Решение уравнений и неравенств с параметрами. §2

Многие задачи с параметром сводятся к исследованию квадратного трёхчлена, поэтому рассмотрим эти задачи подробнее.

I. При решении простейших задач бывает достаточно формулы для корней квадратного уравнения и теоремы Виета.

При каких значениях параметра a a множество решений неравенства $$x^2+ax-1

Поскольку коэффициент при x 2 x^2 положителен, решением неравенства является интервал между корнями в случае $$D > 0$$ и пустое множество, если D ≤ 0 D \leq 0 .

Находим дискриминант: D = a 2 + 4 D = a^2+4 ($$D>0$$ при всех a a). Тогда множество решений есть промежуток

x ∈ (- a - a 2 + 4 2 ; - a + a 2 + 4 2) x \in (\dfrac{-a-\sqrt{a^2+4}}{2}; \dfrac{-a+\sqrt{a^2+4}}{2}) . Требуется, чтобы длина этого промежутка была равна 5, т. е.

A + a 2 + 4 2 = - a - a 2 + 4 2 + 5 ⇔ a 2 + 4 = 5 ⇔ a = ± 21 \dfrac{-a+\sqrt{a^2+4}}{2} = \dfrac{-a-\sqrt{a^2+4}}{2} + 5 \Leftrightarrow \sqrt{a^2+4}=5 \Leftrightarrow a = \pm \sqrt{21} .

ОТВЕТ

A = ± 21 a = \pm \sqrt{21}

При каких значениях параметра p p уравнение x 2 + p 2 + 4 p · x + p - 1 x^2+\sqrt{p^2+4p}\cdot x +p-1 имеет корни, а сумма квадратов корней минимальна?

Сумму квадратов корней уравнения удобно выразить с помощью теоремы Виета:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = (- p 2 + 4 p) 2 - 2 (p - 1) = p 2 + 2 p + 2 x_1^2+x_2^2 = (x_1+x_2)^2-2x_1x_2=(-\sqrt{p^2+4p})^2-2(p-1) = p^2 +2p + 2 .

Но прежде, чем применять теорему Виета, обязательно нужно проверить, что уравнение имеет корни! Для этого вычисляем дискриминант: D = p 2 + 4 p - 4 (p - 1) = p 2 + 4 D = p^2+4p-4(p-1) = p^2+4 . Видим, что дискриминант положителен при любых допустимых значениях p p , т. е. при

p ∈ (- ∞ ; - 4 ] ∪ [ 0 ; + ∞)                           (5) p \in (-\infty; -4]\bigcup и пр.), в которых надо самостоятельно нарисовать чертёж и сделать соответствующие выводы.

Замечания. 1. Для уравнений и неравенств вида

$$ax^2 + bx + c = 0,\: ax^2 + bx + c > 0, \: ax^2 + bx + c надо отдельно рассматривать случай a = 0 a =0 . Тогда получится линейное уравнение (неравенство).

2. В большинстве задач важно учесть знак числа a a - от этого зависит направление ветвей параболы.

3. Заметим, что совокупность двух систем

$$\begin{cases} a > 0, \\ f(a) > 0 \end{cases} и \begin{cases} a

равносильна неравенству $$a f(a) > 0$$. Поэтому в условии 1 ° 1^{\circ} можно записать одну систему $$\begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}}

Аналогично можно упростить и другие условия:

$$2^{\circ} \Leftrightarrow \begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}} > A .\end{cases} \:\:\: 3^{\circ} \Leftrightarrow a f(A) 0, \\ a f(A) > 0, \\ a f(B) > 0, \\ A

Перейдём к примерам.

При каких a a уравнение (2 a - 2) x 2 + (a + 1) x + 1 = 0 (2a-2)x^2 + (a+1)x +1 = 0 имеет корни, и все они принадлежат интервалу (- 2 ; 0) (-2; 0) ?

1) Если 2 a - 2 = 0   (a = 1) 2a-2=0\:(a=1) , то уравнение принимает вид 2 x + 1 = 0 2x+1=0 . Это уравнение имеет единственный корень x = - 0,5 x=-0,5 , который принадлежит интервалу (- 2 ; 0) (-2; 0) . Значит, a = 1 a =1 удовлетворяет условию задачи.

2) Если 2 a - 2 ≠ 0 2a-2 \neq 0 , то уравнение квадратное. Находим дискриминант:

D = (a + 1) 2 - 4 (2 a - 2) = a 2 - 6 a + 9 = (a - 3) 2 D=(a+1)^2-4(2a-2)=a^2-6a+9=(a-3)^2 .

Поскольку дискриминант является полным квадратом, находим корни(как правило, вышеописанные приёмы с расположением корней удобно использовать, если формулы для корней громоздкие. Если дискриминант является полным квадратом и корни получаются “хорошими”, то проще решить задачу напрямую):

Для выполнения условий задачи требуется, чтобы выполнялось неравенство $$-2 \dfrac{3}{2}$$.

