранитоидного ряда, относительно богатых кремнеземом. Местами в областях расположения древ­них щитов они выходят на земную поверхность (Канадский, Бал­тийский, Алданский, Бразильский, Африканский и др.). Породы «гранитного» слоя обычно преобразованы процессами региональ­ного метаморфизма и имеют очень древний возраст (80% континентальной земной коры древнее 2,5 млрд. лет).

Под «гранитным» слоем располагается «базальтовый» слой. Вещественный состав его не изучен, но судя по данным геофизических исследований, предполагается, что он близок с породами океанской коры.

Как континенталь­ная, так и океанская кора подстилаются породами верхней ман­тии, от которой они отделяются границей Мохоровичича (граница Мохо).

В целом Земная кора состоит преимущественно из силикатов и алюмосиликатов. В ней пре­обладают кислород (43,13 %), кремний (26 %) и алюминий (7,45 %), главным образом представленные в форме оксидов, силикатов и алюмосиликатов. Средний химический состав земной коры приве­ден в табл. 3.6.

В земной коре континентального типа отмечается сравнительно высокое содержание долгоживущих радиоактивных изотопов урана 238 U, тория 232 Th и калия 40 K. Их наибольшая концентрация характерна для «гранитного» слоя.

Таблица 3.6. Средний химический состав континентальной и океанской коры

Оксиды и диоксиды

континентальной

океанской

Океаническая кора отличается от континентальной по химическому составу и строению, но так же имеет трехслойное строение

Самый верхний слой - осадочный - представлен песчано-глинистыми и карбонатны­ми осадками, отложившимися на небольших глубинах. На больших глубинах отла­гаются кремнистые илы и глубоководные красные глины.

Средняя мощность океанских осадков не превышает 500 м и только у под­ножия материковых склонов, особенно в районах крупных речных дельт, она возрастает до 12 -15 км. Вызвано это своеобразной бы­стротечной «лавинной» седиментацией, когда практически весь терригенный материал, выносимый речными системами с конти­нента, отлагается в прибрежных частях океанов, на материковом склоне и у его подножия.

Второй слой океанской коры в верхней части слагается поду­шечными лавами базальтов. Ниже располагаются долеритовые дайки того же состава. Общая мощность второго слоя океанской коры составляет 1,5 км и редко достигает 2 км. Под дайковым комплек­сом располагаются габбро и серпентениты, представляющие собой верхнюю часть третьего слоя. Мощность габбро-серпентинитового слоя достигает 5 км. Таким образом, общая мощность океанской коры без осадочного чехла составляет 6,5 - 7 км. Под осевой частью срединно-океанских хребтов мощность океанской коры сокращается до 3-4, а иногда и до 2 - 2,5 км.

Под гребнями срединно-океанских хребтов океанская кора залегает над очагами базальтовых расплавов, выделившихся из вещества астеносферы. Средняя плотность океанской коры без осадочного слоя составляет 2,9 г/см 3 . Исходя из этого общая масса океанской коры составляет 6,4 10 24 г. Океанская кора формируется в рифтовых областях срединно-океанских хребтов за счет поступления базальтовых расплавов из астеносферного слоя Земли и излияния толеитовых базальтов на океанское дно.

Литосфера. Залегающую выше астеносферы твердую плотную оболочку (включая земную кору) называют литосферой (греч. "литос" - камень). Характерным признаком литосферы является её жесткость и хрупкость. Именно хрупкостью объясняется наблюдаемое блочное строение литосферы. Она разбита крупными трещинами – глубинными разломами на крупные блоки - литосферные плиты.

Благодаря глобальной системе механических напряжений, чьё возникновение связано с вращением Земли, литосфера расколота на фрагменты – блоки разломами субмеридиального, субширотного и диагонального направлений. Эти разломы обеспечивают относительную независимость движения блоков литосферы относительно друг друга, чем и объясняется разница в строении и геологической истории отдельных литосферных блоков и их ассоциаций. Разделяющие блоки разломы, являются ослабленными зонами, по которым поднимаются магматические расплавы и потоки паров и газов.

В отличие от литосферы вещество астеносферы не обладает пределом прочности и может деформироваться (течь) при действии даже очень небольших нагрузок.

