Сгруппировать данные из столбца в интервальный ряд. Построение интервального ряда распределения

Описание изменений варьирующего признака осуществляется с помощью рядов распределения.

Статистический ряд распределения - это упорядоченное распределение единиц статистической совокупности на отдельные группы по определенному варьирующему признаку.

Статистические ряды, построенные по качественному признаку называют атрибутивными . Если в основе ряда распределения лежит количественный признак, то ряд является вариационным .

В свою очередь вариационные ряды делят на дискретные и интервальные. В основе дискретного ряда распределения лежит дискретный (прерывный) признак, принимающий конкретные числовые значения (число правонарушений, число обращений граждан за юридической помощью). Интервальный ряд распределения строится на основе непрерывного признака, который может принимать любые значения из заданного диапазона (возраст осужденного, срок лишения свободы и т.д.)

Любой статистический ряд распределения содержит два обязательных элемента – варианты ряда и частоты. Варианты (x i ) – отдельные значения признака, которые он принимает в ряду распределения. Частоты (f i ) – это числовые значения, показывающие сколько раз встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности.

Частоты, выраженные в относительных единицах (долях или процентах) называются частостями (w i ). Сумма частостей равна единице, если Частости выражены в долях единицы, или 100, если они выражаются в процентах. Использование частостей позволяет производить сравнение вариационных рядов с разным объемом совокупности. Частости определяются по следующей формуле:

Для построения дискретного ряда ранжируются все встречающиеся в ряду индивидуальные значения признака, а затем подсчитываются частоты повторений каждого значения. Оформляется ряд распределения в идее таблицы, состоящей из двух строк и столбцов, в одной из которых приводятся значения вариантов ряда x i , во второй – значения частот f i .

Рассмотрим пример построения дискретного вариационного ряда.

Пример 3.1 . По данным УМВД зарегистрировано преступлений, совершенных в городе N несовершеннолетними в возрасте.

17 13 15 16 17 15 15 14 16 13 14 17 14 15 15 16 16 15 14 15 15 14 16 16 14 17 16 15 16 15 13 15 15 13 15 14 15 13 17 14.

Построить дискретный ряд распределения.

Решение .

Сначала необходимо проранжировать данные о возрасте несовершеннолетних, т.е. записать их в порядке возрастания.

13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17



Таблица 3.1

Таким образом, частоты отображают количество человек данного возраста, например, 5 человек имеют возраст 13 лет, 8 человек – 14 лет, и т.д.

Построение интервальных рядов распределения осуществляют аналогично выполнению равноинтервальной группировки по количественному признаку, то есть вначале определяют оптимальное число групп, на которые будет разбита совокупность, устанавливаются границы интервалов по группам и подсчитываются частоты.

Проиллюстрируем построение интервального ряда распределения на следующем примере.

Пример 3.2 .

Построить интервальный ряд по следующей статистической совокупности – заработной плате юриста в конторе, тыс. руб.:

16,0 22,2 25,1 24,3 30,5 32,0 17,0 23,0 19,8 27,5 22,0 18,9 31,0 21,5 26,0 27,4

Решение.

Примем оптимальное количество групп равноинтервальной группировки для данной статистической совокупности, равное 4 (у нас 16 вариантов). Следовательно, численность каждой группы равна:

а величина каждого интервала будет равна:

Границы интервалов определяем по формулам:

,

где - соответственно нижняя и верхняя границы i-го интервала.

Опуская промежуточные вычисления границ интервалов, заносим их значения (варианты) и количество юристов (частоты), имеющих з/п в пределах каждого интервала, в таблицу 3.2, которая и иллюстрирует полученный интервальный ряд.

Таблица 3.2

Анализ статистических рядов распределения может производиться с использованием графического метода. Графическое представление рядов распределения позволяет наглядно проиллюстрировать закономерности распределения исследуемой совокупности путем ее изображения в виде полигона, гистограммы и кумуляты. Остановимся на каждом из перечисленных графиков.