ОТВЕТ

A ∈ { 1 } ∪ (3 2 ; + ∞) a \in \{1\}\bigcup (\dfrac{3}{2}; +\infty) .

При каких значениях a a неравенство $$4^{\textrm{sin}\:x}-2\cdot (a-3) \cdot 2^{\textrm{sin}\:x} + a+3 > 0$$ выполняется для всех x x ?

Обозначим 2 sin   x = y 2^{\textrm{sin}\:x}=y . Поскольку - 1 ≤ sin   x ≤ 1 -1 \leq \textrm{sin}\:x \leq 1 , получаем, что 1 2 ≤ 2 sin   x ≤ 2 \dfrac{1}{2} \leq 2^{\textrm{sin}\:x} \leq 2 . Исходное неравенство принимает вид

$$y^2-2(a-3)y+(a+3) > 0$$

Данная задача эквивалентна следующей: «при каких a a неравенство $$y^2-2(a-3)y+(a+3) > 0$$ выполнено для всех y ∈ [ 1 2 ; 2 ] y \in [\dfrac{1}{2};2] ?»

График левой части этого неравенства - парабола с ветвями вверх. Требования задачи будут выполнены в двух случаях. 1) $$D

а) Это расположение параболы (корни находятся слева от отрезка [ 1 2 ; 2 ] [\dfrac{1}{2};2]) задаётся условиями (записываем и решаем систему):

$$\begin{cases} D \geq 0,\\ x_{\text{в}} 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 0 \end{cases} \Leftrightarrow \begin{cases} a \in (-\infty;1]\bigcup]6;+\infty),\\ a 0 \end{cases} \Leftrightarrow a \leq 1 $$.

б) Этот случай задаётся условием $$D

в) Аналогично случаю а) получаем систему:

$$\!\!\!\! \begin{cases} D \geq 0,\\ x_{\text{в}} > 2,\\ f(2) > 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 > 2,\\ 4 - 4(a-3) +a+3 > 0 \end{cases} \Leftrightarrow \begin{cases} a\in (-\infty; 1]\bigcup ?

1) Рассматриваем случай a = 0 a = 0 (тогда уравнение не квадратное). Уравнение принимает вид - 5 x - 6 = 0 -5x-6=0 . Корней на отрезке [ 0 ; 2 ] нет, поэтому a = 0 a = 0 не подходит.

2) Уравнение квадратное. Обозначим левую часть уравнения через f (x) f(x) . Уравнение имеет на отрезке [ 0 ; 2 ] ровно один корень в двух случаях.

А) Уравнение имеет единственный корень, и он принадлежит отрезку [ 0 ; 2 ] . Это возможно при D = 0 D = 0 . Вычисляем дискриминант:

D = (2 a - 5) 2 - 4 a (a - 6) = 4 a + 25 D = (2a-5)^2-4a(a-6) = 4a+25 .

Дискриминант обращается в ноль при a = - 25 4 a=-\dfrac{25}{4} . При этом исходное уравнение принимает вид - 25 4 x 2 - 35 2 x - 49 4 = 0 -\dfrac{25}{4}x^2-\dfrac{35}{2}x - \dfrac{49}{4} = 0 , откуда x = - 7 5 x = -\dfrac{7}{5} . Корней на отрезке [ 0 ; 2 ] нет, значит, этот случай не реализуется ни при каких значениях параметра a a .

Б) Уравнение имеет два корня ($$D>0 \Leftrightarrow a>-\dfrac{25}{4}$$), один из которых принадлежит отрезку [ 0 ; 2 ] , а другой - нет. Для выполнения этого условия необходимо и достаточно, чтобы либо (а) функция f (x) f(x) принимала на концах отрезка [ 0 ; 2 ] значения разных знаков - тогда корень лежит в интервале (0 ; 2) (0;2) (в качестве примера(можете самостоятельно рассмотреть и другие возможные расположения параболы) см. рис. 7), либо (б) в одном из концов отрезка обращалась в ноль - тогда корень лежит на одном из концов отрезка.

(а) Условие “числа f (0) f(0) и f (2) f(2) имеют разные знаки” равносильно неравенству $$f(0)\cdot f(2)

$$\left(a-6\right)\left(4a+2\left(2a-5\right)+\left(a-6\right)\right)

(б) Если f (0) = 0 f(0) = 0 , то a = 6 a=6 . Тогда уравнение принимает вид 6 x 2 + 7 x = 0 6x^2+7x=0 . Его корнями являются числа x = 0 x=0 и x = - 7 6 x=-\dfrac{7}{6} , т. е. на отрезке [ 0 ; 2 ] оно имеет ровно один корень.