Химический состав земной коры . Распространенность элементов в земной коре характеризуются большим контрастом, достигающим 10 10 .Самые распространенные химические элементы (рис. 3.10) на всей Земле это:

    кислород (О 2) – составляет 47 масс % земной коры. Он входи в состав около 2 тысяч минералов;

    кремний (Si) – составляет 29,5% и входит в более чем тысячу минералов;

    алюминий (Аl) – 8,05%;

    железо (Fe), кальций (Са), калий (К), натрий (Na), титан (Ti), магний (Mg) – составляют первые % массы земной коры;

На долю остальных элементов приходится около 1%.

А.Е. Ферсман предложил выражать числа кларка не в весовых, а в атомных процентах, что лучше отражает соотношения количеств атомов, а не их масс и сформулировал три основные закономерности:

1. Распространенность элементов в земной коре характеризуются большим контрастом, достигающим 10 10 .

2. Всего девять элементов O, Si, Al, Fe, Ca, Na, K, Mg, H, являются главными строителями литосферы, составляя 99,18% ее веса. Из них на первые три приходится 84,55%. На долю остальных 83 приходится менее 1% (рис.3.9.).

3. Ведущий элемент – кислород. Его массовый кларк оценивается в интервале 44,6 – 49%, атомный – 53,3 (по А.Е. Ферсману), а объемный (по В.М. Гольдщмидту) – 92%.

Таким образом, земная кора и по объему и по массе состоит главным образом из кислорода.

Если средние содержания элементов в коре в первом приближении можно считать неизменными на протяжении всей ее истории, то в отдельных ее участках идут периодические изменения. Хотя земная кора не является закрытой системой, ее обмен массами вещества с космосом и более глубокими зонами планеты пока не могут быть учтены количественно, выходят за пределы точности наших измерений и явно не повлияют на числа кларков.

Кларк . В 1889 г. американский геохимик Фрэнк Кларк впервые определил средние содержания химических элементов в земной коре. В честь него русский академик А.Е.Ферсман предложил называть "кларками " - средние содержания химических элементов в какой-либо природной системе - в земной коре, в горной породе, в минерале 13 . Чем выше природный кларк химического элемента, тем больше минералов, в состав которых входит этот элемент. Так, кислород встречается почти в половине всех известных минералов. Любая территория, которая содержит более кларка данного вещества, является потенциально интересной, так как там могут иметься промышленные запасы данного вещества. Такие участки исследуются геологами с целью выявления месторождений полезных ископаемых.

Некоторые химические элементы (например, радиоактивные) со временем изменяются. Так, уран и торий, распадаясь, превращаются в устойчивые элементы - свинец и гелий. Это дает основание предполагать, что в минувшие геологические эпохи кларки урана и тория были, очевидно, значительно выше, а кларки свинца - ниже, чем сейчас. По-видимому, это относится и ко всем другим элементам, подверженным радиоактивным превращениям. Изотопный состав некоторых химических элементов со временем меняется (например, изотоп урана 238 U). Предполагают, что два млрд. лет назад атомов изотопа 235 U на Земле было почти в шесть раз больше, чем сейчас.

Называется корой и входит в литосферу, что в переводе с греческого языка дословно означает "каменистый" или "твердый шар". Она включает в себя и часть верхней мантии. Все это находится непосредственно над астеносферой ("бессильный шар") - над более вязким или пластичным слоем, как бы подстилающем литосферу.

Внутренняя структура Земли

Наша планета имеет форму эллипсоида, или, точнее, геоида, который представляет собой трехмерное геометрическое тело замкнутой формы. Это важнейшее геодезическое понятие дословно переводится как «подобный Земле». Так выглядит наша планета внешне. Внутренне она устроена следующим образом - Земля состоит из слоев, разделенных границами, которые имеют свои определенные названия (самая четкая из них - граница Мохоровичича, или Мохо, разделяет кору и мантию). Ядро, являющееся центром нашей планеты, оболочка (или мантия) и кора - верхняя твердая оболочка Земли - вот основные слои, два из которых - ядро и мантия, в свою очередь, делятся на 2 подслоя - внутренний и внешний, или нижний и верхний. Так, ядро, радиус сферы которого равен 3,5 тысячам километров, состоит из твердого внутреннего ядра (радиус 1,3) и жидкого внешнего. А мантия, или силикатная оболочка, делится на нижнюю и верхнюю части, на которые вместе приходится 67% всей массы нашей планеты.