Полигон – ломаная, отрезки которой соединяют точки с координатами (x i ;f i ). Обычно полигон используют для изображения дискретных рядов распределения. Для его построения на оси абсцисс откладывают ранжированные индивидуальные значения признака x i , на оси ординат – соответствующие этим значениям частоты. В результате, соединив отрезками точки, соответствующие данным, отмеченным по осям абсцисс и ординат, получают ломаную, называемую полигоном. Приведем пример построения полигона частот.

Для иллюстрации построения полигона возьмем результат решения примера 3.1 на построение дискретного ряда – рисунок 1. По оси абсцисс отложен возраст осужденных, по оси ординат – количество несовершеннолетних осужденных, имеющих данный возраст. Анализируя данный полигон, можно сказать, что наибольшее количество осужденных – 14 человек, имеют возраст 15 лет.

Рисунок 3.1 – Полигон частот дискретного ряда.

Полигон можно построить и для интервального ряда, в этом случае по оси абсцисс откладывают середины интервалов, а по оси ординат – соответствующие им частоты.

Гистограмма – ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат интервалы значения признака, а высоты равны соответствующим частотам. Гистограмма применяется только для изображения интервальных рядов распределения. Если интервалы являются неравными, то для построения гистограммы на оси ординат откладывают не частоты, а отношение частоты к ширине соответствующего интервала. Гистограмму можно преобразовать в полигон распределения, если середины ее столбиков соединить между собой отрезками.

Для иллюстрации построения гистограммы возьмем результаты построения интервального ряда из примера 3.2– рисунок 3.2.

Рисунок 3.2 – Гистограмма распределения заработной платы юристов.

Для графического изображения вариационных рядов также используют кумуляту. Кумулята – кривая, изображающая ряд накопленных частот и соединяющая точки с координатами (x i ;f i нак ). Накопленные частоты вычисляются последовательным суммированием всех частот ряда распределения и показывают число единиц совокупности, имеющих значение признака не больше, чем указанное. Проиллюстрируем вычисление накопленных частот для вариационного интервального ряда, представленного в примере 3.2 – таблица 3.3.

Таблица 3.3

Для построения кумуляты дискретного ряда распределения по оси абсцисс откладывают ранжированные индивидуальные значения признака, а по оси ординат – соответствующие им накопленные частоты. При построении кумулятивной кривой интервального ряда первая точка будет иметь абсциссу, равную нижней границе первого интервала, а ординату, равную 0. Все последующие точки должны соответствовать верхним граница интервалов. Построим кумуляту, используя данные таблицы 3.3 – рисунок 3.3.

Рисунок 3.3 – Кумулятивная кривая распределения заработной платы юристов.

Контрольные вопросы

1. Понятие статистического ряда распределения, его основные элементы.

2. Виды статистических рядов распределения. Их краткая характеристика.

3. Дискретные и интервальные ряды распределения.

4. Методика построения дискретных рядов распределения.

5. Методика построения интервальных рядов распределения.

6. Графическое изображение дискретных рядов распределения.

7. Графическое изображение интервальных рядов распределения.

Задачи

Задача 1 . Имеются следующие данные об успеваемости 25 студен­тов группы по ТГП в сессию: 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 2, 5, 2, 5, 5, 2, 3, 3, 5, 4, 2, 3, 3. Постройте дискретный вариационный ряд распределения студентов по баллам оценок, получен­ных в сессию. Для полученного ряда рассчитайте Частости, накопленные Частости, накопленные частоты. Сделайте выводы.

Задача 2 . В колонии содержатся 1000 осужденных, их распределение по возрасту представлено в таблице:

Изобразите данный ряд графически. Сделайте выводы.

Задача 3 . Имеются следующие данные о сроках лишения свободы заключенных:

5; 4; 2; 1; 6; 3; 4; 3; 2; 2; 3; 1; 17; 6; 2; 8; 5; 11; 9; 3; 5; 6; 4; 3; 10; 5; 25; 1; 12; 3; 3; 4; 9; 6; 5; 3; 4; 3; 5; 12; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 3; 12; 6.