Если f (2) = 0 f(2) = 0 , то a = 16 9 a=\dfrac{16}{9} . Тогда получаем 16 9 x 2 - 13 9 x - 38 9 = 0 \dfrac{16}{9}x^2 - \dfrac{13}{9}x - \dfrac{38}{9} = 0 , откуда x = 2 x=2 или x = - 19 16 x=-\dfrac{19}{16} , т. е. опять из двух корней только один принадлежит отрезку [ 0 ; 2 ] .

Значит, оба значения a = 6 a=6 и a = 16 9 a=\dfrac{16}{9} и удовлетворяют условию задачи(при f (2) = 0 f(2) = 0 или f (0) = 0 f(0) = 0 обязательно надо найти второй корень и посмотреть, находится ли он на отрезке [ 0 ; 2 ] ).

Объединяя результаты, получаем a ∈ [ 16 9 ; 6 ] a\in [\dfrac{16}{9}; 6] .

ОТВЕТ

16 9 ≤ a ≤ 6 \dfrac{16}{9} \leq a \leq 6

При каких значениях параметра a a уравнение | x 2 - 4 | x | + 3 | = a |x^2-4|x|+3| = a имеет ровно 8 решений?

Изобразим графики левой и правой частей на плоскости xOy.

Чтобы построить график левой части, сначала изображаем параболу y = x 2 - 4 x + 3 y = x^2-4x+3 . Затем отражаем все точки этой параболы, лежащие ниже оси абсцисс, относительно этой оси и получаем график функции y = | x 2 - 4 x + 3 | y=|x^2-4x+3| (рис. 8а). Далее отбрасываем все точки, лежащие слева от оси абсцисс, а оставшиеся точки отражаем относительно этой оси - получаем график функции y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| .

График правой части - это горизонтальная прямая y = a y=a . Уравнение имеет 8 решений, когда эта прямая пересекает график y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| в восьми точках. Несложно видеть, что это происходит при $$0ОТВЕТ

A ∈ (0 ; 1) a\in (0;1)

Найдите все значения параметра p p , при которых уравнение 4 x + 2 x + 2 + 7 = p - 4 - x - 2 · 2 1 - x 4^x+2^{x+2}+7=p-4^{-x}-2\cdot 2^{1-x} имеет хотя бы одно решение.

Перепишем уравнение в виде (4 x + 4 - x) + 4 · (2 x + 2 - x) = p - 7 (4^x+4^{-x})+4\cdot (2^x+2^{-x})=p-7 и сделаем замену 2 x + 2 - x = t 2^x+2^{-x}=t . Возводя обе части последнего равенства в квадрат, получаем, что t 2 = (2 x + 2 - x) 2 = 4 x + 2 + 4 - x t^2=(2^x+2^{-x})^2=4^x+2+4^{-x} , откуда 4 x + 4 - x = t 2 - 2 4^x+4^{-x} = t^2-2 . Уравнение принимает вид t 2 - 2 + 4 t = p - 7 ⇔ (t + 2) 2 = p - 1 t^2-2+4t = p-7 \Leftrightarrow (t+2)^2 = p-1 .

Найдём множество значений левой части уравнения. Поскольку(используем, что сумма двух взаимно обратных положительных чисел не меньше двух: a + 1 a ≥ 2 a+\dfrac{1}{a} \geq 2 при $$a>0$$ 0 (равенство возможно только при a = 1 a = 1). Это можно доказать, например, с помощью неравенства Коши: для положительных чисел среднее арифметическое не меньше среднего геометрического (a 1 + a 2 + . . . + a k k ≥ a 1 · a 2 · . . · a k k) (\dfrac{a_1+a_2+...+a_k}{k} \geq \sqrt[k]{a_1\cdot a_2\cdot .. \cdot a_k}) , причём равенство достигается только в случае a 1 = a 2 = . . . = a k a_1=a_2=...=a_k . Для двух положительных чисел это неравенство принимает вид a + b 2 ≥ a b \dfrac{a+b}{2} \geq \sqrt{ab} . Если сюда подставить b = 1 a b = \dfrac{1}{a} , то получится требуемое неравенство.) t ≥ 2 t \geq 2 , получаем, что левая часть уравнения принимает значения из промежутка [ 16 ; + ∞) при а € (0; 1);
х € R при а = 0.

Пример 3.

Решить неравенство |1 + x| ≤ аx относительно х.

Решение.

Из условия следует, что правая часть неравенства ах должна быть не отрицательна, т.е. ах ≥ 0. По правилу раскрытия модуля из неравенства |1 + x| ≤ аx имеем двойное неравенство

Ах ≤ 1 + x ≤ аx. Перепишем результат в виде системы:

{аx ≥ 1 + x;
{-ах ≤ 1 + x.

Преобразуем к виду:

{(а – 1)x ≥ 1;
{(а + 1)х ≥ -1.

Исследуем полученную систему на интервалах и в точках (рис. 1) :

При а ≤ -1 х € (-∞; 1/(а – 1)].