Самый тонкий слой планеты

Сами грунты возникли одновременно с жизнью на Земле и являются продуктом воздействия окружающей среды - воды, воздуха, живых организмов и растений. В зависимости от различных условий (геологических, географических и климатических) этот важнейший природный ресурс имеет толщину от 15 см до 3 м. Ценность некоторых видов грунтов очень велика. Например, украинский чернозем немцы во времена оккупации рулонами вывозили в Германию. Говоря о земной коре, нельзя не сказать о представляющих собой большие твердые участки, скользящих по более жидким слоям мантии и перемещающихся относительно друг друга. Их сближения и «наезды» грозят тектоническими сдвигами, которые могут быть причиной катастроф на Земле.

Введение

1. Основные оболочки земли

3. Геотермический режим земли

Заключение

Список использованных источников

Введение

Геология - наука о строении и истории развития Земли. Основные объекты исследований - горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего - медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры.

История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, - по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.

В настоящей работе рассмотрены основные оболочки земли, ее состав и физическое строение.

1. Основные оболочки земли

Земля имеет 6 оболочек: атмосферу, гидросферу, биосферу, литосферу, пиросферу и центросферу .

Атмосфера - внешняя газовая оболочка Земли. Ее нижняя граница проходит по литосфере и гидросфере, а верхняя - на высоте 1000 км. В атмосфере различают тропосферу (двигающийся слой), стратосферу (слой над тропосферой) и ионосферу (верхний слой).

Средняя высота тропосферы - 10 км. Ее масса составляет 75% всей массы атмосферы. Воздух тропосферы перемещается как в горизонтальном, так и в вертикальном направлениях.

Над тропосферой на 80 км поднимается стратосфера. Ее воздух, перемещающийся лишь в горизонтальном направлении, образует слои.

Еще выше простирается ионосфера, получившая свое название в связи с тем, что ее воздух постоянно ионизируется под воздействием ультрафиолетовых и космических лучей.

Гидросфера занимает 71% поверхности Земли. Ее средняя соленость составляет 35 г/л. Температура океанической поверхности - от 3 до 32°С, плотность - около 1. Солнечный свет проникает на глубину 200 м, а ультрафиолетовые лучи - на глубину до 800 м.

Биосфера, или сфера жизни, сливается с атмосферой, гидросферой и литосферой. Ее верхняя граница достигает верхних слоев тропосферы, нижняя - проходит по дну океанских впадин. Биосфера подразделяется на сферу растений (свыше 500 000 видов) и сферу животных (свыше 1 000 000 видов).

Литосфера - каменная оболочка Земли - толщиной от 40 до 100 км. Она включает материки, острова и дно океанов. Средняя высота материков над уровнем океана: Антарктиды - 2200 м, Азии - 960 м, Африки - 750 м, Северной Америки - 720 м, Южной Америки - 590 м, Европы - 340 м, Австралии - 340 м.

Под литосферой расположена пиросфера - огненная оболочка Земли. Ее температура повышается примерно на 1°С на каждые 33 м глубины. Породы на значительных глубинах вследствие высоких температур и большого давления, вероятно, находятся в расплавленном состоянии.

Центросфера, или ядро Земли, расположена на глубине 1800 км. По мнению большинства ученых, она состоит из железа и никеля. Давление здесь достигает 300000000000 Па (3000000 атмосфер), температура - нескольких тысяч градусов. В каком состоянии находится ядро, пока неизвестно.

Огненная сфера Земли продолжает охлаждаться. Твердая оболочкой утолщается, огненная - сгущается. В свое время это привело к формированию твердых каменных глыб - материков. Однако влияние огненной сферы на жизнь планеты Земля все еще очень велико. Неоднократно менялись очертания материков и океанов, климат, состав атмосферы.

Экзогенные и эндогенные процессы беспрерывно изменяют твердую поверхность нашей планеты, что, в свою очередь, активно влияет на биосферу Земли.

2. Состав и физическое строение земли

Геофизические данные и результаты изучения глубинных включений свидетельствуют о том, что наша планета состоит из нескольких оболочек с различными физическими свойствами, изменение которых отражает как смену химического состава вещества с глубиной, так и изменение его агрегатного состояния как функции давления.