Постройте интервальный ряд распределения заключенных по срокам лишения свободы. Сделайте выводы.

Задача 4 . Имеются следующие данные о распределении осужденных в области за изучаемый период по возрастным группам:

Изобразите данный ряд графически, сделайте выводы.

Наиболее простым способом обобщения статистического материала является построение рядов. Результатом сводки статистического исследования могут быть ряды распределения. Рядом распределения в статистике называется упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку: по качественному или количественному. Если ряд построен по качественному признаку, то он называется атрибутивным, а если по количественному признаку, то вариационный.

Вариационный ряд характеризуется двумя элементами: вариантой (Х) и частотой (f). Варианта – это отдельное значение признака отдельной единицы или группы совокупности. Число, показывающее, сколько раз встречается то или иное значение признака, называется частотой. Если частота выражена относительным числом, то она называется частостью. Вариационный ряд может быть интервальным, когда определены границы «от» и «до», а может быть дискретным, когда изучаемый признак характеризуется определенным числом.

Построение вариационных рядов рассмотрим на примерах.

Пример . и меются данные о тарифных разрядах 60 рабочих одного их цехов завода.

Распределить рабочих по тарифному разряду, построить вариационный ряд.

Для этого выпишем все значения признака в порядке возрастания и посчитаем число рабочих в каждой группе.

Таблица 1.4

Распределение рабочих по разряду

Разряд рабочих (X)

Число рабочих

человек (f)

в % к итогу (частность)

Мы получили вариационный дискретный ряд, в котором изучаемый признак (разряд рабочего) представлен определенным числом. Для наглядности вариационные ряды изображают графически. На основании данного ряда распределения построили поверхность распределения.

Рис. 1.1. Полигон распределения рабочих по тарифному разряду

Построение интервального ряда с равными интервалами рассмотрим на следующем примере.

Пример . Известны данные о стоимости основного капитала 50 фирм в млн руб. Требуется показать распределение фирм по стоимости основного капитала.

Чтобы показать распределение фирм по стоимости основного капитала, сначала решим вопрос о количестве групп, которые хотим выделить. Предположим, решили выделить 5 групп предприятий. Затем определим величину интервала в группе. Для этого воспользуемся формулой

Согласно нашему примеру .

Путем прибавления величины интервала к минимальному значению признака, получим группы фирм по стоимости основного капитала.

Единица, обладающая двойным значением, относится к той группе, где она выступает в роли верхней границы (т.е. значение признака 17 пойдет в первую группу, 24 – во вторую и т.д.).

Подсчитаем число заводов в каждой группе.

Таблица 1.5

Распределение фирм по стоимости основного капитала (млн руб.)

Стоимость основного капитала
в млн руб. (Х)

Число фирм
(частота) (f)

Накопленные частоты
(кумулятивные)

Согласно данному распределению получили вариационный интервальный ряд, из которого следует, что 36 фирм имеют основной капитал стоимостью от 10 до 24 млн руб. и т.д.

Интервальные ряды распределения можно представить графически в виде гистограммы.

Результаты обработки данных оформляются в статистические таблицы . Статистические таблицы содержат свое подлежащее и сказуемое.

Подлежащее – это та совокупность или часть совокупности, которая подвергается характеристике.

Сказуемое – это показатели, характеризующие подлежащее.

Таблицы различают: простые и групповые, комбинационные, с простой и сложной разработкой сказуемого.

Простая таблица в подлежащем содержит перечень отдельных единиц.

Если же в подлежащем имеется группировка единиц, то такая таблица называется групповой. Например, группа предприятий по числу рабочих, группы населения по полу.

В подлежащем комбинационной таблицы содержится группировка по двум или нескольким признакам. Например, население по полу разделяется на группы по образованию, возрасту и т.д.

