Решение кубических неравенств методом интервалов. Решение рациональных неравенств методом интервалов

Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

Yandex.RTB R-A-339285-1

Алгоритм

Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f (x) < 0 (знак неравенства может быть использован любой другой, например, ≤ , > или ≥). Здесь f (x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

  • произведение линейных двучленов с коэффициентом 1 при переменной х;
  • произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

Приведем несколько примеров таких неравенств:

(x + 3) · (x 2 − x + 1) · (x + 2) 3 ≥ 0 ,

(x - 2) · (x + 5) x + 3 > 0 ,

(x − 5) · (x + 5) ≤ 0 ,

(x 2 + 2 · x + 7) · (x - 1) 2 (x 2 - 7) 5 · (x - 1) · (x - 3) 7 ≤ 0 .

Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

  • находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
  • определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
  • определяем знаки выражения f (x) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
  • наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки < или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥ , то выделяем штриховкой участки, отмеченные знаком « + ».

Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

Научные основы метода промежутков

Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале (a , b) , на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей (− ∞ , a) и (a , + ∞) .

Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x - 5 x + 1 > 0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: (− ∞ , − 1) , (− 1 , 5) и (5 , + ∞) .

Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток (− ∞ , − 1) . Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t < − 1 , и так как − 1 < 5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t < 5 .

Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t + 1 < 0 и t − 5 < 0 . Это значит, что t + 1 и t − 5 – это отрицательные числа независимо от значения t на промежутке (− ∞ , − 1) .

Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t - 5 t + 1 будет положительным. Это значит, что значение выражения x - 5 x + 1 будет положительным при любом значении x из промежутка (− ∞ , − 1) . Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак « + ».

Нахождение нулей числителя и знаменателя

Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.

Рассмотрим дробь x · (x - 0 , 6) x 7 · (x 2 + 2 · x + 7) 2 · (x + 5) 3 . Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x · (x − 0 , 6) = 0 и x 7 · (x 2 + 2 · x + 7) 2 · (x + 5) 3 = 0 .

В первом случае мы можем перейти к совокупности двух уравнений x = 0 и x − 0 , 6 = 0 , что дает нам два корня 0 и 0 , 6 . Это нули числителя.

Второе уравнение равносильно совокупности трех уравнений x 7 = 0 , (x 2 + 2 · x + 7) 2 = 0 , (x + 5) 3 = 0 . Проводим ряд преобразований и получаем x = 0 , x 2 + 2 · x + 7 = 0 , x + 5 = 0 . Корень первого уравнения 0 , у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения - 5 . Это нули знаменателя.

0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.

В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.

Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.

Рассмотрим это утверждение на примере.

Возьмем неравенство x 2 - x + 4 x + 3 ≥ 0 . Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число - 3 . Получаем два промежутка на числовой прямой (− ∞ , − 3) и (− 3 , + ∞) .

Для того, чтобы определить знаки промежутков, вычислим значение выражения x 2 - x + 4 x + 3 для точек, взятых произвольно на каждом из промежутков.

Из первого промежутка (− ∞ , − 3) возьмем − 4 . При x = − 4 имеем (- 4) 2 - (- 4) + 4 (- 4) + 3 = - 24 . Мы получили отрицательное значение, значит весь интервал будет со знаком « - ».

Для промежутка (− 3 , + ∞) проведем вычисления с точкой, имеющей нулевую координату. При x = 0 имеем 0 2 - 0 + 4 0 + 3 = 4 3 . Получили положительное значение, что значит, что весь промежуток будет иметь знак « + ».

Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.

Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».

Теперь обратимся к примерам.

Возьмем неравенство (x - 2) · (x - 3) 3 · (x - 4) 2 (x - 1) 4 · (x - 3) 5 · (x - 4) ≥ 0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2 , 3 , 4 , знаменателя точки 1 , 3 , 4 . Отметим их на оси координат черточками.

Нули знаменателя отметим пустыми точками.

Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.

Теперь расставим точки на промежутках. Крайний правый промежуток (4 , + ∞) будет знак + .

Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4 . Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения (x − 4) 2 и x − 4 . Сложим их степени 2 + 1 = 3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале (3 , 4) будет знак минус.

Переходим к интервалу (2 , 3) через точку с координатой 3 . Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям (x − 3) 3 и (x − 3) 5 , сумма степеней которых равна 3 + 5 = 8 . Получение четного числа позволяет нам оставить знак интервала неизменным.

Точка с координатой 2 – это нуль числителя. Степень выражения х - 2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.

У нас остался последний интервал (− ∞ , 1) . Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения (x − 1) 4 , с четной степенью 4 . Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:

Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения

x + 3 - 3 4 3 · x 2 + 6 · x + 11 2 · x + 2 - 3 4 (x - 1) 2 · x - 2 3 5 · (x - 12)

в любой точке интервала 3 - 3 4 , 3 - 2 4 .

Теперь займемся применением полученных знаний и навыков на практике.

Пример 1

Решите неравенство (x - 1) · (x + 5) 2 (x - 7) · (x - 1) 3 ≤ 0 .

Решение

Целесообразно применить для решения неравенства метод интервалов. Находим нули числителя и знаменателя. Нули числителя 1 и - 5 , нули знаменателя 7 и 1 . Отметим их на числовой прямой. Мы имеем дело с нестрогим неравенством, поэтому нули знаменателя отметим пустыми точками, нуль числителя - 5 отметим обычной закрашенной точкой.

Проставим знаки промежутков, используя правила изменения знака при переходе через нуль. Начнем с крайнего правого промежутка, для которого вычислим значение выражения из левой части неравенства в точке, произвольно взятой из промежутка. Получим знак « + ». Перейдем последовательно через все точки на координатной прямой, расставляя знаки, и получим:

Мы работаем с нестрогим неравенством, имеющим знак ≤ . Это значит, что нам необходимо отметить штриховкой промежутки, отмеченные знаком « - ».

Ответ: (- ∞ , 1) ∪ (1 , 7) .

Решение рациональных неравенств в большинстве случаев требует их предварительного преобразования к нужному виду. Только после этого появляется возможность использовать метод интервалов. Алгоритмы проведения таких преобразований рассмотрены в материале «Решение рациональных неравенств».

Рассмотрим пример преобразования квадратных трехчленов в записи неравенств.

Пример 2

Найдите решение неравенства (x 2 + 3 x + 3) (x + 3) x 2 + 2 · x - 8 > 0 .

Решение

Давайте посмотрим, действительно ли дискриминанты квадратных трехчленов в записи неравенства отрицательны. Это позволит нам определить, позволяет ли вид данного неравенства применить для решения метод интервалов.

Вычислим дискриминант для трехчлена x 2 + 3 · x + 3: D = 3 2 − 4 · 1 · 3 = − 3 < 0 . Теперь вычислим дискриминант для трехчлена x 2 + 2 · x − 8: D ’ = 1 2 − 1 · (− 8) = 9 > 0 . Как видите, неравенство требует предварительного преобразования. Для этого представим трехчлен x 2 + 2 · x − 8 как (x + 4) · (x − 2) , а потом применим метод интервалов для решения неравенства (x 2 + 3 · x + 3) · (x + 3) (x + 4) · (x - 2) > 0 .

Ответ: (- 4 , - 3) ∪ (2 , + ∞) .

Обобщенный метод промежутков применяется для решения неравенств вида f (x) < 0 (≤ , > , ≥) , где f (x) – произвольное выражение с одной переменной x .

Все действия проводятся по определенному алгоритму. При этом алгоритм решения неравенств обобщенным методом интервалов будет несколько отличаться от того, что мы разобрали ранее:

  • находим область определения функции f и нули этой функции;
  • отмечаем на координатной оси граничные точки;
  • наносим на числовую прямую нули функции;
  • определяем знаки промежутков;
  • наносим штриховку;
  • записываем ответ.

На числовой прямой необходимо отмечать в том числе и отдельные точки области определения. К примеру, областью определения функции служит множество (− 5 , 1 ] ∪ { 3 } ∪ [ 4 , 7) ∪ { 10 } . Это значит, что нам необходимо отметить точки с координатами − 5 , 1 , 3 , 4 , 7 и 10 . Точки − 5 и 7 изобразим пустыми, остальные можно выделить цветным карандашом для того, чтобы отличать их затем от нулей функции.

Нули функции в случае нестрогих неравенств наносятся обычными (закрашенными) точками, строгих – пустыми точками. Если нули совпадают с граничными точками или отдельными точками области определения, то их можно перекрасить в черный цвет, сделав пустыми или закрашенными в зависимости от вида неравенства.

Запись ответа представляет собой числовое множество, которое включает в себя:

  • промежутки со штриховкой;
  • отдельные точки области определения со знаком плюс, если мы имеем дело с неравенством, знак которого > или ≥ или со знаком минус, если в неравенстве есть знаки < или ≤ .

Теперь стало понятно, что тот алгоритм, который мы привели в самом начале темы, является частным случаем алгоритма применения обобщенного метода интервалов.

Рассмотрим пример применения обобщенного метода интервалов.

Пример 3

Решите неравенство x 2 + 2 · x - 24 - 3 4 · x - 3 x - 7 < 0 .

Решение

Вводим функцию f такую, что f (x) = x 2 + 2 · x - 24 - 3 4 · x - 3 x - 7 . Найдем область определения функции f :

x 2 + 2 · x - 24 ≥ 0 x ≠ 7 D (f) = (- ∞ , - 6 ] ∪ [ 4 , 7) ∪ (7 , + ∞) .

Теперь найдем нули функции. Для этого проведем решение иррационального уравнения:

x 2 + 2 · x - 24 - 3 4 · x - 3 = 0

Получаем корень x = 12 .

Для обозначения граничных точек на оси координат используем оранжевый цвет. Точки - 6 , 4 у нас будут закрашенными, а 7 оставляем пустой. Получаем:

Отметим ноль функции пустой точкой черного цвета, так как мы работаем со строгим неравенством.

Определяем знаки на отдельных промежутках. Для этого возьмем по одной точке из каждого промежутка, например, 16 , 8 , 6 и − 8 , и вычислим в них значение функции f :

f (16) = 16 2 + 2 · 16 - 24 - 3 4 · 16 - 3 16 - 7 = 264 - 15 9 > 0 f (8) = 8 2 + 2 · 8 - 24 - 3 4 · 8 - 3 8 - 7 = 56 - 9 < 0 f (6) = 6 2 + 2 · 6 - 24 - 3 4 · 6 - 3 6 - 7 = 24 - 15 2 - 1 = = 15 - 2 · 24 2 = 225 - 96 2 > 0 f (- 8) = - 8 2 + 2 · (- 8) - 24 - 3 4 · (- 8) - 3 - 8 - 7 = 24 + 3 - 15 < 0

Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

Ответом будет являться объединение двух промежутков со знаком « - »: (− ∞ , − 6 ] ∪ (7 , 12) .

В ответ мы включили точку с координатой - 6 . Это не нуль функции, который мы бы не включили в ответ при решении строгого неравенства, а граничная точка области определения, которая входит в область определения. Значение функции в этой точке отрицательное, это значит, что она удовлетворяет неравенству.

Точку 4 мы в ответ не включили, точно также, как не включили весь промежуток [ 4 , 7) . В этой точке, точно также, как и на всем указанном промежутке значение функции положительно, что не удовлетворяет решаемому неравенству.