Самая верхняя оболочка Земли - земная кора - под континентами имеет среднюю толщину около 40 км (25-70 км), а под океанами - всего 5-10 км (без слоя воды, составляющего в среднем 4,5 км). За нижнюю кромку земной коры принимается поверхность Мохоровичича - сейсмический раздел, на котором скачкообразно увеличивается скорость распространения продольных упругих волн с глубиной от 6,5-7,5 до 8-9 км/с, что соответствует увеличению плотности вещества от 2,8-3,0 до 3,3 г/см3 .

От поверхности Мохоровичича до глубины 2900 км простирается мантия Земли; верхняя наименее плотная зона толщиной 400 км выделяется как верхняя мантия. Интервал от 2900 до 5150 км занят внешним ядром, а от этого уровня до центра Земли, т.е. от 5150 до 6371 км, находится внутреннее ядро.

Земное ядро интересовало ученых с момента его открытия в 1936 году. Получить его изображение было чрезвычайно трудно из-за относительно малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Новые исследования способны обеспечить более детальную картину центра нашей планеты. Земное ядро разделяется на 2 отдельные области: жидкую (внешнее ядро) и твердую (внутреннее), переход между которыми лежит на глубине 5 156 км.

Железо - единственный элемент, который близко соответствует сейсмическим свойствам земного ядра и достаточно обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, подобно гигантскому генератору, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки - плюмы.

Внутреннее твердое ядро не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра Земли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При этом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода .

Внешнее ядро также является металлическим (существенно железным), но в отличие от внутреннего ядра металл находится здесь в жидком состоянии и не пропускает поперечные упругие волны. Конвективные течения в металлическом внешнем ядре являются причиной формирования магнитного поля Земли.

Мантия Земли состоит из силикатов: соединений кремния и кислорода с Mg, Fe, Ca. В верхней мантии преобладают перидотиты - горные породы, состоящие преимущественно из двух минералов: оливина (Fe,Mg) 2SiO4 и пироксена (Ca, Na) (Fe,Mg,Al) (Si,Al) 2O6. Эти породы содержат относительно мало (< 45 мас. %) кремнезема (SiO2) и обогащены магнием и железом. Поэтому их называют ультраосновными и ультрамафическими. Выше поверхности Мохоровичича в пределах континентальной земной коры преобладают силикатные магматические породы основного и кислого составов. Основные породы содержат 45-53 мас. % SiO2. Кроме оливина и пироксена в состав основных пород входит Ca-Na полевой шпат - плагиоклаз CaAl2Si2O8 - NaAlSi3O8. Кислые магматические породы предельно обогащены кремнеземом, содержание которого возрастает до 65-75 мас. %. Они состоят из кварца SiO2, плагиоклаза и K-Na полевого шпата (K,Na) AlSi3O8. Наиболее распространенной интрузивной породой основного состава является габбро, а вулканической породой - базальт. Среди кислых интрузивных пород чаще всего встречается гранит, a вулканическим аналогом гранита является риолит .

Таким образом, верхняя мантия состоит из ультраосновных и ультрамафических пород, а земная кора образована главным образом основными и кислыми магматическими породами: габбро, гранитами и их вулканическими аналогами, которые по сравнению с перидотитами верхней мантии содержат меньше магния и железа и вместе с тем обогащены кремнеземом, алюминием и щелочными металлами.

Под континентами основные породы сосредоточены в нижней части коры, а кислые породы - в верхней ее части. Под океанами тонкая земная кора почти целиком состоит из габбро и базальтов. Твердо установлено, что основные породы, которые по разным оценкам составляют от 75 до 25% массы континентальной коры и почти всю океаническую кору, были выплавлены из верхней мантии в процессе магматической деятельности. Кислые породы обычно рассматривают как продукт повторного частичного плавления основных пород в пределах континентальной земной коры. Перидотиты из самой верхней части мантии обеднены легкоплавкими компонентами, перемещенными в ходе магматических процессов в земную кору. Особенно "истощена" верхняя мантия под континентами, где возникла наиболее толстая земная кора.

земля оболочка атмосфера биосфера

3. Геотермический режим земли

Геотермический режим мёрзлых толщ - определяется условиями теплообмена на границах мёрзлого массива. Основные формы геотермического режима - периодические колебания температуры (годовые, многолетние, вековые и т.д.), характер которых обусловлен изменением температур на поверхности и потоком тепла из недр Земли. При распространении температурных колебаний от поверхности вглубь пород их период остаётся неизменным, а амплитуда экспоненциально убывает с глубиной. Пропорционально возрастанию глубины экстремальные температуры запаздывают на отрезок времени, называемый сдвигом фаз. При равных амплитудах колебаний температур отношение глубин их затухания пропорционально корню квадратному из отношений периодов .