При -1 < а < 0 x € [-1/(а – 1); 1/(а – 1)].

При а = 0 x = -1.

При 0 < а ≤ 1 решений нет.

Графический метод решения неравенств

Построение графиков значительно упрощает решение уравнений, содержащих параметр. Использование графического метода при решении неравенств с параметром еще нагляднее и целесообразнее.

Графическое решение неравенств вида f(x) ≥ g(x) означает нахождение значений переменной х, при которых график функции f(x) лежит выше графика функции g(x). Для этого всегда необходимо найти точки пересечения графиков (если они существуют).

Пример 1.

Решить неравенство |x + 5| < bx.

Решение.

Строим графики функций у = |x + 5| и у = bx (рис. 2) . Решением неравенства будут те значения переменной х, при которых график функции у = |x + 5| будет находиться ниже графика функции у = bx.

На рисунке видно:

1) При b > 1 прямые пересекаются. Абсцисса точки пересечения графиков этих функций есть решение уравнения х + 5 = bx, откуда х = 5/(b – 1). График у = bx находится выше при х из интервала (5/(b – 1); +∞), значит это множество и есть решение неравенства.

2) Аналогично находим, что при -1 < b < 0 решением является х из интервала (-5/(b + 1); 5/(b – 1)).

3) При b ≤ -1 x € (-∞; 5/(b – 1)).

4) При 0 ≤ b ≤ 1 графики не пересекаются, а значит, и решений у неравенства нет.

Ответ: x € (-∞; 5/(b – 1)) при b ≤ -1;
x € (-5/(b + 1); 5/(b – 1)) при -1 < b < 0;
решений нет при 0 ≤ b ≤ 1; x € (5/(b – 1); +∞) при b > 1.

Пример 2.

Решить неравенство а(а + 1)х > (a + 1)(a + 4).

Решение.

1) Найдем «контрольные » значения для параметра а: а 1 = 0, а 2 = -1.

2) Решим данное неравенство на каждом подмножестве действительных чисел: (-∞; -1); {-1}; (-1; 0); {0}; (0; +∞).

a) a < -1, из данного неравенства следует, что х > (a + 4)/a;

b) a = -1, тогда данное неравенство примет вид 0·х > 0 – решений нет;

c) -1 < a < 0, из данного неравенства следует, что х < (a + 4)/a;

d) a = 0, тогда данное неравенство имеет вид 0 · х > 4 – решений нет;

e) a > 0, из данного неравенства следует, что х > (a + 4)/a.

Пример 3.

Решить неравенство |2 – |x|| < a – x.

Решение.

Строим график функции у = |2 – |x|| (рис. 3) и рассматриваем все возможные случаи расположения прямой у = -x + а.

Ответ: решений у неравенства нет при а ≤ -2;
x € (-∞; (а – 2)/2) при а € (-2; 2];
x € (-∞; (a + 2)/2) при a > 2.

При решении различных задач, уравнений и неравенств с параметрами открывается значительное число эвристических приемов, которые потом с успехом могут быть применены в любых других разделах математики.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры. Именно поэтому, овладев методами решения задач с параметрами, вы успешно справитесь и с другими задачами.

Остались вопросы? Не знаете, как решать неравенства?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Приложение