Запишем это еще раз для более четкого понимания: цветные точки необходимо включать в ответ в следующих случаях:

  • эти точки являются частью промежутка со штриховкой,
  • эти точки являются отдельными точками области определения функции, значения функции в которых удовлетворяют решаемому неравенству.

Ответ: (− ∞ , − 6 ] ∪ (7 , 12) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Метод интервалов (или как его еще иногда называют метод промежутков) – это универсальный метод решения неравенств. Он подходит для решения разнообразных неравенств, однако наиболее удобен в решении рациональных неравенств с одной переменной. Поэтому в школьном курсе алгебры метод интервалов вплотную привязывают именно к рациональным неравенствам, а решению других неравенств с его помощью практически не уделяют внимания.

В этой статье мы детально разберем метод интервалов и затронем все тонкости решения неравенств с одной переменной с его помощью. Начнем с того, что приведем алгоритм решения неравенств методом интервалов. Дальше поясним, на каких теоретических аспектах он базируется, и разберем шаги алгоритма, в частности, подробно остановимся на определении знаков на интервалах. После этого перейдем к практике и покажем решения нескольких типовых примеров. А в заключение рассмотрим метод интервалов в общем виде (то есть, без привязки к рациональным неравенствам), другими словами, обобщенный метод интервалов.

Навигация по странице.

Алгоритм

Знакомство с методом интервалов в школе начинается при решении неравенств вида f(x)<0 (знак неравенства может быть и другим ≤, > или ≥), где f(x) – это либо , представленный в виде произведения линейных двучленов с 1 при переменной x и/или квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом и их степеней, либо отношение таких многочленов. Для наглядности приведем примеры подобных неравенств: (x−5)·(x+5)≤0 , (x+3)·(x 2 −x+1)·(x+2) 3 ≥0 , .

Чтобы сделать дальнейший разговор предметным, сразу запишем алгоритм решения неравенств указанного выше вида методом интервалов, а потом разберемся, что да как да почему. Итак, по методу интервалов:

  • Сначала находятся нули числителя и нули знаменателя. Для этого числитель и знаменатель выражения в левой части неравенства приравниваются к нулю, и решаются полученные уравнения.
  • После этого точки, соответствующие найденным нулям, отмечаются черточками на . Достаточно схематического чертежа, на котором не обязательно соблюдать масштаб, главное придерживаться расположения точек относительно друг друга: точка с меньшей координатой находится левее точки с большей координатой. После этого выясняется, какими следует их изобразить: обычными или выколотыми (с пустым центром). При решении строгого неравенства (со знаком < или >) все точки изображаются выколотыми. При решении нестрогого неравенства (со знаком ≤ или ≥) точки, отвечающие нулям знаменателя, делаются выколотыми, а оставшиеся отмеченные черточками точки – обычными. Эти точки разбивают координатную прямую на несколько числовых промежутков .
  • Дальше определяются знаки выражения f(x) из левой части решаемого неравенства на каждом промежутке (как это делается, подробно расскажем в одном из следующих пунктов), и над ними проставляются + или − в соответствии с определенными на них знаками.
  • Наконец, при решении неравенства со знаком < или ≤ изображается штриховка над промежутками, отмеченными знаком −, а при решении неравенства со знаком > или ≥ - над промежутками, отмеченными знаком +. В результате получается , которое и является искомым решением неравенства.

Заметим, что приведенный алгоритм согласован с описанием метода интервалов в школьных учебниках .

На чем базируется метод?

Подход, лежащий в основе метода интервалов, имеет место в силу следующего свойства непрерывной функции : если на интервале (a, b) функция f непрерывна и не обращается в нуль, то она на этом интервале сохраняет постоянный знак (от себя добавим, что аналогичное свойство справедливо и для числовых лучей (−∞, a) и (a, +∞) ). А это свойство в свою очередь следует из теоремы Больцано-Коши (ее рассмотрение выходит за рамки школьной программы), формулировку и доказательство которой при необходимости можно найти, например, в книге .

Для выражений f(x) , имеющих указанный в предыдущем пункте вид, постоянство знака на промежутках можно обосновать и иначе, отталкиваясь от свойств числовых неравенств и учитывая правила умножения и деления чисел с одинаковыми знаками и разными знаками.

В качестве примера рассмотрим неравенство . Нули его числителя и знаменателя разбивают числовую прямую на три промежутка (−∞, −1) , (−1, 5) и (5, +∞) . Покажем, что на промежутке (−∞, −1) выражение из левой части неравенства имеет постоянный знак (можно взять и другой промежуток, рассуждения будут аналогичными). Возьмем любое число t из этого промежутка. Оно, очевидно, будет удовлетворять неравенству t<−1 , и так как −1<5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t<5 . Из этих неравенств в силу свойств числовых неравенств следует, что t+1<0 и t−5<0. То есть, t+1 и t−5 – отрицательные числа, не зависимо от того, какое конкретно число t мы возьмем из промежутка (−∞, −1) . Тогда позволяет констатировать, что значение выражения будет положительным, откуда следует, что значение выражения будет положительным при любом значении x из промежутка (−∞, −1) . Итак, на указанном промежутке выражение имеет постоянный знак, причем, это знак +.

Так мы плавно подошли к вопросу определения знаков на промежутках, но не будем перескакивать через первый шаг метода интервалов, подразумевающий нахождение нулей числителя и знаменателя.

Как находить нули числителя и знаменателя?

С нахождением нулей числителя и знаменателя дроби указанного в первом пункте вида обычно не возникает никаких проблем. Для этого выражения из числителя и знаменателя приравниваются к нулю, и решаются полученные уравнения. Принцип решения уравнений такого вида подробно изложен в статье решение уравнений методом разложения на множители . Здесь лишь ограничимся примером.

Рассмотрим дробь и найдем нули ее числителя и знаменателя. Начнем с нулей числителя. Приравниваем числитель к нулю, получаем уравнение x·(x−0,6)=0 , от которого переходим к совокупности двух уравнений x=0 и x−0,6=0 , откуда находим два корня 0 и 0,6 . Это искомые нули числителя. Теперь находим нули знаменателя. Составляем уравнение x 7 ·(x 2 +2·x+7) 2 ·(x+5) 3 =0 , оно равносильно совокупности трех уравнений x 7 =0 , (x 2 +2·x+7) 2 =0 , (x+5) 3 =0 , и дальше x=0 , x 2 +2·x+7=0 , x+5=0 . Корень первого из этих уравнений очевиден, это 0 , второе уравнение корней не имеет, так как его дискриминант отрицательный, а корень третьего уравнения есть −5 . Итак, мы нашли нули знаменателя, их оказалось два: 0 и −5 . Заметим, что 0 оказался как нулем числителя, так и нулем знаменателя.

Для нахождения нулей числителя и знаменателя в общем случае, когда в левой части неравенства дробь, но не обязательно рациональная, также числитель и знаменатель приравниваются к нулю, и решаются соответствующие уравнения.

Как определять знаки на интервалах?

Самый надежный способ определения знака выражения из левой части неравенства на каждом промежутке состоит в вычислении значения этого выражения в какой-либо одной точке из каждого промежутка. При этом искомый знак на промежутке совпадает со знаком значения выражения в любой точке этого промежутка. Поясним это на примере.

Возьмем неравенство . Выражение из его левой части не имеет нулей числителя, а нулем знаменателя является число −3. Оно делит числовую прямую на два промежутка (−∞, −3) и (−3, +∞) . Определим знаки на них. Для этого возьмем по одной точке из этих промежутков, и вычислим значения выражения в них. Сразу заметим, что целесообразно брать такие точки, чтобы проводить вычисления было легко. Например, из первого промежутка (−∞, −3) можно взять −4 . При x=−4 имеем , получили значение со знаком минус (отрицательное), поэтому, на этом интервале будет знак минус. Переходим к определению знака на втором промежутке (−3, +∞) . Из него удобно взять 0 (если 0 входит в промежуток, то целесообразно всегда брать его, так как при x=0 вычисления оказываются наиболее простыми). При x=0 имеем . Это значение со знаком плюс (положительное), поэтому, на этом интервале будет знак плюс.

Существует и другой подход к определению знаков, состоящий в нахождении знака на одном из интервалов и его сохранении или изменении при переходе к соседнему интервалу через нуль. Нужно придерживаться следующего правила. При переходе через нуль числителя, но не знаменателя, или через нуль знаменателя, но не числителя, знак изменяется, если степень выражения, дающего этот нуль, нечетная, и не изменяется, если четная. А при переходе через точку, являющуюся одновременно и нулем числителя, и нулем знаменателя, знак изменяется, если сумма степеней выражений, дающих этот нуль, нечетная, и не изменяется, если четная.

Кстати, если выражение в правой части неравенства имеет вид, указанный в начале первого пункта этой статьи, то на крайнем правом промежутке будет знак плюс.

Чтобы все стало понятно, рассмотрим пример.

Пусть перед нами неравенство , и мы его решаем методом интервалов. Для этого находим нули числителя 2 , 3 , 4 и нули знаменателя 1 , 3 , 4 , отмечаем их на координатной прямой сначала черточками

затем нули знаменателя заменяем изображениями выколотых точек

и так как решаем нестрогое неравенство, то оставшиеся черточки заменяем обыкновенными точками

А дальше наступает момент определения знаков на промежутках. Как мы заметили перед этим примером, на крайнем правом промежутке (4, +∞) будет знак +:

Определим остальные знаки, при этом будем продвигаться от промежутка к промежутку справа налево. Переходя к следующему интервалу (3, 4) , мы переходим через точку с координатой 4 . Это нуль как числителя, так и знаменателя, эти нули дают выражения (x−4) 2 и x−4 , сумма их степеней равна 2+1=3 , а это нечетное число, значит, при переходе через эту точку нужно изменить знак. Поэтому, на интервале (3, 4) будет знак минус:

Идем дальше к интервалу (2, 3) , при этом переходим через точку с координатой 3 . Это нуль также как числителя, так и знаменателя, его дают выражения (x−3) 3 и (x−3) 5 , сумма их степеней равна 3+5=8 , а это четное число, поэтому, знак останется неизменным:

Продвигаемся дальше к интервалу (1, 2) . Путь к нему нам преграждает точка с координатой 2 . Это нуль числителя, его дает выражение x−2 , его степень равна 1 , то есть она нечетная, следовательно, при переходе через эту точку знак изменится:

Наконец, осталось определить знак на последнем интервале (−∞, 1) . Чтобы попасть на него, нам необходимо преодолеть точку с координатой 1 . Это нуль знаменателя, его дает выражение (x−1) 4 , его степень равна 4 , то есть, она четная, следовательно, знак при переходе через эту точку изменяться не будет. Так мы определили все знаки, и рисунок приобретает такой вид:

Понятно, что применение рассмотренного метода особенно оправдано, когда вычисление значения выражения связано с большим объемом работы. К примеру, вычислите-ка значение выражения в любой точке интервала .

Примеры решения неравенств методом интервалов

Теперь можно собрать воедино всю представленную информацию, достаточную для решения неравенств методом интервалов, и разобрать решения нескольких примеров.

Пример.

Решите неравенство .

Решение.