Комбинационные таблицы содержат информацию, позволяющую выявить и охарактеризовать взаимосвязь ряда показателей и закономерность их изменения как в пространстве, так и во времени. Чтобы таблица была наглядной при разработке ее подлежащего, ограничиваются двумя-тремя признаками, образуя по каждому из них ограниченное число групп.

Сказуемое в таблицах может быть разработано по-разному. При простой разработке сказуемого все его показатели располагаются независимо друг от друга.

При сложной разработке сказуемого показатели сочетаются друг с другом.

При построении любой таблицы нужно исходить из целей исследования и содержания обработанного материала.

Кроме таблиц в статистике используются графики и диаграммы. Диаграмма – статистические данные изображаются с помощью геометрических фигур. Диаграммы подразделяются на линейные и столбиковые, но могут быть фигурные диаграммы (рисунки и символы), круговые диаграммы (окружность принимается за величину всей совокупности, а площади отдельных секторов отображают удельный вес или долю ее составных частей), радиальные диаграммы (строятся на базе полярных ординат). Картограмма представляет собой сочетание контурной карты или плана местности с диаграммой.

Результаты группировки собранных статистических данных, как правило, представляются в виде рядов распределения. Ряд распределения - это упорядоченное распределение единиц совокупности на группы по изучаемому признаку.

Ряды распределения делятся на атрибутивные и вариационные, в зависимости от признака, положенного в основу группировки. Если признак качественный, то ряд распределения называется атрибутивным. Примером атрибутивного ряда является распределение предприятий и организаций по формам собственности (см. табл. 3.1).

Если признак, по которому строится ряд распределения, количественный, то ряд называется вариационным.

Вариационный ряд распределения всегда состоит из двух частей: вариант и соответствующих им частот (или частостей). Вариантой называется значение , которое может принимать признак у единиц совокупности, частотой - количество единиц наблюдения, обладающих данным значением признака. Сумма частот всегда равна объему совокупности. Иногда вместо частот рассчитывают частости - это частоты, выраженные либо в долях единицы (тогда сумма всех частостей равна 1), либо в процентах к объему совокупности (сумма частостей будет равна 100%).

Вариационные ряды бывают дискретными и интервальными. У дискретных рядов (табл. 3.7) варианты выражены конкретными числами, чаще всего целыми.

Таблица 3.8. Распределение работников по времени работы в страховой компании
Время работы в компании, полных лет (варианты) Число работающих
Человек (частоты) в % к итогу (частости)
до года 15 11,6
1 17 13,2
2 19 14,7
3 26 20,2
4 10 7,8
5 18 13,9
6 24 18,6
Итого 129 100,0

В интервальных рядах (см. табл. 3.2) значения показателя задаются в виде интервалов. Интервалы имеют две границы: нижнюю и верхнюю. Интервалы могут быть открытыми и закрытыми. У открытых нет одной из границ, так, в табл. 3.2 у первого интервала нет нижней границы, а у последнего - верхней. При построении интервального ряда в зависимости от характера разброса значений признака используют как равные интервальные промежутки, так и неравные (в табл. 3.2 представлен вариационный ряд с равными интервалами).

Если признак принимает ограниченное число значений, обычно не больше 10, строят дискретные ряды распределения. Если вариант больше, то дискретный ряд теряет свою наглядность; в этом случае целесообразно использовать интервальную форму вариационного ряда. При непрерывной вариации признака, когда его значения в определенных пределах отличаются друг от друга на сколь угодно малую величину, также строят интервальный ряд распределения.

3.3.1. Построение дискретных вариационных рядов

Рассмотрим методику построения дискретных вариационных рядов на примере.