Решение неравенств онлайн на Math24.biz для закрепления студентами и школьниками пройденного материала. И тренировки своих практических навыков. Неравенство в математике - утверждение об относительной величине или порядке двух объектов (один из объектов меньше или не больше другого), или о том, что два объекта не одинаковы (отрицание равенства). В элементарной математике изучают числовые неравенства, в общей алгебре, анализе, геометрии рассматриваются неравенства также и между объектами нечисловой природы. Для решения неравенства обязательно должны быть определены обе его части с одним из знаков неравенства между ними. Строгие неравенства подразумевают неравенство двух объектов. В отличие от строгих, нестрогие неравенства допускают равенство входящих в него объектов. Линейные неравенства представляют собой простейшие с точки зрения начала изучения выражения, и для решения таких неравенств используются самые простые методики. Главная ошибка учеников в решении неравенств онлайн в том, что они не различают особенность строгого и нестрогого неравенства, от чего зависит войдут или нет граничные значения в конечный ответ. Несколько неравенств, связанных между собой несколькими неизвестными, называют системой неравенств. Решением неравенств из системы является некая область на плоскости, либо объемная фигура в трехмерном пространстве. Наряду с этим абстрагируются n-мерными пространствами, однако при решении таких неравенств зачастую не обойтись без специальных вычислительных машин. Для каждого неравенства в отдельности нужно найти значения неизвестного на границах области решения. Множество всех решений неравенства и является его ответом. Замена одного неравенства равносильным ему другим неравенством называется равносильным переходом от одного неравенства к другому. Аналогичный подход встречается и в других дисциплинах, потому что помогает привести выражения к стандартному виду. Вы оцените по достоинству все преимущества решение неравенств онлайн на нашем сайте. Неравенство - это выражение, содержащее один из знаков = >. По сути это логическое выражение. Оно может быть либо верным, либо нет - в зависимости от того, что стоит справа и слева в этом неравенстве. Разъяснение смысла неравенства и основные приемы решения неравенств изучаются на разных курсах, а также в школе. Решение любых неравенств онлайн - неравенства с модулем, алгебраические, тригонометрические, трансцендентные неравенства онлайн. Тождественное неравенство, как строгие и нестрогие неравенства, упрощают процесс достижения конечного результата, являются вспомогательным инструментом для разрешения поставленной задачи. Решение любых неравенств и систем неравенств, будь то логарифмические, показательные, тригонометрические или квадратных неравенства, обеспечивается с помощью изначально правильного подхода к этому важному процессу. Решение неравенств онлайн на сайте сайт всегда доступно всем пользователям и абсолютно бесплатно. Решениями неравенства с одной переменной называются значения переменной, которые обращают его в верное числовое выражение. Уравнения и неравенства с модулем: модуль действительного числа - это абсолютная величина этого числа. Стандартный метод решения этих неравенств заключается в возведении обеих частей неравенства в нужную степень. Неравенства – это выражения, указывающие на сравнение чисел, поэтому грамотное решение неравенств обеспечивает точность таких сравнений. Они бывают строгими (больше, меньше) и нестрогими (больше или равно, меньше или равно). Решить неравенство – значит найти все те значения переменных, которые при подстановке в исходное выражение обращают его в верное числовое представление.. Понятие неравенства, его сущность и особенности, классификация и разновидности - вот что определяет специфику данного математического раздела. Основные свойства числовых неравенств, применимые ко всем объектам данного класса, обязательно должны быть изучены учениками на начальном этапе ознакомления с данной темой. Неравенства и промежутки числовой прямой очень тесно связаны, когда речь идет о решении неравенств онлайн. Графическое обозначение решения неравенства наглядно показывает суть такого выражения, становится понятно к чему следует стремиться при решении какой-либо поставленной задачи. В основу понятия неравенства входит сравнение двух или нескольких объектов. Неравенства, содержащие переменную, решаются как аналогично составленные уравнения, после чего делается выборка интервалов, которые будут приняты за ответ. Любое алгебраическое неравенство, тригонометрическое неравенство или неравенства содержащие трансцендентные функции, вы с легкостью и мгновенно сможете решить, используя наш бесплатный сервис. Число является решением неравенства, если при подстановке этого числа вместо переменной получаем верное выражение, то есть знак неравенства показывает истинное понятие.. Решение неравенств онлайн на сайт каждый день для полноценного изучения студентами пройденного материала и закрепления своих практических навыков. Зачастую тема неравенства онлайн в математике изучается школьниками после прохождения раздела уравнений. Как и положено применяются все принципы при решении, чтобы определить интервалы решений. Найти в аналитическом виде ответ бывает сложнее, чем сделать то же самое, но в числовом виде. Однако такой подход дает более наглядное и полное представление об целостности решения неравенства. Сложность может возникнуть на этапе построения линии абсцисс и нанесения точек решения однотипного уравнения. После этого решение неравенств сводится к определению знака функции на каждом выявленном интервале с целью определения возрастания или убывания функции. Для этого необходимо