Проведем решение этого неравенства методом интервалов. Очевидно, нули числителя это 1 и −5 , а нули знаменателя и 1 . Отмечаем их на числовой прямой, при этом точки с координатами и 1 выколотые как нули знаменателя, а оставшийся нуль числителя −5 изобразим обычной точкой, так как решаем нестрогое неравенство:

Теперь проставляем знаки на промежутках, придерживаясь правила сохранения или изменения знака при переходе через нули. Над крайним справа промежутком будет знак + (это можно проверить, вычислив значение выражения в левой части неравенства в какой-либо точке этого промежутка, например, при x=3 ). При переходе через знак изменяем, при переходе через 1 – оставляем таким же, и при переходе через −5 опять оставляем знак без изменения:

Так как мы решаем неравенство со знаком ≤, то осталось изобразить штриховку над промежутками, отмеченными знаком −, и по полученному изображению записать ответ.

Итак, искомое решение таково: .

Ответ:

.

Справедливости ради обратим внимание на то, что в подавляющем большинстве случаев при решении рациональных неравенств их предварительно приходится преобразовывать к нужному виду, чтобы стало возможным их решение методом интервалов. Как проводить такие преобразования мы подробно обсудим в статье решение рациональных неравенств , а сейчас приведем пример, иллюстрирующий один важный момент, касающийся квадратных трехчленов в записи неравенств.

Пример.

Найдите решение неравенства .

Решение.

С первого взгляда на данное неравенство кажется, что его вид подходит для применения метода интервалов. Но не помешает проверить, действительно ли дискриминанты квадратных трехчленов в его записи отрицательны. Вычислим их для успокоения совести. Для трехчлена x 2 +3·x+3 имеем D=3 2 −4·1·3=−3<0 , а для трехчлена x 2 +2·x−8 получаем D’=1 2 −1·(−8)=9>0 . Это означает, что для придания этому неравенству нужного вида требуются преобразования. В данном случае достаточно трехчлен x 2 +2·x−8 представить как (x+4)·(x−2) , и дальше решать методом интервалов неравенство .

Ответ:

.

Обобщенный метод интервалов

Обобщенный метод интервалов позволяет решать неравенства вида f(x)<0 (≤, >, ≥), где f(x) – произвольное с одной переменной x . Запишем алгоритм решения неравенств обобщенным методом интервалов :

  • Сначала надо f и нули этой функции.
  • На числовой прямой отмечаются граничные, в том числе и отдельные точки области определения. Например, если областью определения функции служит множество (−5, 1]∪{3}∪ (на интервале (−6, 4) знак не определяем, так как он не является частью области определения функции). Для этого возьмем по одной точке из каждого промежутка, например, 16 , 8 , 6 и −8 , и вычислим в них значение функции f :

    Если возникли вопросы как было выяснено, какими являются вычисленные значения функции, положительными или отрицательными, то изучите материал статьи сравнение чисел .

    Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

    В ответ записываем объединение двух промежутков со знаком −, имеем (−∞, −6]∪(7, 12) . Обратите внимание, что −6 включено в ответ (соответствующая точка сплошная, а не выколотая). Дело в том, что это не нуль функции (который при решении строгого неравенства мы бы не включили в ответ), а граничная точка области определения (она цветная, а не черная), при этом входящая в область определения. Значение функции в этой точке отрицательно (о чем свидетельствует знак минус над соответствующим промежутком), то есть, она удовлетворяет неравенству. А вот 4 включать в ответ не нужно (как и весь промежуток ∪(7, 12) .

    Список литературы.

    1. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
    2. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
    3. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
    4. Кудрявцев Л. Д. Курс математического анализа (в двух томах): Учебник для студентов университетов и втузов. – М.: Высш. школа, 1981, т. 1. – 687 с., ил.

    Начальный уровень

    Метод интервалов. Исчерпывающее руководство (2019)

    Этот метод тебе просто необходимо понять и знать его как свои пять пальцев! Хотя бы потому, что он применяется для решения рациональных неравенств и потому, что, зная этот метод как следует, решать эти неравенства на удивление просто. Чуть позже раскрою тебе пару секретов, как сэкономить время на решении этих неравенств. Ну что, заинтриговал? Тогда поехали!

    Суть метода в разложении неравенства на множители (повтори тему ) и определении ОДЗ и знака сомножителей, сейчас все поясню. Возьмем самый простенький пример: .

    Области допустимых значений () здесь писать не надо, поскольку деления на переменную нет, и радикалов (корней) здесь не наблюдается. На множители здесь все и так разложено за нас. Но не расслабляйся, это все, чтоб напомнить азы и понять суть!

    Допустим, ты не знаешь метода интервалов, как бы ты стал решать это неравенство? Подойди логически и опирайся на то, что уже знаешь. Во-первых, левая часть будет больше нуля если оба выражения в скобках либо больше нуля, либо меньше нуля, т.к. «плюс» на «плюс» дает «плюс» и «минус» на «минус» дает «плюс», так? А если знаки у выражений в скобках разные, то в итоге левая часть будет меньше нуля. А что же нам нужно, чтоб узнать те значения, при которых выражения в скобках будут отрицательными или положительными?

    Нам нужно решить уравнение, оно точно такое же как неравенство, только вместо знака будет знак, корни этого уравнения и позволят определить те пограничные значения, при отступлении от которых множители и будут больше или меньше нуля.

    А теперь сами интервалы. Что такое интервал? Это некий промежуток числовой прямой, то есть все возможные числа, заключенные между двумя какими-то числами - концами интервала. Эти промежуткив голове представить не так просто, поэтому интервалы принято рисовать, сейчас научу.

    Рисуем ось, на ней располагается весь числовой ряд от и до. На ось наносятся точки, те самые так называемые нули функции, значения, при которых выражение равняется нулю. Эти точки «выкалываются» что означает, что они не относятся к числу тех значений, при которых неравенство верно. В данном случае, они выкалываются т.к. знак в неравенстве а не, то есть строго больше а не больше или равно.

    Хочу сказать, что ноль отмечать не обязательно, он без кружочков тут, а так, для понимания и ориентации по оси. Ладно, ось нарисовали, точки (точнее кружочки) поставили, дальше что, как мне это поможет в решении? - спросишь ты. Теперь просто возьми значение для икса из интервалов по порядку и подставь их в свое неравенство и смотри, какой знак будет в результате умножения.

    Короче, просто берем например, подставляем его сюда, получится, а, значит на всем промежутке (на всем интервале) от до, из которого мы брали, неравенство будет справедливо. Иными словами если икс от до, то неравенство верно.

    То же самое делаем и с интервалом от до, берем или, например, подставляем в, определяем знак, знак будет «минус». И так же делаем с последим, третьим интервалом от до, где знак получится «плюс». Такая куча текста вышла, а наглядности мало, правда?

    Взгляни еще раз на неравенство.

    Теперь все на ту же ось наносим еще и знаки, которые получатся в результате. Ломаной линией, в моем примере,обозначаем положительные и отрицательные участки оси.

    Смотри на неравенство - на рисунок, опять на неравенство - и снова на рисунок , что-нибудь понятно? Постарайся теперь сказать на каких промежутках икса, неравенство будет верно. Правильно, от до неравенство будет справедливо и от до, а на промежутке от до неравенство нуля и нас этот промежуток мало интересует, ведь у нас в неравенстве знак стоит.

    Ну, раз ты с этим разобрался, то дело за малым - записать ответ! В ответ пишем те промежутки, при которых левая часть больше нуля, что читается, как икс принадлежит промежутку от минус бесконечности до минус одного и от двух до плюс бесконечности. Стоит пояснить, что круглые скобки означают, что значения, которыми ограничен интервал не являются решениями неравенства, то есть они не включены в ответ, а лишь говорят о том, что до, например, но не есть решение.

    Теперь пример, в котором тебе придется не только интервал рисовать:

    Как думаешь, что надо сделать, прежде, чем точки на ось наносить? Ага, на множители разложить:

    Рисуем интервалы и расставляем знаки, заметь точки у нас выколотые, потому, что знак строго меньше нуля:

    Пришло время раскрыть тебе один секрет, который я обещал еще в начале этой темы! А что если я скажу тебе, что можно не подставлять значения из каждого интервала для определения знака, а можно определить знак в одном из интервалов, а в остальных просто чередовать знаки!

    Таким образом, мы сэкономили немного времени на проставлении знаков - думаю, это выигранное время на ЕГЭ не помешает!

    Пишем ответ:

    Теперь рассмотрим пример дробно-рационального неравенства - неравенство, обе части которого являются рациональными выражениями (см. ).

    Что можешь сказать про это неравенство? А ты взгляни на него как на дробно-рациональное уравнение, что делаем в первую очередь? Сразу видим, что корней нет, значит точно рациональное, но тут же дробь, да еще и с неизвестным в знаменателе!

    Верно, ОДЗ надо!

    Так, дальше поехали, здесь все множители кроме одного имеют переменную первой степени, но есть множитель, где икс имеет вторую степень. Обычно знак у нас менялся после перехода через одну из точек, в которой левая часть неравенства принимает нулевое значение, для чего мы определяли чему должен быть равен икс в каждом множителе. А тут, так оно же всегда положительно, т.к. любое число в квадрате > нуля и положительное слагаемое.

    Как думаешь, повлияет на значение неравенства? Правильно - не повлияет! Смело можем поделить на обе части неравенства и тем самым убрать этот множитель, чтоб глаза не мозолил.

    пришло время интервалы рисовать, для этого нужно определить те пограничные значения, при отступлении от которых множители и будут больше и меньше нуля. Но обрати внимание, что здесь знак, значит точку, в которой левая часть неравенства принимает нулевое значение, выкалывать не будем, она ведь входит в число решений, такая точка у нас одна, это точка, где икс равен одному. А точку где знаменатель отрицателен закрасим? - Конечно, нет!

    Знаменатель не должен быть равен нулю, поэтому интервал будет выглядеть так:

    По этой схеме ты уже без труда сможешь написать ответ, скажу только, что теперь у тебя в распоряжении есть новый тип скобки - квадратный! Вот такая скобка [ говорит, что значение входит в интервал решений, т.е. является частью ответа, эта скобка соответствует закрашенной (не выколотой) точке на оси.

    Вот, - у тебя такой же ответ получился?

    Раскладываем на множители и переносим все в одну сторону, нам ведь справа только ноль надо оставить, чтоб с ним сравнивать:

    Обращаю твое внимание, что в последнем преобразовании, дабы получить в числителе как и в знаменателе, умножаю обе части неравенства на. Помни, что при умножении обеих частей неравенства на, знак неравенства меняется на противоположный!!!

    Пишем ОДЗ:

    Иначе знаменатель обратится в ноль, а на ноль, как ты помнишь, делить нельзя!

    Согласись, в получившемся неравенства так и подмывает сократить в числителе и знаменателе! Этого делать нельзя, можно потерять часть решений или ОДЗ!

    Теперь попробуй сам нанести точки на ось. Замечу лишь, что при нанесении точек надо обратить внимание на то, что точка со значением, которая исходя из знака, казалось бы, должна быть нанесена на ось как закрашенная, закрашенной не будет, она будет выколота! Почему спросишь ты? А ты ОДЗ вспомни, не собираешься же ты на ноль делить так?