Специфика геотермического режима мёрзлых толщ определяется наличием фазовых переходов "вода-лёд", сопровождаемых выделением или поглощением тепла и изменением теплофизических свойств пород. Затраты тепла на фазовые переходы замедляют продвижение изотермы 0°С, обуславливают тепловую инерцию мёрзлых толщ. В верхней части разреза мёрзлой толщи выделяется слой годовых колебаний температур. В подошве этого слоя температура соответствует среднегодовой температуре за многолетний (5-10 лет) период. Мощность слоя годовых колебаний температур изменяется в среднем от 3-5 до 20-25 м в зависимости от среднегодовой температуры и теплофизических свойств пород.

Температурное поле пород ниже слоя годовых колебаний формируется под воздействием теплового потока из недр Земли и температурных колебаний на поверхности с периодом более 1 года. Влияние на него оказывают геологическое строение, теплофизические характеристики пород и перенос тепла подземными водами, контактирующими с многолетнемёрзлыми толщами.

При деградации многолетнемёрзлых пород наиболее низкая температура отмечается глубже подошвы слоя годовых колебаний, это вызвано повышением среднегодовой температуры. При аградационном развитии температурное поле отражает охлаждение мёрзлой толщи с поверхности, что выражается в увеличении температурного градиента.

Динамика нижней границы мёрзлой толщи зависит от соотношения тепловых потоков в мёрзлой и талой зоне. Их неравенство обусловлено длиннопериодными колебаниями температур на поверхности, которые проникают на глубину, превышающую мощность мёрзлой толщи. От особенностей геотермического режима и его изменений под воздействием горных выработок и других инженерных сооружений существенно зависят инженерно-геологические и гидрогеологические условия разработки месторождений. Изучение геотермического режима и прогноз его изменения проводится в ходе геокриологической съёмки.

Заключение

Индивидуальное лицо планеты, подобно облику живого существа, во многом определяется внутренними факторами, возникающими в ее глубоких недрах. Изучать эти недра очень трудно, так как материалы, из которых состоит Земля, непрозрачны и плотны, поэтому объем прямых данных о веществе глубинных зон весьма ограничен.

Существует много остроумных и интересных методов изучения нашей планеты, но основная информация о ее внутреннем строении получена в результате исследований сейсмических волн, возникающих при землетрясениях и мощных взрывах. Каждый час в различных точках Земли регистрируется около 10 колебаний земной поверхности. При этом возникают сейсмические волны двух типов: продольные и поперечные. В твердом веществе могут распространяться оба типа волн, а вот в жидкостях - только продольные.

Смещения земной поверхности регистрируются сейсмографами, установленными по всему земному шару. Наблюдения скорости, с которой волны проходят сквозь Землю, позволяют геофизикам определить плотность и твердость пород на глубинах, недоступных прямым исследованиям. Сопоставление плотностей, известных по сейсмическим данным и полученным в ходе лабораторных экспериментов с горными породами (где моделируются температура и давление, соответствующие определенной глубине Земли), позволяет сделать вывод о вещественном составе земных недр. Новейшие данные геофизики и эксперименты, связанные с исследованием структурных превращений минералов, позволили смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли.

1. Аруцев, А.А. Концепция современного естествознания. / А.А. Аруцев, Б.В. Ермолаев. - М., 1999. - 254 с.

2. Ершов, В.В. Геология. / В.В. Ершов. - М.: Недра, 1999. - 380 с.

3. Короновский, Н.В. Основы геологии. / Н.В. Короновский. - М., 1996. - 460 с.

4. Петросова, Р.А. Основы геологии. / Р.А. Петросова, В.П. Голов. - М., 2007. - 305 с.

5. Рапацкая, Л.А. Общая геология. / Л.А. Рапацкая. - М.: Высшая школа, 2004. - 357 с.


Аруцев А.А. Концепция современного естествознания. – М., 1999. – С. 42.

Рапацкая Л.А. Общая геология.– М.: Высшая школа, 2004. – С. 96.

Аруцев А.А. Концепция современного естествознания. – М., 1999. – С. 46.

Ершов В.В. Геология. – М.: Недра, 1999. – С. 153.

Петросова Р.А. Основы геологии. – М., 2007. – С. 56.