поочередно подставлять к значениям, заключенных внутри каждого интервала, в исходную функцию и проверять её значение на положительность или отрицательность. В этом есть суть нахождения всех решений, в том числе интервалов решений. Когда вы сами решите неравенство и увидите все интервалы с решениями, то поймете, насколько применим такой подход для дальнейших действий. Сайт сайт предлагает вам перепроверить свои результаты вычислений с помощью мощного современного калькулятора на этой странице. Вы сможете с легкостью выявить неточности и недочеты в своих расчетах, использую уникальный решебник неравенств. Студенты часто задаются вопросом, где найти такой полезный ресурс? Благодаря инновационному подходу к возможности определения потребностей инженеров, калькулятор создан на базе мощных вычислительных серверов с использованием только новых технологий. По сути решение неравенств онлайн заключается в решении уравнения с вычислением всех возможных корней. Полученные решения отмечаются на прямой, а далее производится стандартная операция по определению значения функции на каждом промежутке. А что же делать, если корни уравнения получаются комплексные, как в этом случае решить неравенство в полной форме, которое бы удовлетворяло всем правилам написания результата? Ответ на этот и многие другие вопросы с легкость даст наш сервис сайт, для которого нет ничего невозможного в решении математических задач онлайн. В пользу вышесказанного добавим следующее: каждый, кто всерьез занимается изучением такой дисциплиной как математика, обязан изучить тему неравенств. Неравенства бывают разных типов и решить неравенство онлайн порой сделать непросто, так как необходимо знать принципы подходов к каждому из них. На этом базируется основа успеха и стабильности. Для примера можно рассмотреть такие типы, как логарифмические неравенства или трансцендентные неравенства. Это вообще особый вид таких, сложных на первый взгляд, задач для студентов, тем более для школьников. Преподаватели институтов уделяют немало времени из подготовки практикантов для достижения профессиональных навыков в работе. К таким же типам отнесем тригонометрические неравенства и обозначим общий подход при решении множества практических примеров из постановочной задачи. В ряде случаев сначала нужно привести все к уравнению, упростить его, разложить на разные множители, короче говоря, привести к вполне наглядному виду. Во все времена человечество стремилось найти оптимальный подход в любых начинаниях. Благодаря современным технологиям, человечество сделало просто огромный прорыв в будущее свое развитие. Инновации все чаще и чаще, день за днем вливаются в нашу жизнь. В основу вычислительной техники легла, разумеется, математика со своим принципами и строгим подходом к делу. сайт представляет собой общий математический ресурс, в котором имеется разработанный калькулятор неравенств и многие другие полезные сервисы. Используйте наш сайт и у вас будет уверенность в правильности решенных задач. Из теории известно, что объекты нечисловой природы также изучаются неравенствами онлайн, только этот подход представляет собой особый способ изучения данного раздела в алгебре, геометрии и других направлениях математики. Решать неравенства можно по-разному, неизменным остается конечная проверка решений и лучше всего это делать прямой подстановкой значений в само неравенство. Во многих случаях полученный ответ очевиден и его легко проверить в уме. Предположим нам задано решить дробное неравенство, в котором присутствуют искомые переменные в знаменателях дробных выражений. Тогда решение неравенств сведется к приведению всех слагаемых к общему знаменателю, предварительно переместив все в левую и правую часть неравенства. Далее нужно решить однородное уравнение, полученное в знаменателе дроби. Эти числовые корни будут точками, не включенными в интервалы общего решения неравенства, или ка их еще называют - проколотые точки, в которых функция обращается в бесконечность, то есть функция не определена, а можно только получить ее предельное значение в данной точке. Решив полученное в числителе уравнение, все точки нанесем на числовую ось. Заштрихуем те точки, в которых числитель дроби обращаемся в ноль. Соответственно все остальные точки оставляем пустыми или проколотыми. Найдем знак дроби на каждом интервале и после этого выпишем окончательный ответ. Если на границах интервала будут заштрихованные точки, то тогда включаем эти значения в решение. Если на границах интервала будут проколотые точки - эти значения в решение не включаем. После того, как решите неравенство, вам потребуется в обязательном порядке проверить полученный результат. Можно это сделать руками, каждое значение из интервалов ответа поочередно подставить в начальное выражение и выявить ошибки. Сайт сайт с легкостью выдаст вам все решения неравенства, и вы сразу сравните полученные вами и калькулятором ответы. Если все-таки ошибка будет иметь место, то на нашем ресурсе решение неравенств онлайн окажется вам очень полезным. Рекомендуем всем студентам вначале приступать не к решению напрямую неравенства, а сначала получить результат на сайт, потому что в дальнейшем будет намного проще самому сделать правильный расчет. В текстовых задачах практически всегда решение сводится к составлению системы неравенств с несколькими неизвестными. Решить неравенство онлайн в считанные секунды поможет наш ресурс. При этом решение будет произведено мощной вычислительной программой с высокой точностью и без всяких погрешностей в конечном ответе. Тем самым вы сможете сэкономить колоссальное количество времени на решении данным калькулятором примеров. В ряде случаев школьники испытывают затруднения, когда