    Запомни, ОДЗ превыше всего! Если все неравенство и знаки равенства говорят одно, а ОДЗ - другое, доверяй ОДЗ, великой и могучей! Ну что, ты построил интервалы, я уверен, что ты воспользовался моей подсказкой по поводу чередования и у тебя получилось вот так (см. рисунок ниже) А теперь зачеркни, и не повторяй эту ошибку больше! Какую ошибку? - спросишь ты.

    Дело в том, что в данном неравенстве множитель повторялся дважды (помнишь, как ты его еще сократить порывался?). Так вот, если какой-то множитель повторяется в неравенстве четное количество раз, то при переходе через точку на оси, которая обращает этот множитель в ноль (в данном случае точка), знак меняться не будет, если нечетное, то знак меняется!

    Верным будет следующая ось с интервалами и знаками:

    И, обрати внимание, что знак нас интересует не тот, который был в начале (когда мы только увидели неравенство, знак был), после преобразований, знак сменился на, значит, нас интересуют промежутки со знаком.

    Ответ:

    Скажу так же, что бывают ситуации, когда есть корни неравенства, которые не входят в какой-либо промежуток, в ответ они записываются в фигурных скобках, вот так, например: . Подробнее о таких ситуациях можешь прочитать в статье средний уровень.

    Давай подведем итоги того, как решать неравенства методом интервала:

    1. Переносим все в левую часть, справа оставляем только ноль;
    2. Находим ОДЗ;
    3. Наносим на ось все корни неравенства;
    4. Берем произвольный из одного из промежутков и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
    5. В ответ пишем интервалы, соблюдая выколотые и не выколотые точки (смотри ОДЗ), ставя необходимые виды скобок между ними.

    Ну и наконец, наша любимая рубрика, «сделай сам»!

    Примеры:

    Ответы:

    МЕТОД ИНТЕРВАЛОВ. СРЕДНИЙ УРОВЕНЬ

    Линейная функция

    Линейной называется функция вида. Рассмотрим для примера функцию. Она положительна при и отрицательна при. Точка - нуль функции (). Покажем знаки этой функции на числовой оси:

    Говорим, что «функция меняет знак при переходе через точку ».

    Видно, что знаки функции соответствуют положению графика функции: если график выше оси, знак « », если ниже - « ».

    Если обобщить полученное правило на произвольную линейную функцию, получим такой алгоритм:

    • Находим нуль функции;
    • Отмечаем его на числовой оси;
    • Определяем знак функции по разные стороны от нуля.

    Квадратичная функция

    Надеюсь, ты помнишь, как решаются квадратные неравенства? Если нет, прочти тему . Напомню общий вид квадратичной функции: .

    Теперь вспомним, какие знаки принимает квадратичная функция. Ее график - парабола, и функция принимает знак « » при таких, при которых парабола выше оси, и « » - если парабола ниже оси:

    Если у функции есть нули (значения, при которых), парабола пересекает ось в двух точках - корнях соответствующего квадратного уравнения. Таким образом ось разбивается на три интервала, а знаки функции попеременно меняются при переходе через каждый корень.

    А можно ли как-нибудь определить знаки, не рисуя каждый раз параболу?

    Вспомним, что квадратный трехчлен можно разложить на множители:

    Например: .

    Отметим корни на оси:

    Мы помним, что знак функции может меняться только при переходе через корень. Используем этот факт: для каждого из трех интервалов, на которые ось разбивается корнями, достаточно определить знак функции только в одной произвольно выбранной точке: в остальных точках интервала знак будет таким же.

    В нашем примере: при оба выражения в скобках положительны (подставим, например:). Ставим на оси знак « »:

    Ну и, при (подставь, например,) обе скобки отрицательны, значит, произведение положительно:

    Это и есть метод интервалов : зная знаки сомножителей на каждом интервале, определяем знак всего произведения.

    Рассмотрим также случаи, когда нулей у функции нет, или он всего один.

    Если их нет, то и корней нет. А значит, не будет и «перехода через корень». А значит, функция на всей числовой оси принимает только один знак. Его легко определить, подставив в функцию.

    Если корень только один, парабола касается оси, поэтому знак функции не меняется при переходе через корень. Какое правило придумаем для таких ситуаций?

    Если разложить такую функцию на множители, получатся два одинаковых множителя:

    А любое выражение в квадрате неотрицательно! Поэтому знак функции и не меняется. В таких случаях будем выделять корень, при переходе через который знак не меняется, обведя его квадратиком:

    Такой корень будем называть кратным .

    Метод интервалов в неравенствах

    Теперь любое квадратное неравенство можно решать без рисования параболы. Достаточно только расставить на оси знаки квадратичной функции, и выбрать интервалы в зависимости от знака неравенства. Например:

    Отмерим корни на оси и расставим знаки:

    Нам нужна часть оси со знаком « »; так как неравенство нестрогое, сами корни тоже включаются в решение:

    Теперь рассмотрим рациональное неравенство - неравенство, обе части которого являются рациональными выражениями (см. ).

    Пример:

    Все множители кроме одного - - здесь «линейные», то есть, содержат переменную только в первой степени. Такие линейные множители нам и нужны для применения метода интервалов - знак при переходе через их корни меняется. А вот множитель вообще не имеет корней. Это значит, что он всегда положительный (проверь это сам), и поэтому не влияет на знак всего неравенства. Значит, на него можно поделить левую и правую часть неравенства, и таким образом избавиться от него:

    Теперь все так же, как было с квадратными неравенствами: определяем, в каких точках каждый из множителей обращается в нуль, отмечаем эти точки на оси и расставляем знаки. Обращаю внимание очень важный факт:


    Ответ: . Пример: .

    Для применения метода интервалов нужно, чтобы в одной из частей неравенства был. Поэтому перенесем правую часть налево:

    В числителе и знаменателе одинаковый множитель, но не торопимся его сокращать! Ведь тогда мы можем забыть выколоть эту точку. Лучше отметить этот корень как кратный, то есть при переходе через него знак не поменяется:

    Ответ: .

    И еще один очень показательный пример:

    Опять же, мы не сокращаем одинаковые множители числителя и знаменателя, так как если сократим, нам придется специально запоминать, что нужно выколоть точку.

    • : повторяется раза;
    • : раза;
    • : раза (в числителе и один в знаменателе).

    В случае четного количества поступаем так же, как и раньше: обводим точку квадратиком и не меняем знак при переходе через корень. А вот в случае нечетного количества это правило не выполняется: знак все-равно поменяется при переходе через корень. Поэтому с таким корнем ничего дополнительно не делаем, как будто он у нас не кратный. Вышеописанные правила относятся ко всем четным и нечетным степеням.

    Что запишем в ответе?

    При нарушении чередования знаков нужно быть очень внимательным, ведь при нестрогом неравенстве в ответ должны войти все закрашенные точки . Но некоторые из нах часто стоят особняком, то есть не входят в закрашенную область. В этом случае мы добавляем их к ответу как изолированные точки (в фигурных скобках):

    Примеры (реши сам):

    Ответы:

    1. Если среди множителей просто - это корень, ведь его можно представить как.
      .

    МЕТОД ИНТЕРВАЛОВ. КОРОТКО О ГЛАВНОМ

    Метод интервалов применяется для решения рациональных неравенств. Он заключается в определении знака произведения по знакам сомножителей на различных промежутках.

    Алгоритм решения рациональных неравенств методом интервалов.

    • Переносим все в левую часть, справа оставляем только ноль;
    • Находим ОДЗ;
    • Наносим на ось все корни неравенства;
    • Берем произвольный из одного из промежутков и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
    • В ответ пишем интервалы, соблюдая выколотые и не выколотые точки (смотри ОДЗ), ставя необходимые виды скобок между ними.

    Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

    Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

    Теперь самое главное.

    Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

    Проблема в том, что этого может не хватить…

    Для чего?

    Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

    Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

    Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

    Но и это - не главное.

    Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

    Но, думай сам...

    Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

    НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

    На экзамене у тебя не будут спрашивать теорию.

    Тебе нужно будет решать задачи на время .

    И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

    Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

    Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

    Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

    Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

    Как? Есть два варианта:

    1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
    2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

    Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

    Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

    На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

    Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

    И в заключение...

    Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

    “Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

    Найди задачи и решай!

    Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f(x) > 0. Алгоритм состоит из 5 шагов:

    1. Решить уравнение f(x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
    2. Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
    3. Найти кратность корней. Если корни четной кратности, то над корнем рисуем петлю. (Корень считается кратным, если существует четное количество одинаковых решений)
    4. Выяснить знак (плюс или минус) функции f(x) на самом правом интервале. Для этого достаточно подставить в f(x) любое число, которое будет правее всех отмеченных корней;
    5. Отметить знаки на остальных интервалах, чередуя их.

    После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f(x) > 0, или знаком «−», если неравенство имеет вид f(x) < 0.

    В случае с нестрогими неравенствами(≤ , ≥) необходимо включить в интервалы точки, которые являются решением уравнения f(x) = 0;

    Пример 1:

    Решить неравенство:

    (x - 2)(x + 7) < 0

    Работаем по методу интервалов.

    Шаг 1: заменяем неравенство уравнением и решаем его:

    (x - 2)(x + 7) = 0

    Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю:

    x - 2 = 0 => x = 2

    x + 7 = 0 => x = -7

    Получили два корня.

    Шаг 2: отмечаем эти корни на координатной прямой. Имеем:

    Шаг 3: находим знак функции на самом правом интервале (правее отмеченной точки x = 2). Для этого надо взять любое число, которое больше числа x = 2. Например, возьмем x = 3 (но никто не запрещает взять x = 4, x = 10 и даже x = 10 000).

    f(x) = (x - 2)(x + 7)

    f(3)=(3 - 2)(3 + 7) = 1*10 = 10

    Получаем, что f(3) = 10 > 0 (10 - это положительное число), поэтому в самом правом интервале ставим знак плюс.

    Шаг 4: нужно отметить знаки на остальных интервалах. Помним, что при переходе через каждый корень знак должен меняться. Например, справа от корня x = 2 стоит плюс (мы убедились в этом на предыдущем шаге), поэтому слева обязан стоять минус. Этот минус распространяется на весь интервал (−7; 2), поэтому справа от корня x = −7 стоит минус. Следовательно, слева от корня x = −7 стоит плюс. Осталось отметить эти знаки на координатной оси.

    Вернемся к исходному неравенству, которое имело вид:

    (x - 2)(x + 7) < 0

    Итак, функция должна быть меньше нуля. Значит, нас интересует знак минус, который возникает лишь на одном интервале: (−7; 2). Это и будет ответ.

    Пример 2:

    Решить неравенство:

    (9x 2 - 6x + 1)(x - 2) ≥ 0

    Решение:

    Для начала необходимо найти корни уравнения

    (9x 2 - 6x + 1)(x - 2) = 0

    Свернем первую скобку, получим:

    (3x - 1) 2 (x - 2) = 0

    x - 2 = 0; (3x - 1) 2 = 0

    Решив эти уравнения получим:

    Нанесем точки на числовую прямую:

    Т.к. x 2 и x 3 - кратные корни, то на прямой будет одна точка и над ней “петля ”.

    Возьмем любое число меньшее самой левой точки и подставим в исходное неравенство. Возьмем число -1.