Пример 3.2. Имеются следующие данные о количественном составе 60 семей:

Для того чтобы получить представление о распределении семей по числу их членов, следует построить вариационный ряд. Поскольку признак принимает ограниченное число целых значений строим дискретный вариационный ряд. Для этого сначала рекомендуется выписать все значения признака (число членов в семье) в порядке возрастания (т.е. провести ранжирование статистических данных):

Затем необходимо подсчитать число семей, имеющих одинаковый состав. Число членов семей (значение варьирующего признака) - это варианты (будем их обозначать через х), число семей, имеющих одинаковый состав, - это частоты (будем их обозначать через f). Результаты группировки представим в виде следующего дискретного вариационного ряда распределения:

Таблица 3.11.
Число членов семьи (х) Число семей (y)
1 8
2 14
3 20
4 9
5 5
6 4
Итого 60

3.3.2. Построение интервальных вариационных рядов

Покажем методику построения интервальных вариационных рядов распределения на следующем примере.

Пример 3.3. В результате статистического наблюдения получены следующие данные о средней величине процентной ставки 50 коммерческих банков (%):

Таблица 3.12.
14,7 19,0 24,5 20,8 12,3 24,6 17,0 14,2 19,7 18,8
18,1 20,5 21,0 20,7 20,4 14,7 25,1 22,7 19,0 19,6
19,0 18,9 17,4 20,0 13,8 25,6 13,0 19,0 18,7 21,1
13,3 20,7 15,2 19,9 21,9 16,0 16,9 15,3 21,4 20,4
12,8 20,8 14,3 18,0 15,1 23,8 18,5 14,4 14,4 21,0

Как видим, просматривать такой массив данных крайне неудобно, кроме того, не видно закономерностей изменения показателя. Построим интервальный ряд распределения.

  1. Определим число интервалов.

    Число интервалов на практике часто задается самим исследователем исходя из задач каждого конкретного наблюдения. Вместе с тем его можно вычислить и математически по формуле Стерджесса

    n = 1 + 3,322lgN,

    где n - число интервалов;

    N - объем совокупности (число единиц наблюдения).

    Для нашего примера получим: n = 1 + 3,322lgN = 1 + 3,322lg50 = 6,6 " 7.

  2. Определим величину интервалов (i) по формуле

    где х max - максимальное значение признака;

    х min - минимальное значение признака.

    Для нашего примера

    Интервалы вариационного ряда наглядны, если их границы имеют "круглые" значения, поэтому округлим величину интервала 1,9 до 2, а минимальное значение признака 12,3 до 12,0.

  3. Определим границы интервалов.

    Интервалы, как правило, записывают таким образом, чтобы верхняя граница одного интервала являлась одновременно нижней границей следующего интервала. Так, для нашего примера получим: 12,0-14,0; 14,0-16,0; 16,0-18,0; 18,0-20,0; 20,0-22,0; 22,0-24,0; 24,0-26,0.

    Подобная запись означает, что признак непрерывный. Если же варианты признака принимают строго определенные значения, например, только целые, но их количество слишком велико для построения дискретного ряда, то можно создать интервальный ряд, где нижняя граница интервала не будет совпадать с верхней границей следующего интервала (это будет означать, что признак дискретный). Например, в распределении работников предприятия по возрасту можно создать следующие интервальные группы лет: 18-25, 26-33, 34-41, 42-49, 50-57, 58-65, 66 и более.

    Кроме того, в нашем примере мы могли бы сделать первый и последний интервалы открытыми, т.д. записать: до 14,0; 24,0 и выше.

  4. По исходным данным построим ранжированный ряд. Для этого запишем в порядке возрастания значения, которые принимает признак. Результаты представим в таблице: Таблица 3.13. Ранжированный ряд величин процентной ставки коммерческих банков
    Ставка банка % (варианты)
    12,3 17,0 19,9 23,8
    12,8 17,4 20,0 24,5
    13,0 18,0 20,0 24,6
    13,3 18,1 20,4 25,1
    13,8 18,5 20,4 25,6
    14,2 18,7 20,5
    14,3 18,8 20,7
    14,4 18,9 20,7
    14,7 19,0 20,8
    14,7 19,0 21,0
    15,1 19,0 21,0
    15,2 19,0 21,1
    15,3 19,0 21,4
    16,0 19,6 21,9
    16,9 19,7 22,7
  5. Подсчитаем частоты.