Введение

1. Основные оболочки земли

3. Геотермический режим земли

Заключение

Список использованных источников


Введение

Геология - наука о строении и истории развития Земли. Основные объекты исследований - горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего - медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры.

История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, - по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.

В настоящей работе рассмотрены основные оболочки земли, ее состав и физическое строение.


1. Основные оболочки земли

Земля имеет 6 оболочек: атмосферу, гидросферу, биосферу, литосферу, пиросферу и центросферу.

Атмосфера - внешняя газовая оболочка Земли. Ее нижняя граница проходит по литосфере и гидросфере, а верхняя - на высоте 1000 км. В атмосфере различают тропосферу (двигающийся слой), стратосферу (слой над тропосферой) и ионосферу (верхний слой).

Средняя высота тропосферы - 10 км. Ее масса составляет 75% всей массы атмосферы. Воздух тропосферы перемещается как в горизонтальном, так и в вертикальном направлениях.

Над тропосферой на 80 км поднимается стратосфера. Ее воздух, перемещающийся лишь в горизонтальном направлении, образует слои.

Еще выше простирается ионосфера, получившая свое название в связи с тем, что ее воздух постоянно ионизируется под воздействием ультрафиолетовых и космических лучей.

Гидросфера занимает 71% поверхности Земли. Ее средняя соленость составляет 35 г/л. Температура океанической поверхности - от 3 до 32°С, плотность - около 1. Солнечный свет проникает на глубину 200 м, а ультрафиолетовые лучи - на глубину до 800 м.

Биосфера, или сфера жизни, сливается с атмосферой, гидросферой и литосферой. Ее верхняя граница достигает верхних слоев тропосферы, нижняя - проходит по дну океанских впадин. Биосфера подразделяется на сферу растений (свыше 500 000 видов) и сферу животных (свыше 1 000 000 видов).

Литосфера - каменная оболочка Земли - толщиной от 40 до 100 км. Она включает материки, острова и дно океанов. Средняя высота материков над уровнем океана: Антарктиды - 2200 м, Азии - 960 м, Африки - 750 м, Северной Америки - 720 м, Южной Америки - 590 м, Европы - 340 м, Австралии - 340 м.

Под литосферой расположена пиросфера - огненная оболочка Земли. Ее температура повышается примерно на 1°С на каждые 33 м глубины. Породы на значительных глубинах вследствие высоких температур и большого давления, вероятно, находятся в расплавленном состоянии.

Центросфера, или ядро Земли, расположена на глубине 1800 км. По мнению большинства ученых, она состоит из железа и никеля. Давление здесь достигает 300000000000 Па (3000000 атмосфер), температура - нескольких тысяч градусов. В каком состоянии находится ядро, пока неизвестно.

Огненная сфера Земли продолжает охлаждаться. Твердая оболочкой утолщается, огненная - сгущается. В свое время это привело к формированию твердых каменных глыб - материков. Однако влияние огненной сферы на жизнь планеты Земля все еще очень велико. Неоднократно менялись очертания материков и океанов, климат, состав атмосферы.

Экзогенные и эндогенные процессы беспрерывно изменяют твердую поверхность нашей планеты, что, в свою очередь, активно влияет на биосферу Земли.

2. Состав и физическое строение земли

Геофизические данные и результаты изучения глубинных включений свидетельствуют о том, что наша планета состоит из нескольких оболочек с различными физическими свойствами, изменение которых отражает как смену химического состава вещества с глубиной, так и изменение его агрегатного состояния как функции давления.

Самая верхняя оболочка Земли - земная кора - под континентами имеет среднюю толщину около 40 км (25-70 км), а под океанами - всего 5-10 км (без слоя воды, составляющего в среднем 4,5 км). За нижнюю кромку земной коры принимается поверхность Мохоровичича - сейсмический раздел, на котором скачкообразно увеличивается скорость распространения продольных упругих волн с глубиной от 6,5-7,5 до 8-9 км/с, что соответствует увеличению плотности вещества от 2,8-3,0 до 3,3 г/см3.

От поверхности Мохоровичича до глубины 2900 км простирается мантия Земли; верхняя наименее плотная зона толщиной 400 км выделяется как верхняя мантия. Интервал от 2900 до 5150 км занят внешним ядром, а от этого уровня до центра Земли, т.е. от 5150 до 6371 км, находится внутреннее ядро.