    Не забываем включать решение уравнения (найденные X), т.к. наше неравенство нестрогое.

    Ответ: {} U

    Теперь немного усложним задачу и рассмотрим не просто многочлены, а так называемые рациональные дроби вида:

    где $P\left(x \right)$ и $Q\left(x \right)$ — всё те же многочлены вида ${{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{0}}$, либо произведение таких многочленов.

    Это и будет рациональное неравенство. Принципиальным моментом является наличие переменной $x$ в знаменателе. Например, вот это — рациональные неравенства:

    \[\begin{align} & \frac{x-3}{x+7} \lt 0; \\ & \frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0; \\ & \frac{3{{x}^{2}}+10x+3}{{{\left(3-x \right)}^{2}}\left(4-{{x}^{2}} \right)}\ge 0. \\ \end{align}\]

    А это — не рациональное, а самое обычное неравенство, которое решается методом интервалов:

    \[\frac{{{x}^{2}}+6x+9}{5}\ge 0\]

    Забегая вперёд, сразу скажу: существует как минимум два способа решения рациональных неравенств, но все они так или иначе сводятся к уже известному нам методу интервалов. Поэтому прежде чем разбирать эти способы, давайте вспомним старые факты, иначе толку от нового материла не будет никакого.

    Что уже нужно знать

    Важных фактов не бывает много. Действительно потребуются нам всего четыре.

    Формулы сокращённого умножения

    Да, да: они будут преследовать нас на протяжении всей школьной программы математики. И в университете тоже. Этих формул довольно много, но нам потребуются лишь следующие:

    \[\begin{align} & {{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}; \\ & {{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right); \\ & {{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right); \\ & {{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right). \\ \end{align}\]

    Обратите внимание на последние две формулы — это сумма и разность кубов (а не куб суммы или разности!). Их легко запомнить, если заметить, что знак в первой скобке совпадает со знаком в исходном выражении, а во второй — противоположен знаку исходного выражения.

    Линейные уравнения

    Это самые простые уравнения вида $ax+b=0$, где $a$ и $b$ — это обычные числа, причём $a\ne 0$. Такое уравнение решается просто:

    \[\begin{align} & ax+b=0; \\ & ax=-b; \\ & x=-\frac{b}{a}. \\ \end{align}\]

    Отмечу, что мы имеем право делить на коэффициент $a$, ведь $a\ne 0$. Это требование вполне логично, поскольку при $a=0$ мы получим вот что:

    Во-первых, в этом уравнении нет переменной $x$. Это, вообще говоря, не должно нас смущать (такое случается, скажем, в геометрии, причём довольно часто), но всё же перед нами уже не линейное уравнение.

    Во-вторых, решение этого уравнения зависит исключительно от коэффициента $b$. Если $b$ — тоже ноль, то наше уравнение имеет вид $0=0$. Данное равенство верно всегда; значит, $x$ — любое число (обычно это записывается так: $x\in \mathbb{R}$). Если же коэффициент $b$ не равен нулю, то равенство $b=0$ никогда не выполняется, т.е. ответов нет (записывается $x\in \varnothing $ и читается «множество решений пусто»).

    Чтобы избежать всех этих сложностей, просто полагают $a\ne 0$, что нисколько не ограничивает нас в дальнейших размышлениях.

    Квадратные уравнения

    Напомню, что квадратным уравнением называется вот это:

    Здесь слева многочлен второй степени, причём снова $a\ne 0$ (в противном случае вместо квадратного уравнения мы получим линейное). Решаются такие уравнения через дискриминант:

    1. Если $D \gt 0$, мы получим два различных корня;
    2. Если $D=0$, то корень будет один, но второй кратности (что это за кратность и как её учитывать — об этом чуть позже). Либо можно сказать, что уравнение имеет два одинаковых корня;
    3. При $D \lt 0$ корней вообще нет, а знак многочлена $a{{x}^{2}}+bx+c$ при любом $x$ совпадает со знаком коэффициента $a$. Это, кстати, очень полезный факт, о котором почему-то забывают рассказать на уроках алгебры.

    Сами корни считаются по всем известной формуле:

    \[{{x}_{1,2}}=\frac{-b\pm \sqrt{D}}{2a}\]

    Отсюда, кстати, и ограничения на дискриминант. Ведь квадратный корень из отрицательного числа не существует. По поводу корней у многих учеников жуткая каша в голове, поэтому я специально записал целый урок: что такое корень в алгебре и как его считать — очень рекомендую почитать .:)

    Действия с рациональными дробями

    Всё, что было написано выше, вы и так знаете, если изучали метод интервалов. А вот то, что мы разберём сейчас, не имеет аналогов в прошлом — это совершенно новый факт.

    Определение. Рациональная дробь — это выражение вида

    \[\frac{P\left(x \right)}{Q\left(x \right)}\]

    где $P\left(x \right)$ и $Q\left(x \right)$ — многочлены.

    Очевидно, что из такой дроби легко получить неравенство — достаточно лишь приписать знак «больше» или «меньше» справа. И чуть дальше мы обнаружим, что решать такие задачи — одно удовольствие, там всё очень просто.

    Проблемы начинаются тогда, когда в одном выражении находятся несколько таких дробей. Их приходится приводить к общему знаменателю — и именно в этот момент допускается большое количество обидных ошибок.

    Поэтому для успешного решения рациональных уравнений необходимо твёрдо усвоить два навыка:

    1. Разложение многочлена $P\left(x \right)$ на множители;
    2. Собственно, приведение дробей к общему знаменателю.

    Как разложить многочлен на множители? Очень просто. Пусть у нас есть многочлена вида

    Приравниваем его к нулю. Получим уравнение $n$-й степени:

    \[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}=0\]

    Допустим, мы решили это уравнение и получили корни ${{x}_{1}},\ ...,\ {{x}_{n}}$ (не пугайтесь: в большинстве случаев этих корней будет не более двух). В таком случае наш исходный многочлен можно переписать так:

    \[\begin{align} & P\left(x \right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}= \\ & ={{a}_{n}}\left(x-{{x}_{1}} \right)\cdot \left(x-{{x}_{2}} \right)\cdot ...\cdot \left(x-{{x}_{n}} \right) \end{align}\]

    Вот и всё! Обратите внимание: старший коэффициент ${{a}_{n}}$ никуда не исчез — он будет отдельным множителем перед скобками, и при необходимости его можно внести в любую из этих скобок (практика показывает, что при ${{a}_{n}}\ne \pm 1$ среди корней почти всегда есть дроби).

    Задача. Упростите выражение:

    \[\frac{{{x}^{2}}+x-20}{x-4}-\frac{2{{x}^{2}}-5x+3}{2x-3}-\frac{4-8x-5{{x}^{2}}}{x+2}\]

    Решение. Для начала посмотрим на знаменатели: все они — линейные двучлены, и раскладывать на множители тут нечего. Поэтому давайте разложим на множители числители:

    \[\begin{align} & {{x}^{2}}+x-20=\left(x+5 \right)\left(x-4 \right); \\ & 2{{x}^{2}}-5x+3=2\left(x-\frac{3}{2} \right)\left(x-1 \right)=\left(2x-3 \right)\left(x-1 \right); \\ & 4-8x-5{{x}^{2}}=-5\left(x+2 \right)\left(x-\frac{2}{5} \right)=\left(x+2 \right)\left(2-5x \right). \\\end{align}\]

    Обратите внимание: во втором многочлене старший коэффициент «2» в полном соответствии с нашей схемой сначала оказался перед скобкой, а затем был внесён в первую скобку, поскольку там вылезла дробь.

    То же самое произошло и в третьем многочлене, только там ещё и порядок слагаемых перепутан. Однако коэффициент «−5» в итоге оказался внесён во вторую скобку (помните: вносить множитель можно в одну и только в одну скобку!), что избавило нас от неудобств, связанных с дробными корнями.

    Что касается первого многочлена, там всё просто: его корни ищутся либо стандартно через дискриминант, либо по теореме Виета.

    Вернёмся к исходному выражению и перепишем его с разложенными на множители числителями:

    \[\begin{matrix} \frac{\left(x+5 \right)\left(x-4 \right)}{x-4}-\frac{\left(2x-3 \right)\left(x-1 \right)}{2x-3}-\frac{\left(x+2 \right)\left(2-5x \right)}{x+2}= \\ =\left(x+5 \right)-\left(x-1 \right)-\left(2-5x \right)= \\ =x+5-x+1-2+5x= \\ =5x+4. \\ \end{matrix}\]

    Ответ: $5x+4$.

    Как видите, ничего сложного. Немного математики 7—8 класса — и всё. Смысл всех преобразований в том и состоит, чтобы получить из сложного и страшного выражения что-нибудь простое, с чем легко работать.

    Однако так будет не всегда. Поэтому сейчас мы рассмотрим более серьёзную задачу.

    Но сначала разберёмся с тем, как привести две дроби к общему знаменателю. Алгоритм предельно прост:

    1. Разложить на множители оба знаменателя;
    2. Рассмотреть первый знаменатель и добавить к нему множители, имеющиеся во втором знаменателе, однако отсутствующие в первом. Полученное произведение и будет общим знаменателем;
    3. Выяснить, каких множителей не хватает каждой из исходных дробей, чтобы знаменатели стали равны общему.

    Возможно, этот алгоритм вам покажется просто текстом, в котором «много букв». Поэтому разберём всё на конкретном примере.

    Задача. Упростите выражение:

    \[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

    Решение. Такие объёмные задачи лучше решать по частям. Выпишем то, что стоит в первой скобке:

    \[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2}\]

    В отличие от предыдущей задачи, тут со знаменателями всё не так просто. Разложим на множители каждый из них.

    Квадратный трёхчлен ${{x}^{2}}+2x+4$ на множители не раскладывается, поскольку уравнение ${{x}^{2}}+2x+4=0$ не имеет корней (дискриминант отрицательный). Оставляем его без изменений.

    Второй знаменатель — кубический многочлен ${{x}^{3}}-8$ — при внимательном рассмотрении является разностью кубов и легко раскладывается по формулам сокращённого умножения:

    \[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

    Больше ничего разложить на множители нельзя, поскольку в первой скобке стоит линейный двучлен, а во второй — уже знакомая нам конструкция, которая не имеет действительных корней.

    Наконец, третий знаменатель представляет собой линейный двучлен, который нельзя разложить. Таким образом, наше уравнение примет вид:

    \[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}\]

    Совершенно очевидно, что общим знаменателем будет именно $\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)$, и для приведения к нему всех дробей необходимо первую дробь домножить на $\left(x-2 \right)$, а последнюю — на $\left({{x}^{2}}+2x+4 \right)$. Затем останется лишь привести подобные:

    \[\begin{matrix} \frac{x\cdot \left(x-2 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1\cdot \left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{x\cdot \left(x-2 \right)+\left({{x}^{2}}+8 \right)-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}. \\ \end{matrix}\]

    Обратите внимание на вторую строчку: когда знаменатель уже общий, т.е. вместо трёх отдельных дробей мы написали одну большую, не стоит сразу избавляться от скобок. Лучше напишите лишнюю строчку и отметьте, что, скажем, перед третьей дробью стоял минус — и он никуда не денется, а будет «висеть» в числителе перед скобкой. Это избавит вас от множества ошибок.