на практике или в лабораторных работах встречают логарифмические неравенства, а еще хуже, когда видят перед собой тригонометрические неравенства со сложными дробными выражениями с синусами, косинусами или вообще с обратными тригонометрическими функциями. Как ни крути, но без помощи калькулятора неравенств справиться будет очень сложно и не исключены ошибки на любом этапе решения задачи. Пользуйтесь ресурсом сайт совершенно бесплатно, он доступен каждому пользователю каждый день. Начинать действовать с нашего сервиса-помощника очень хорошая идея, поскольку аналогов существует множество, а по-настоящему качественных сервисов единицы. Мы гарантируем точность вычислений при длительности поиска ответа в несколько секунд. От вас требуется только записать неравенства онлайн, а мы в свою очередь сразу предоставим вам точный результат решения неравенства. Искать подобный ресурс может оказаться бессмысленным занятием, так как вряд ли вы встретите такой же качественный сервис как у нас. Можно обойтись без теории про решение неравенств онлайн, но без качественного и быстрого калькулятора вам не обойтись. Желаем вам успехов в учебе! По-настоящему выбрать оптимальное решение неравенства онлайн зачастую связано с логическим подходом для случайной величины. Если пренебречь малым отклонением замкнутого поля, то вектор нарастающего значения пропорционален наименьшему значению на промежутке убывания линии ординат. Инвариант пропорционален двукратному увеличению отображаемым функциям наряду с исходящим ненулевым вектором. Лучший ответ всегда содержит точность вычислений. Наше решение неравенств примет вид однородной функции последовательно сопряженных числовых подмножеств главного направления. За первый интервал возьмем как раз наихудшее по точности значение нашего представления переменной. Вычислим на максимальное отклонение предыдущее выражение. Будем пользоваться сервисом на усмотрение предложенных вариантов по мере необходимости. Будет ли найдено решение неравенств онлайн с помощью хорошего в своем классе калькулятора - это риторический вопрос, разумеется, студентам такой инструмент пойдет только на пользу и принесет огромный успех в математике. Наложим ограничение на область с множеством, которое сведем к элементам с восприятием импульсов по напряжению. Физические значения таких экстремумов математически описывают возрастание и убывание кусочно-непрерывных функций. На протяжении всего пути ученые находили доказательства существования элементов на разных уровнях изучения. Расположим все последовательно идущие подмножества одного комплексного пространства в один ряд с такими объектами, как шар, куб или цилиндр. Из нашего результата можно сделать однозначный вывод и когда решите неравенство, то на выходе, безусловно, прольется свет на высказанное математическое предположение об интеграции метода на практике. В текущем положении вещей необходимое условие будет также являться и достаточным условием. Критерии неопределенности зачастую вызывают у студентов разногласия по причине недостоверных данных. Это упущение должны взять на себя преподаватели ВУЗов, а также учителя в школах, так как на начальном этапе обучения необходимо это тоже учитывать. Из вышесказанного вывода на взгляд опытных людей можно делать выводы, что решить неравенство онлайн очень сложное задание при вхождении в неравенство неизвестных разного типа данных. Об этом сказано на научной конференции в западном округе, на которой выдвигали самые различные обоснования по поводу научных открытий в области математики и физики, а также молекулярного анализа биологически устроенных систем. В нахождении оптимального решения абсолютно все логарифмические неравенства представляют научную ценность для всего человечества. Исследуем данный подход на предмет логических заключений по ряду несовпадений на высшем уровне понятий о существующем объекте. Логика подсказывает иное, чем видно на первый взгляд неопытному студенту. По причине возникновения масштабных аналогий, будет рационально сначала приравнять отношения к разности предметов исследуемой области, а затем показать на практике наличие общего аналитического результата. Решение неравенств абсолютным образом завязано на применении теории и будет важно для каждого изучить такой необходимый для дальнейших исследований раздел математики. Однако, при решении неравенств вам нужно найти все корни составленного уравнения, а уже затем нанести все точки на ось ординат. Некоторые точки будут проколоты, а остальные войдут в интервалы с общим решением. Начнем изучать раздел математики с азов важнейшей дисциплины школьной программы. Если тригонометрические неравенства являются неотъемлемой частью текстовой задачи, то, как раз применять ресурс для вычисления ответа просто необходимо. Введите левую и правую части неравенства корректно, нажмите на кнопу и получите результат в течение нескольких секунд. Для быстрых и точных математических вычислений с числовыми или символьными коэффициентами перед неизвестными, вам как всегда понадобится универсальный калькулятор неравенств и уравнений, который сможет в считанные секунды предоставить ответ на поставленную вами задачку. Если у вас нет времени на написание целого ряда письменных упражнений, то обоснованность сервиса неоспорима даже невооруженным глазом. Для студентов такой подход является более оптимальным и оправданным с точки зрения экономии материальных ресурсов и времени. Напротив катета лежит угол, а для его измерения необходим циркуль, но вы сможете в любо момент воспользоваться подсказками и решите неравенство не применяя никаких формул приведения. Означает ли это успешное завершение начатого действия? Однозначно ответ будет положительным.