Земное ядро интересовало ученых с момента его открытия в 1936 году. Получить его изображение было чрезвычайно трудно из-за относительно малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Новые исследования способны обеспечить более детальную картину центра нашей планеты. Земное ядро разделяется на 2 отдельные области: жидкую (внешнее ядро) и твердую (внутреннее), переход между которыми лежит на глубине 5 156 км.

Железо - единственный элемент, который близко соответствует сейсмическим свойствам земного ядра и достаточно обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, подобно гигантскому генератору, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки - плюмы.

Внутреннее твердое ядро не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра Земли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При этом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода.

Внешнее ядро также является металлическим (существенно железным), но в отличие от внутреннего ядра металл находится здесь в жидком состоянии и не пропускает поперечные упругие волны. Конвективные течения в металлическом внешнем ядре являются причиной формирования магнитного поля Земли.

Мантия Земли состоит из силикатов: соединений кремния и кислорода с Mg, Fe, Ca. В верхней мантии преобладают перидотиты - горные породы, состоящие преимущественно из двух минералов: оливина (Fe,Mg) 2SiO4 и пироксена (Ca, Na) (Fe,Mg,Al) (Si,Al) 2O6. Эти породы содержат относительно мало (< 45 мас. %) кремнезема (SiO2) и обогащены магнием и железом. Поэтому их называют ультраосновными и ультрамафическими. Выше поверхности Мохоровичича в пределах континентальной земной коры преобладают силикатные магматические породы основного и кислого составов. Основные породы содержат 45-53 мас. % SiO2. Кроме оливина и пироксена в состав основных пород входит Ca-Na полевой шпат - плагиоклаз CaAl2Si2O8 - NaAlSi3O8. Кислые магматические породы предельно обогащены кремнеземом, содержание которого возрастает до 65-75 мас. %. Они состоят из кварца SiO2, плагиоклаза и K-Na полевого шпата (K,Na) AlSi3O8. Наиболее распространенной интрузивной породой основного состава является габбро, а вулканической породой - базальт. Среди кислых интрузивных пород чаще всего встречается гранит, a вулканическим аналогом гранита является риолит.

Таким образом, верхняя мантия состоит из ультраосновных и ультрамафических пород, а земная кора образована главным образом основными и кислыми магматическими породами: габбро, гранитами и их вулканическими аналогами, которые по сравнению с перидотитами верхней мантии содержат меньше магния и железа и вместе с тем обогащены кремнеземом, алюминием и щелочными металлами.

Под континентами основные породы сосредоточены в нижней части коры, а кислые породы - в верхней ее части. Под океанами тонкая земная кора почти целиком состоит из габбро и базальтов. Твердо установлено, что основные породы, которые по разным оценкам составляют от 75 до 25% массы континентальной коры и почти всю океаническую кору, были выплавлены из верхней мантии в процессе магматической деятельности. Кислые породы обычно рассматривают как продукт повторного частичного плавления основных пород в пределах континентальной земной коры. Перидотиты из самой верхней части мантии обеднены легкоплавкими компонентами, перемещенными в ходе магматических процессов в земную кору. Особенно "истощена" верхняя мантия под континентами, где возникла наиболее толстая земная кора.

земля оболочка атмосфера биосфера


3. Геотермический режим земли

Геотермический режим мёрзлых толщ - определяется условиями теплообмена на границах мёрзлого массива. Основные формы геотермического режима - периодические колебания температуры (годовые, многолетние, вековые и т.д.), характер которых обусловлен изменением температур на поверхности и потоком тепла из недр Земли. При распространении температурных колебаний от поверхности вглубь пород их период остаётся неизменным, а амплитуда экспоненциально убывает с глубиной. Пропорционально возрастанию глубины экстремальные температуры запаздывают на отрезок времени, называемый сдвигом фаз. При равных амплитудах колебаний температур отношение глубин их затухания пропорционально корню квадратному из отношений периодов.

Специфика геотермического режима мёрзлых толщ определяется наличием фазовых переходов "вода-лёд", сопровождаемых выделением или поглощением тепла и изменением теплофизических свойств пород. Затраты тепла на фазовые переходы замедляют продвижение изотермы 0°С, обуславливают тепловую инерцию мёрзлых толщ. В верхней части разреза мёрзлой толщи выделяется слой годовых колебаний температур. В подошве этого слоя температура соответствует среднегодовой температуре за многолетний (5-10 лет) период. Мощность слоя годовых колебаний температур изменяется в среднем от 3-5 до 20-25 м в зависимости от среднегодовой температуры и теплофизических свойств пород.