    Ну и в последней строчке полезно разложить на множители числитель. Тем более что это точный квадрат, и нам на помощь вновь приходят формулы сокращённого умножения. Имеем:

    \[\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

    Теперь точно так же разберёмся со второй скобкой. Тут я просто напишу цепочку равенств:

    \[\begin{matrix} \frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2\cdot \left(x+2 \right)}{\left(x-2 \right)\cdot \left(x+2 \right)}= \\ =\frac{{{x}^{2}}+2\cdot \left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}. \\ \end{matrix}\]

    Возвращаемся к исходной задачи и смотрим на произведение:

    \[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

    Ответ: \[\frac{1}{x+2}\].

    Смысл этой задачи такой же, как и у предыдущей: показать, насколько могут упрощаться рациональные выражения, если подойти к их преобразованию с умом.

    И вот теперь, когда вы всё это знаете, давайте перейдём к основной теме сегодняшнего урока — решению дробно-рациональных неравенств. Тем более что после такой подготовки сами неравенства вы будете щёлкать как орешки.:)

    Основной способ решения рациональных неравенств

    Существует как минимум два подхода к решению рациональных неравенств. Сейчас мы рассмотрим один из них — тот, который является общепринятым в школьном курсе математики.

    Но для начала отметим важную деталь. Все неравенства делятся на два типа:

    1. Строгие: $f\left(x \right) \gt 0$ или $f\left(x \right) \lt 0$;
    2. Нестрогие: $f\left(x \right)\ge 0$ или $f\left(x \right)\le 0$.

    Неравенства второго типа легко сводятся к первому, а также уравнению:

    Это небольшое «дополнение» $f\left(x \right)=0$ приводит к такой неприятной штуке как закрашенные точки — мы познакомились с ними ещё в методе интервалов. В остальном никаких отличий между строгими и нестрогими неравенствами нет, поэтому давайте разберём универсальный алгоритм:

    1. Собрать все ненулевые элементы с одной стороны от знака неравенства. Например, слева;
    2. Привести все дроби к общему знаменателю (если таких дробей окажется несколько), привести подобные. Затем по возможности разложить на числитель и знаменатель на множители. Так или иначе мы получим неравенство вида $\frac{P\left(x \right)}{Q\left(x \right)}\vee 0$, где «галочка» — знак неравенства.
    3. Приравниваем числитель к нулю: $P\left(x \right)=0$. Решаем это уравнение и получаем корни ${{x}_{1}}$, ${{x}_{2}}$, ${{x}_{3}}$, ... Затем требуем, чтобы знаменатель был не равен нулю: $Q\left(x \right)\ne 0$. Разумеется, по сути приходится решить уравнение $Q\left(x \right)=0$, и мы получим корни $x_{1}^{*}$, $x_{2}^{*}$, $x_{3}^{*}$, ... (в настоящих задачах таких корней вряд ли будет больше трёх).
    4. Отмечаем все эти корни (и со звёздочками, и без) на единой числовой прямой, причём корни без звёзд закрашены, а со звёздами — выколоты.
    5. Расставляем знаки «плюс» и «минус», выбираем те интервалы, которые нам нужны. Если неравенство имеет вид $f\left(x \right) \gt 0$, то в ответ пойдут интервалы, отмеченные «плюсом». Если $f\left(x \right) \lt 0$, то смотрим на интервалы с «минусами».

    Практика показывает, что наибольшие трудности вызывают пункты 2 и 4 — грамотные преобразования и правильная расстановка чисел в порядке возрастания. Ну, и на последнем шаге будьте предельно внимательны: мы всегда расставляем знаки, опираясь на самое последнее неравенство, записанное перед переходом к уравнениям . Это универсальное правило, унаследованное ещё от метода интервалов.

    Итак, схема есть. Давайте потренируемся.

    Задача. Решите неравенство:

    \[\frac{x-3}{x+7} \lt 0\]

    Решение. Перед нами строгое неравенство вида $f\left(x \right) \lt 0$. Очевидно, пункты 1 и 2 из нашей схемы уже выполнены: все элементы неравенства собраны слева, к общему знаменателю ничего приводить не надо. Поэтому переходим сразу к третьему пункту.

    Приравниваем к нулю числитель:

    \[\begin{align} & x-3=0; \\ & x=3. \end{align}\]

    И знаменатель:

    \[\begin{align} & x+7=0; \\ & {{x}^{*}}=-7. \\ \end{align}\]

    В этом месте многие залипают, ведь по идее нужно записать $x+7\ne 0$, как того требует ОДЗ (на ноль делить нельзя, вот это вот всё). Но ведь в дальнейшем мы будем выкалывать точки, пришедшие из знаменателя, поэтому лишний раз усложнять свои выкладки не стоит — пишите везде знак равенства и не парьтесь. Никто за это баллы не снизит.:)

    Четвёртый пункт. Отмечаем полученные корни на числовой прямой:

    Все точки выколоты, поскольку неравенство — строгое

    Обратите внимание: все точки выколоты, поскольку исходное неравенство строгое . И тут уже неважно: из числителя эти точки пришли или из знаменателя.

    Ну и смотрим знаки. Возьмём любое число ${{x}_{0}} \gt 3$. Например, ${{x}_{0}}=100$ (но с тем же успехом можно было взять ${{x}_{0}}=3,1$ или ${{x}_{0}}=1\ 000\ 000$). Получим:

    Итак, справа от всех корней у нас положительная область. А при переходе через каждый корень знак меняется (так будет не всегда, но об это позже). Поэтому переходим к пятому пункту: расставляем знаки и выбираем нужное:

    Возвращаемся к последнему неравенству, которое было перед решением уравнений. Собственно, оно совпадает с исходным, ведь никаких преобразований в этой задаче мы не выполняли.

    Поскольку требуется решить неравенство вида $f\left(x \right) \lt 0$, я заштриховал интервал $x\in \left(-7;3 \right)$ — он единственный отмечен знаком «минус». Это и есть ответ.

    Ответ: $x\in \left(-7;3 \right)$

    Вот и всё! Разве сложно? Нет, не сложно. Правда, и задачка была лёгкая. Сейчас чуть усложним миссию и рассмотрим более «навороченное» неравенство. При его решении я уже не буду давать столь подробных выкладок — просто обозначу ключевые моменты. В общим, оформим его так, как оформляли бы на самостоятельной работе или экзамене.:)

    Задача. Решите неравенство:

    \[\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0\]

    Решение. Это нестрогое неравенство вида $f\left(x \right)\ge 0$. Все ненулевые элементы собраны слева, разных знаменателей нет. Переходим к уравнениям.

    Числитель:

    \[\begin{align} & \left(7x+1 \right)\left(11x+2 \right)=0 \\ & 7x+1=0\Rightarrow {{x}_{1}}=-\frac{1}{7}; \\ & 11x+2=0\Rightarrow {{x}_{2}}=-\frac{2}{11}. \\ \end{align}\]

    Знаменатель:

    \[\begin{align} & 13x-4=0; \\ & 13x=4; \\ & {{x}^{*}}=\frac{4}{13}. \\ \end{align}\]

    Не знаю, что за извращенец составлял эту задачу, но корни получились не очень: их будет трудно расставить на числовой прямой. И если с корнем ${{x}^{*}}={4}/{13}\;$ всё более-менее ясно (это единственное положительное число — оно будет справа), то ${{x}_{1}}=-{1}/{7}\;$ и ${{x}_{2}}=-{2}/{11}\;$ требуют дополнительного исследования: какое из них больше?

    Выяснить это можно, например, так:

    \[{{x}_{1}}=-\frac{1}{7}=-\frac{2}{14} \gt -\frac{2}{11}={{x}_{2}}\]

    Надеюсь, не нужно объяснять, почему числовая дробь $-{2}/{14}\; \gt -{2}/{11}\;$? Если нужно, рекомендую вспомнить, как выполнять действия с дробями .

    А мы отмечаем все три корня на числовой прямой:

    Точки из числителя закрашены, из знаменателя — выколоты

    Расставляем знаки. Например, можно взять ${{x}_{0}}=1$ и выяснить знак в этой точке:

    \[\begin{align} & f\left(x \right)=\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}; \\ & f\left(1 \right)=\frac{\left(7\cdot 1+1 \right)\left(11\cdot 1+2 \right)}{13\cdot 1-4}=\frac{8\cdot 13}{9} \gt 0. \\\end{align}\]

    Последним неравенством перед уравнениями было $f\left(x \right)\ge 0$, поэтому нас интересует знак «плюс».

    Получили два множества: один — обычный отрезок, а другой — открытый луч на числовой прямой.

    Ответ: $x\in \left[ -\frac{2}{11};-\frac{1}{7} \right]\bigcup \left(\frac{4}{13};+\infty \right)$

    Важное замечание по поводу чисел, которые мы подставляем для выяснения знака на самом правом интервале. Совершенно необязательно подставлять число, близкое к самому правому корню. Можно брать миллиарды или даже «плюс-бесконечность» — в этом случае знак многочлена стоящего в скобке, числителе или знаменателе, определяется исключительно знаком старшего коэффициента.

    Давайте ещё раз посмотрим на функцию $f\left(x \right)$ из последнего неравенства:

    В её записи присутствуют три многочлена:

    \[\begin{align} & {{P}_{1}}\left(x \right)=7x+1; \\ & {{P}_{2}}\left(x \right)=11x+2; \\ & Q\left(x \right)=13x-4. \end{align}\]

    Все они являются линейными двучленами, и у всех старшие коэффициенты (числа 7, 11 и 13) положительны. Следовательно, при подстановке очень больших чисел сами многочлены тоже будут положительны.:)

    Это правило может показаться чрезмерно сложным, но только поначалу, когда мы разбираем совсем лёгкие задачи. В серьёзных неравенствах подстановка «плюс-бесконечности» позволит нам выяснить знаки намного быстрее, нежели стандартное ${{x}_{0}}=100$.

    Мы очень скоро столкнёмся с такими задачами. Но сначала разберём альтернативный способ решения дробно-рациональных неравенств.

    Альтернативный способ

    Этот приём мне подсказала одна из моих учениц. Сам я никогда им не пользовался, однако практика показала, что многим ученикам действительно удобнее решать неравенства именно таким способом.

    Итак, исходные данные те же. Нужно решить дробно-рациональное неравенство:

    \[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\]

    Давайте подумаем: чем многочлен $Q\left(x \right)$ «хуже» многочлена $P\left(x \right)$? Из-за чего нам приходится рассматривать отдельные группы корней (со звёздочкой и без), думать о выколотых точках и т.д.? Всё просто: у дроби есть область определения, согласной которой дробь имеет смысл только тогда, когда её знаменатель отличен от нуля.

    В остальном никаких отличий между числителем и знаменателем не прослеживается: мы так же приравниваем его к нулю, ищем корни, затем отмечаем их на числовой прямой. Так почему бы не заменить дробную черту (фактически — знак деления) обычным умножением, а все требования ОДЗ прописать в виде отдельного неравенства? Например, так:

    \[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\Rightarrow \left\{ \begin{align} & P\left(x \right)\cdot Q\left(x \right) \gt 0, \\ & Q\left(x \right)\ne 0. \\ \end{align} \right.\]

    Обратите внимание: такой подход позволит свести задачу к методу интервалов, но при этом нисколько не усложнит решение. Ведь всё равно мы будем приравнивать многочлен $Q\left(x \right)$ к нулю.