Решение неравенств с параметром.

Неравенства, которые имеют вид ax > b, ax < b, ax ≥ b, ax ≤ b, где a и b – действительные числа или выражения, зависящие от параметров, а x – неизвестная величина, называются линейными неравенствами .

Принципы решения линейных неравенств с параметром очень схожи с принципами решения линейных уравнений с параметром.

Пример 1.

Решить неравенство 5х – а > ax + 3.

Решение.

Для начала преобразуем исходное неравенство:

5х – ах > a + 3, вынесем за скобки х в левой части неравенства:

(5 – а)х > a + 3. Теперь рассмотрим возможные случаи для параметра а:

Если a > 5, то x < (а + 3) / (5 – а).

Если а = 5, то решений нет.

Если а < 5, то x > (а + 3) / (5 – а).

Данное решение и будет являться ответом неравенства.

Пример 2.

Решить неравенство х(а – 2) / (а – 1) – 2а/3 ≤ 2х – а при а ≠ 1.

Решение.

Преобразуем исходное неравенство:

х(а – 2) / (а – 1) – 2х ≤ 2а/3 – а;

Ах/(а – 1) ≤ -а/3. Домножим на (-1) обе части неравенства, получим:

ах/(а – 1) ≥ а/3. Исследуем возможные случаи для параметра а:

1 случай. Пусть a/(а – 1) > 0 или а € (-∞; 0)ᴗ(1; +∞). Тогда x ≥ (а – 1)/3.

2 случай. Пусть a/(а – 1) = 0, т.е. а = 0. Тогда x – любое действительное число.

3 случай. Пусть a/(а – 1) < 0 или а € (0; 1). Тогда x ≤ (а – 1)/3.

Ответ: х € [(а – 1)/3; +∞) при а € (-∞; 0)ᴗ(1; +∞);
х € [-∞; (а – 1)/3] при а € (0; 1);
х € R при а = 0.

Пример 3.

Решить неравенство |1 + x| ≤ аx относительно х.

Решение.

Из условия следует, что правая часть неравенства ах должна быть не отрицательна, т.е. ах ≥ 0. По правилу раскрытия модуля из неравенства |1 + x| ≤ аx имеем двойное неравенство

Ах ≤ 1 + x ≤ аx. Перепишем результат в виде системы:

{аx ≥ 1 + x;
{-ах ≤ 1 + x.

Преобразуем к виду:

{(а – 1)x ≥ 1;
{(а + 1)х ≥ -1.

Исследуем полученную систему на интервалах и в точках (рис. 1) :

При а ≤ -1 х € (-∞; 1/(а – 1)].

При -1 < а < 0 x € [-1/(а – 1); 1/(а – 1)].

При а = 0 x = -1.

При 0 < а ≤ 1 решений нет.

Графический метод решения неравенств

Построение графиков значительно упрощает решение уравнений, содержащих параметр. Использование графического метода при решении неравенств с параметром еще нагляднее и целесообразнее.

Графическое решение неравенств вида f(x) ≥ g(x) означает нахождение значений переменной х, при которых график функции f(x) лежит выше графика функции g(x). Для этого всегда необходимо найти точки пересечения графиков (если они существуют).

Пример 1.

Решить неравенство |x + 5| < bx.

Решение.

Строим графики функций у = |x + 5| и у = bx (рис. 2) . Решением неравенства будут те значения переменной х, при которых график функции у = |x + 5| будет находиться ниже графика функции у = bx.

На рисунке видно:

1) При b > 1 прямые пересекаются. Абсцисса точки пересечения графиков этих функций есть решение уравнения х + 5 = bx, откуда х = 5/(b – 1). График у = bx находится выше при х из интервала (5/(b – 1); +∞), значит это множество и есть решение неравенства.

2) Аналогично находим, что при -1 < b < 0 решением является х из интервала (-5/(b + 1); 5/(b – 1)).

3) При b ≤ -1 x € (-∞; 5/(b – 1)).

4) При 0 ≤ b ≤ 1 графики не пересекаются, а значит, и решений у неравенства нет.

Ответ: x € (-∞; 5/(b – 1)) при b ≤ -1;
x € (-5/(b + 1); 5/(b – 1)) при -1 < b < 0;
решений нет при 0 ≤ b ≤ 1; x € (5/(b – 1); +∞) при b > 1.

Пример 2.

Решить неравенство а(а + 1)х > (a + 1)(a + 4).

Решение.

1) Найдем «контрольные » значения для параметра а: а 1 = 0, а 2 = -1.

2) Решим данное неравенство на каждом подмножестве действительных чисел: (-∞; -1); {-1}; (-1; 0); {0}; (0; +∞).

a) a < -1, из данного неравенства следует, что х > (a + 4)/a;

b) a = -1, тогда данное неравенство примет вид 0·х > 0 – решений нет;

c) -1 < a < 0, из данного неравенства следует, что х < (a + 4)/a;

d) a = 0, тогда данное неравенство имеет вид 0 · х > 4 – решений нет;

e) a > 0, из данного неравенства следует, что х > (a + 4)/a.

Пример 3.

Решить неравенство |2 – |x|| < a – x.

Решение.

Строим график функции у = |2 – |x|| (рис. 3) и рассматриваем все возможные случаи расположения прямой у = -x + а.

Ответ: решений у неравенства нет при а ≤ -2;
x € (-∞; (а – 2)/2) при а € (-2; 2];
x € (-∞; (a + 2)/2) при a > 2.

При решении различных задач, уравнений и неравенств с параметрами открывается значительное число эвристических приемов, которые потом с успехом могут быть применены в любых других разделах математики.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры. Именно поэтому, овладев методами решения задач с параметрами, вы успешно справитесь и с другими задачами.

Остались вопросы? Не знаете, как решать неравенства?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.




Top