Температурное поле пород ниже слоя годовых колебаний формируется под воздействием теплового потока из недр Земли и температурных колебаний на поверхности с периодом более 1 года. Влияние на него оказывают геологическое строение, теплофизические характеристики пород и перенос тепла подземными водами, контактирующими с многолетнемёрзлыми толщами.

При деградации многолетнемёрзлых пород наиболее низкая температура отмечается глубже подошвы слоя годовых колебаний, это вызвано повышением среднегодовой температуры. При аградационном развитии температурное поле отражает охлаждение мёрзлой толщи с поверхности, что выражается в увеличении температурного градиента.

Динамика нижней границы мёрзлой толщи зависит от соотношения тепловых потоков в мёрзлой и талой зоне. Их неравенство обусловлено длиннопериодными колебаниями температур на поверхности, которые проникают на глубину, превышающую мощность мёрзлой толщи. От особенностей геотермического режима и его изменений под воздействием горных выработок и других инженерных сооружений существенно зависят инженерно-геологические и гидрогеологические условия разработки месторождений. Изучение геотермического режима и прогноз его изменения проводится в ходе геокриологической съёмки.


Заключение

Индивидуальное лицо планеты, подобно облику живого существа, во многом определяется внутренними факторами, возникающими в ее глубоких недрах. Изучать эти недра очень трудно, так как материалы, из которых состоит Земля, непрозрачны и плотны, поэтому объем прямых данных о веществе глубинных зон весьма ограничен.

Существует много остроумных и интересных методов изучения нашей планеты, но основная информация о ее внутреннем строении получена в результате исследований сейсмических волн, возникающих при землетрясениях и мощных взрывах. Каждый час в различных точках Земли регистрируется около 10 колебаний земной поверхности. При этом возникают сейсмические волны двух типов: продольные и поперечные. В твердом веществе могут распространяться оба типа волн, а вот в жидкостях - только продольные.

Смещения земной поверхности регистрируются сейсмографами, установленными по всему земному шару. Наблюдения скорости, с которой волны проходят сквозь Землю, позволяют геофизикам определить плотность и твердость пород на глубинах, недоступных прямым исследованиям. Сопоставление плотностей, известных по сейсмическим данным и полученным в ходе лабораторных экспериментов с горными породами (где моделируются температура и давление, соответствующие определенной глубине Земли), позволяет сделать вывод о вещественном составе земных недр. Новейшие данные геофизики и эксперименты, связанные с исследованием структурных превращений минералов, позволили смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли.


Зації життя. Основними структурними елементами тут виступають біогеоценози, оточуюче їх середовище, тобто географічна оболонка Землі (атмосфера, ґрунт, гідросфера, сонячна радіація, космічне випромінювання та ін.), антропогенний вплив. У загальному вигляді В.І. Вернадський основними структурними компонентами біосфери назвав живу, косну і біокосну речовину з їх унікальними життєво важливими функці ...

Не на этом ли пути можно обнаружить мостик между неживой и живой природой. Решающее слов в этом вопросе принадлежит различным будущим биохимическим и генетическим исследованиям. Таким образом, основные гипотезы о происхождении жизни на Земле можно разделить на 3 группы: 1) религиозная гипотеза о "божественном" происхождения жизни; 2) "панспермия" - жизнь возникла в космосе и затем была занесена...

25 мг. Витамин U способствует заживлению язв желудка и двенадцатиперстной кишки. Содержится в петрушке, соке свежей белокочанной капусты. 1.1.6. Прочие вещества пищевых продуктов. Кроме рассмотренных основных веществ пищевые продукты содержат органические кислоты, эфирные масла, гликозиды, алкалоиды, дубильные вещества, красящие вещества и фитонциды. Органические кислоты содержатся в...

Еще и менее важные ортодоксальные школы, как, например, грамматическая, медицинская и другие, отмеченные в сочинении Мадхавачарьи. К числу неортодоксальных систем относятся главным образом три основные школы - материалистическая (типа чарвака), буддийская (вайбхашика, саутрантика, йогочара и мадьямака) и джайнская. Их называют неортодоксальными потому, что они не признают авторитета вед. 1) ...




Top