    Давайте посмотрим, как это работает на реальных задачах.

    Задача. Решите неравенство:

    \[\frac{x+8}{x-11} \gt 0\]

    Решение. Итак, переходим к методу интервалов:

    \[\frac{x+8}{x-11} \gt 0\Rightarrow \left\{ \begin{align} & \left(x+8 \right)\left(x-11 \right) \gt 0, \\ & x-11\ne 0. \\ \end{align} \right.\]

    Первое неравенство решается элементарно. Просто приравниваем каждую скобку к нулю:

    \[\begin{align} & x+8=0\Rightarrow {{x}_{1}}=-8; \\ & x-11=0\Rightarrow {{x}_{2}}=11. \\ \end{align}\]

    Со вторым неравенством тоже всё просто:

    Отмечаем точки ${{x}_{1}}$ и ${{x}_{2}}$ на числовой прямой. Все они выколоты, поскольку неравенство строгое:

    Правая точка оказалась выколотой дважды. Это нормально.

    Обратите внимание на точку $x=11$. Получается, что она «дважды выколота»: с одной стороны, мы выкалываем её из-за строгости неравенства, с другой — из-за дополнительного требования ОДЗ.

    В любом случае, это будет просто выколотая точка. Поэтому расставляем знаки для неравенства $\left(x+8 \right)\left(x-11 \right) \gt 0$ — последнего, которое мы видели перед тем, как начали решать уравнения:

    Нас интересуют положительные области, поскольку мы решаем неравенство вида $f\left(x \right) \gt 0$ — их и закрасим. Осталось лишь записать ответ.

    Ответ. $x\in \left(-\infty ;-8 \right)\bigcup \left(11;+\infty \right)$

    На примере этого решения хотел бы предостеречь вас от распространённой ошибки среди начинающих учеников. А именно: никогда не раскрывайте скобки в неравенствах! Наоборот, старайтесь всё разложить на множители — это упростит решение и избавит вас от множества проблем.

    Теперь попробуем кое-что посложнее.

    Задача. Решите неравенство:

    \[\frac{\left(2x-13 \right)\left(12x-9 \right)}{15x+33}\le 0\]

    Решение. Это нестрогое неравенство вида $f\left(x \right)\le 0$, поэтому здесь нужно внимательно следить за закрашенными точками.

    Переходим к методу интервалов:

    \[\left\{ \begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)\le 0, \\ & 15x+33\ne 0. \\ \end{align} \right.\]

    Переходим к уравнению:

    \[\begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0 \\ & 2x-13=0\Rightarrow {{x}_{1}}=6,5; \\ & 12x-9=0\Rightarrow {{x}_{2}}=0,75; \\ & 15x+33=0\Rightarrow {{x}_{3}}=-2,2. \\ \end{align}\]

    Учитываем дополнительное требование:

    Отмечаем все полученные корни на числовой прямой:

    Если точка одновременно и выколота, и закрашена, она считается выколотой

    Опять две точки «накладываются» друг на друга — это нормально, так будет всегда. Важно лишь понимать, что точка, отмеченная одновременно выколотой и закрашенной, на самом деле является выколотой. Т.е. «выкалывание» — более сильное действие, чем «закрашивание».

    Это абсолютно логично, ведь выкалыванием мы отмечаем точки, которые влияют на знак функции, но сами не участвуют в ответе. И если в какой-то момент число перестаёт нас устраивать (например, не попадает в ОДЗ), мы вычёркиваем его из рассмотрения до самого конца задачи.

    В общем, хватит философствовать. Расставляем знаки и закрашиваем те интервалы, которые отмечены знаком «минус»:

    Ответ. $x\in \left(-\infty ;-2,2 \right)\bigcup \left[ 0,75;6,5 \right]$.

    И снова хотел обратить ваше внимание вот на это уравнение:

    \[\left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0\]

    Ещё раз: никогда не раскрывайте скобки в таких уравнениях! Вы только усложните себе задачу. Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Следовательно, данное уравнение просто «разваливается» на несколько более мелких, которые мы и решали в предыдущей задаче.

    Учёт кратности корней

    Из предыдущих задач легко заметить, что наибольшую сложность представляют именно нестрогие неравенства, потому как в них приходится следить за закрашенными точками.

    Но в мире есть ещё большее зло — это кратные корни в неравенствах. Тут уже приходится следить не за какими-то там закрашенными точками — тут знак неравенства может внезапно не поменяться при переходе через эти самые точки.

    Ничего подобного мы в этом уроке ещё не рассматривали (хотя аналогичная проблема часто встречалась в методе интервалов). Поэтому введём новое определение:

    Определение. Корень уравнения ${{\left(x-a \right)}^{n}}=0$ равен $x=a$ и называется корнем $n$-й кратности.

    Собственно, нас не особо интересует точное значение кратности. Важно лишь то, чётным или нечётным является это самое число $n$. Потому что:

    1. Если $x=a$ — корень чётной кратности, то знак функции при переходе через него не меняется;
    2. И наоборот, если $x=a$ — корень нечётной кратности, то знак функции поменяется.

    Частным случаем корня нечётной кратности являются все предыдущие задачи, рассмотренные в этом уроке: там везде кратность равна единице.

    И ещё. Перед тем, как мы начнём решать задачи, хотел бы обратить ваше внимание на одну тонкость, которая покажется очевидной для опытного ученика, но вгоняет в ступор многих начинающих. А именно:

    Корень кратности $n$ возникает только в том случае, когда в эту степень возводится всё выражение: ${{\left(x-a \right)}^{n}}$, а никак не $\left({{x}^{n}}-a \right)$.

    Ещё раз: скобка ${{\left(x-a \right)}^{n}}$ даёт нам корень $x=a$ кратности $n$, а вот скобка $\left({{x}^{n}}-a \right)$ или, как часто бывает, $(a-{{x}^{n}})$ даёт нам корень (или два корня, если $n$ — чётное) первой кратности вне зависимости от того, чему равно $n$.

    Сравните:

    \[{{\left(x-3 \right)}^{5}}=0\Rightarrow x=3\left(5k \right)\]

    Здесь всё чётко: вся скобка возводилась в пятую степень, поэтому на выходе мы получили корень пятой степени. А теперь:

    \[\left({{x}^{2}}-4 \right)=0\Rightarrow {{x}^{2}}=4\Rightarrow x=\pm 2\]

    Мы получили два корня, но оба они имеют первую кратность. Или вот ещё:

    \[\left({{x}^{10}}-1024 \right)=0\Rightarrow {{x}^{10}}=1024\Rightarrow x=\pm 2\]

    И пусть вас не смущает десятая степень. Главное, что 10 — это чётное число, поэтому на выходе имеем два корня, и оба они вновь имеют первую кратность.

    В общем будьте внимательны: кратность возникает только тогда, когда степень относится ко всей скобке, а не только к переменной .

    Задача. Решите неравенство:

    \[\frac{{{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)}{{{\left(x+7 \right)}^{5}}}\ge 0\]

    Решение. Попробуем решить её альтернативным способом — через переход от частного к произведению:

    \[\left\{ \begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}\ge 0, \\ & {{\left(x+7 \right)}^{5}}\ne 0. \\ \end{align} \right.\]

    Разбираемся с первым неравенством методом интервалов:

    \[\begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}=0; \\ & {{x}^{2}}=0\Rightarrow x=0\left(2k \right); \\ & {{\left(6-x \right)}^{3}}=0\Rightarrow x=6\left(3k \right); \\ & x+4=0\Rightarrow x=-4; \\ & {{\left(x+7 \right)}^{5}}=0\Rightarrow x=-7\left(5k \right). \\ \end{align}\]

    Дополнительно решаем второе неравенство. На самом деле мы уже решали его, но чтобы проверяющие не придрались к решению, лучше решить его ещё раз:

    \[{{\left(x+7 \right)}^{5}}\ne 0\Rightarrow x\ne -7\]

    Обратите внимание: никаких кратностей в последнем неравенстве нет. В самом деле: какая разница, сколько раз вычёркивать точку $x=-7$ на числовой прямой? Хоть один раз, хоть пять — результат будет один и тот же: выколотая точка.

    Отметим всё, что мы получили, на числовой прямой:

    Как я и говорил, точка $x=-7$ в итоге будет выколота. Кратности расставлены исходя из решения неравенства методом интервалов.

    Осталось расставить знаки:

    Поскольку точка $x=0$ является корнем чётной кратности, знак при переходе через неё не меняется. Остальные точки имеют нечётную кратность, и с ними всё просто.

    Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left[ -4;6 \right]$

    Ещё раз обратите внимание на $x=0$. Из-за чётной кратности возникает интересный эффект: слева от неё всё закрашено, справа — тоже, да и сама точка вполне себе закрашена.

    Как следствие, её не нужно обособлять при записи ответа. Т.е. не надо писать что-нибудь в духе $x\in \left[ -4;0 \right]\bigcup \left[ 0;6 \right]$ (хотя формально такой ответ тоже будет правильным). Вместо этого сразу пишем $x\in \left[ -4;6 \right]$.

    Такие эффекты возможны только при корнях чётной кратности. И в следующей задаче мы столкнёмся с обратным «проявлением» этого эффекта. Готовы?

    Задача. Решите неравенство:

    \[\frac{{{\left(x-3 \right)}^{4}}\left(x-4 \right)}{{{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)}\ge 0\]

    Решение. В этот раз пойдём по стандартной схеме. Приравниваем к нулю числитель:

    \[\begin{align} & {{\left(x-3 \right)}^{4}}\left(x-4 \right)=0; \\ & {{\left(x-3 \right)}^{4}}=0\Rightarrow {{x}_{1}}=3\left(4k \right); \\ & x-4=0\Rightarrow {{x}_{2}}=4. \\ \end{align}\]

    И знаменатель:

    \[\begin{align} & {{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)=0; \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{1}^{*}=1\left(2k \right); \\ & 7x-10-{{x}^{2}}=0\Rightarrow x_{2}^{*}=5;\ x_{3}^{*}=2. \\ \end{align}\]

    Поскольку мы решаем нестрогое неравенство вида $f\left(x \right)\ge 0$, корни из знаменателя (которые со звёздочками) будут выколоты, а из числителя — закрашены.

    Расставляем знаки и штрихуем области, отмеченные «плюсом»:

    Точка $x=3$ — изолированная. Это часть ответа

    Перед тем, как записать окончательный ответ, внимательно посмотрим на картинку:

    1. Точка $x=1$ имеет чётную кратность, но сама выколота. Следовательно, её придётся обособить в ответе: нужно записать $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left(-\infty ;2 \right)$.
    2. Точка $x=3$ тоже имеет чётную кратность и при этом закрашена. Расстановка знаков свидетельствует, что сама точка нас устраивает, но шаг влево-вправо — и мы попадаем в область, которая нас точно не устраивает. Такие точки называются изолированными и записываются в виде $x\in \left\{ 3 \right\}$.

    Объединяем все полученные кусочки в общее множество и записываем ответ.

    Ответ: $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;5 \right)$

    Определение. Решить неравенство — значит найти множество всех его решений , либо доказать, что это множество пусто.

    Казалось бы: что тут может быть непонятны? Да в том-то и дело, что множества можно задавать по-разному. Давайте ещё раз выпишем ответ к последней задаче:

    Читаем буквально, что написано. Переменная «икс» принадлежит некому множеству, которое получается объединением (значок «U») четырёх отдельных множеств:

    • Интервал $\left(-\infty ;1 \right)$, который буквально означает «все числа, меньшие единицы, но не сама единица»;
    • Интервал $\left(1;2 \right)$, т.е. «все числа в пределах от 1 до 2, но не сами числа 1 и 2»;
    • Множество $\left\{ 3 \right\}$, состоящее из одного-единственного числа — тройки;
    • Интервал $\left[ 4;5 \right)$, содержащий все числа в пределах от 4 до 5, а также саму четвёрку, но не пятёрку.

    Интерес здесь представляет третий пункт. В отличие от интервалов, которые задают бесконечные наборы чисел и лишь обозначают лишь границы этих наборов, множество $\left\{ 3 \right\}$ задаёт строго одно число путём перечисления.

    Чтобы понять, что мы именно перечисляем конкретные числа, входящие в множество (а не задаём границы или что-либо ещё), используются фигурные скобки. Например, запись $\left\{ 1;2 \right\}$ означает именно «множество, состоящее из двух чисел: 1 и 2», но никак не отрезок от 1 до 2. Ни в коем случае не путайте эти понятия.

    Правило сложения кратностей

    Ну и в заключение сегодняшнего урока немного жести от Павла Бердова.:)

    Внимательные ученики уже наверняка задались вопросом: а что будет, если в числителе и знаменателе обнаружатся одинаковые корни? Так вот, работает следующее правило:

    Кратности одинаковых корней складываются. Всегда. Даже если этот корень встречается и в числителе, и в знаменателе.

    Иногда лучше решать, чем говорить. Поэтому решаем следующую задачу:

    Задача. Решите неравенство:

    \[\frac{{{x}^{2}}+6x+8}{\left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)}\ge 0\]

    \[\begin{align} & {{x}^{2}}+6x+8=0 \\ & {{x}_{1}}=-2;\ {{x}_{2}}=-4. \\ \end{align}\]

    Пока ничего особенного. Приравниваем к нулю знаменатель:

    \[\begin{align} & \left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)=0 \\ & {{x}^{2}}-16=0\Rightarrow x_{1}^{*}=4;\ x_{2}^{*}=-4; \\ & {{x}^{2}}+9x+14=0\Rightarrow x_{3}^{*}=-7;\ x_{4}^{*}=-2. \\ \end{align}\]

    Обнаружены два одинаковых корня: ${{x}_{1}}=-2$ и $x_{4}^{*}=-2$. Оба имеют первую кратность. Следовательно заменяем их одним корнем $x_{4}^{*}=-2$, но уже с кратностью 1+1=2.

    Кроме того, есть ещё одинаковые корни: ${{x}_{2}}=-4$ и $x_{2}^{*}=-4$. Они тоже первой кратности, поэтому останется лишь $x_{2}^{*}=-4$ кратности 1+1=2.

    Обратите внимание: в обоих случаях мы оставили именно «выколотый» корень, а «закрашенный» выкинули из рассмотрения. Потому что ещё в начале урока договорились: если точка одновременно и выколотая, и закрашенная, то мы всё равно считаем её выколотой.

    В итоге у нас есть четыре корня, причём все оказались выколоты:

    \[\begin{align} & x_{1}^{*}=4; \\ & x_{2}^{*}=-4\left(2k \right); \\ & x_{3}^{*}=-7; \\ & x_{4}^{*}=-2\left(2k \right). \\ \end{align}\]

    Отмечаем их на числовой прямой с учётом кратности:

    Расставляем знаки и закрашиваем интересующие нас области:

    Всё. Никаких изолированных точек и прочих извращений. Можно записывать ответ.

    Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left(4;+\infty \right)$.

    Правило умножения кратностей

    Иногда встречается ещё более неприятная ситуация: уравнение, имеющее кратные корни, само возводится в некоторую степень. При этом меняются кратности всех исходных корней.

    Такое встречается редко, поэтому большинство учеников не имеют опыта решения подобных задач. А правило здесь следующее:

    При возведении уравнения в степень $n$ кратности всех его корней тоже увеличиваются в $n$ раз.

    Другими словами, возведение в степень приводит к умножению кратностей на эту же степень. Рассмотрим это правило на примере:

    Задача. Решите неравенство:

    \[\frac{x{{\left({{x}^{2}}-6x+9 \right)}^{2}}{{\left(x-4 \right)}^{5}}}{{{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}}\le 0\]

    Решение. Приравниваем к нулю числитель:

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. С первым множителем всё понятно: $x=0$. А вот дальше начинаются проблемы:

    \[\begin{align} & {{\left({{x}^{2}}-6x+9 \right)}^{2}}=0; \\ & {{x}^{2}}-6x+9=0\left(2k \right); \\ & D={{6}^{3}}-4\cdot 9=0 \\ & {{x}_{2}}=3\left(2k \right)\left(2k \right) \\ & {{x}_{2}}=3\left(4k \right) \\ \end{align}\]

    Как видим, уравнение ${{x}^{2}}-6x+9=0$ имеет единственный корень второй кратности: $x=3$. Затем всё это уравнение возводится в квадрат. Следовательно, кратность корня составит $2\cdot 2=4$, что мы в итоге и записали.

    \[{{\left(x-4 \right)}^{5}}=0\Rightarrow x=4\left(5k \right)\]

    Со знаменателем тоже никаких проблем:

    \[\begin{align} & {{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}=0; \\ & {{\left(2-x \right)}^{3}}=0\Rightarrow x_{1}^{*}=2\left(3k \right); \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{2}^{*}=1\left(2k \right). \\ \end{align}\]

    В сумме у нас получилось пять точек: две выколотых и три закрашенных. Совпадающих корней в числителе и знаменателе не наблюдается, поэтому просто отмечаем их на числовой прямой:

    Расставляем знаки с учётом кратностей и закрашиваем интересующие нас интервалы:

    Снова одна изолированная точка и одна выколотая

    Из-за корней чётной кратности вновь получили парочку «нестандартных» элементов. Это $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left[ 0;2 \right)$, а также изолированная точка $x\in \left\{ 3 \right\}$.

    Ответ. $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;+\infty \right)$

    Как видите, всё не так сложно. Главное — внимательность. Последний раздел этого урока посвящён преобразованиям — тем самым, которые мы обсуждали в самом начале.

    Предварительные преобразования

    Неравенства, которые мы разберём в этом разделе, нельзя назвать сложными. Однако в отличие от предыдущих задач здесь придётся применить навыки из теории рациональных дробей — разложение на множители и приведение к общему знаменателю.

    Мы детально обсуждали этот вопрос в самом начале сегодняшнего урока. Если вы не уверены, что понимаете, о чём речь — настоятельно рекомендую вернуться и повторить. Потому что нет никакого смысла зубрить методы решения неравенств, если вы «плаваете» в преобразовании дробей.

    В домашней работе, кстати, тоже будет много подобных задач. Они вынесены в отдельный подраздел. И там вас ждут весьма нетривиальные примеры. Но это будет в домашке, а сейчас давайте разберём парочку таких неравенств.

    Задача. Решите неравенство:

    \[\frac{x}{x-1}\le \frac{x-2}{x}\]

    Решение. Переносим всё влево:

    \[\frac{x}{x-1}-\frac{x-2}{x}\le 0\]

    Приводим к общему знаменателю, раскрываем скобки, приводим подобные слагаемые в числителе:

    \[\begin{align} & \frac{x\cdot x}{\left(x-1 \right)\cdot x}-\frac{\left(x-2 \right)\left(x-1 \right)}{x\cdot \left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-\left({{x}^{2}}-2x-x+2 \right)}{x\left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-{{x}^{2}}+3x-2}{x\left(x-1 \right)}\le 0; \\ & \frac{3x-2}{x\left(x-1 \right)}\le 0. \\\end{align}\]

    Теперь перед нами классическое дробно-рациональное неравенство, решение которого уже не представляет трудности. Предлагаю решить его альтернативным методом — через метод интервалов:

    \[\begin{align} & \left(3x-2 \right)\cdot x\cdot \left(x-1 \right)=0; \\ & {{x}_{1}}=\frac{2}{3};\ {{x}_{2}}=0;\ {{x}_{3}}=1. \\ \end{align}\]

    Не забываем ограничение, пришедшее из знаменателя:

    Отмечаем все числа и ограничения на числовой прямой:

    Все корни имеют первую кратность. Никаких проблем. Просто расставляем знаки и закрашиваем нужные нам области:

    Это всё. Можно записывать ответ.

    Ответ. $x\in \left(-\infty ;0 \right)\bigcup \left[ {2}/{3}\;;1 \right)$.

    Разумеется, это был совсем уж просто пример. Поэтому сейчас рассмотрим задачу посерьёзнее. И кстати, уровень этой задачи вполне соответствует самостоятельным и контрольным работам по этой теме в 8 классе.

    Задача. Решите неравенство:

    \[\frac{1}{{{x}^{2}}+8x-9}\ge \frac{1}{3{{x}^{2}}-5x+2}\]

    Решение. Переносим всё влево:

    \[\frac{1}{{{x}^{2}}+8x-9}-\frac{1}{3{{x}^{2}}-5x+2}\ge 0\]

    Перед тем как приводить обе дроби к общему знаменателю, разложим эти знаменатели на множители. Вдруг вылезут одинаковы скобки? С первым знаменателем легко:

    \[{{x}^{2}}+8x-9=\left(x-1 \right)\left(x+9 \right)\]

    Со вторым чуть сложнее. Не стесняйтесь вносить множитель-константу в ту скобку, где обнаружилась дробь. Помните: исходный многочлен имел целые коэффициенты, поэтому велика вероятность, что и разложение на множители будет иметь целые коэффициенты (на самом деле так будет всегда, за исключением случаев, когда дискриминант иррационален).

    \[\begin{align} & 3{{x}^{2}}-5x+2=3\left(x-1 \right)\left(x-\frac{2}{3} \right)= \\ & =\left(x-1 \right)\left(3x-2 \right) \end{align}\]

    Как видим, есть общая скобка: $\left(x-1 \right)$. Возвращаемся к неравенству и приводим обе дроби к общему знаменателю:

    \[\begin{align} & \frac{1}{\left(x-1 \right)\left(x+9 \right)}-\frac{1}{\left(x-1 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{1\cdot \left(3x-2 \right)-1\cdot \left(x+9 \right)}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{3x-2-x-9}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{2x-11}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ \end{align}\]

    Приравниваем к нулю знаменатель:

    \[\begin{align} & \left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)=0; \\ & x_{1}^{*}=1;\ x_{2}^{*}=-9;\ x_{3}^{*}=\frac{2}{3} \\ \end{align}\]

    Никаких кратностей и совпадающих корней. Отмечаем четыре числа на прямой:

    Расставляем знаки:

    Записываем ответ.

    Ответ: $x\in \left(-\infty ;-9 \right)\bigcup \left({2}/{3}\;;1 \right)\bigcup \left[ 5,5;+\infty \right)$.




Top