    При подсчете частот может возникнуть ситуация, когда значение признака попадет на границу какого-либо интервала. В таком случае можно руководствоваться правилом: данная единица приписывается к тому интервалу, для которого ее значение является верхней границей. Так, значение 16,0 в нашем примере будет относиться ко второму интервалу.

Результаты группировки, полученные в нашем примере, оформим в таблице.

Таблица 3.14. Распределение коммерческих банков по величине кредитной ставки
Краткая ставка, % Количество банков, ед. (частоты) Накопленные частоты
12,0-14,0 5 5
14,0-16,0 9 14
16,0-18,0 4 18
18,0-20,0 15 33
20,0-22,0 11 44
22,0-24,0 2 46
24,0-26,0 4 50
Итого 50 -

В последней графе таблицы представлены накопленные частоты, которые получают путем последовательного суммирования частот, начиная с первой (например, для первого интервала - 5, для второго интервала 5 + 9 = 14, для третьего интервала 5 + 9 + 4 = 18 и т.д.). Накопленная частота, например, 33, показывает, что у 33 банков кредитная ставка не превышает 20% (верхняя граница соответствующего интервала).

В процессе группировки данных при построении вариационных рядов иногда используются неравные интервалы. Это относится к тем случаям, когда значения признака подчиняются правилу арифметической или геометрической прогрессии или когда применение формулы Стерджесса приводит к появлению "пустых" интервальных групп, не содержащих ни одной единицы наблюдения. Тогда границы интервалов задаются произвольно самим исследователем исходя из здравого смысла и целей обследования либо по формулам. Так, для данных, изменяющихся в арифметической прогрессии, величина интервалов вычисляется следующим образом.

При обработке больших массивов информации, что особенно актуально при проведении современных научных разработок, перед исследователем стоит серьезная задача правильной группировки исходных данных. Если данные имеют дискретный характер, то проблем, как мы видели, не возникает – необходимо просто подсчитать частотукаждого признака. Если же исследуемый признак имеет непрерывный характер (что имеет большее распространение на практике), то выбор оптимального числа интервалов группировки признака является отнюдь не тривиальной задачей.

Для группировки непрерывных случайных величин весь вариационный размах признакаразбивают на некоторое количество интервалов к.

Сгруппированным интервальным (непрерывным ) вариационным рядом называют ранжированные по значению признака интервалы (), гдеуказанные вместе с соответствующими частотами () числа наблюдений, попавших в г"-й интервал, или относительными частотами ():

Интервалы значений признака

Частота mi

Гистограмма и кумулята {огива), уже подробно рассмотренные нами, являются прекрасным средством визуализации данных, позволяющим получить первичное представление о структуре данных. Такие графики (рис. 1.15) строятся для непрерывных данных так же, как и для дискретных, только с учетом того, что непрерывные данные сплошь заполняют область своих возможных значений, принимая любые значения.

Рис. 1.15.

Поэтому столбцы на гистограмме и кумуляте должны соприкасаться, не иметь участков, куда не попадают значения признака в пределах всех возможных (т.е. гистограмма и кумулята не должны иметь "дырок" по оси абсцисс, в которые не попадают значения изучаемой переменной, как на рис. 1.16). Высота столбика соответствует частоте– числу наблюдений, попавших в данный интервал, или относительной частоте– доле наблюдений. Интервалы не должны пересекаться и имеют, как правило, одинаковую ширину.

Рис. 1.16.

Гистограмма и полигон являются аппроксимациями кривой плотности вероятности (дифференциальной функции) f(x) теоретического распределения, рассматриваемой в курсе теории вероятностей . Поэтому их построение имеет такое важное значение при первичной статистической обработке количественных непрерывных данных – по их виду можно судить о гипотетическом законе распределения.

Кумулята – кривая накопленных частот (частостей) интервального вариационного ряда. С кумулятой сопоставляется график интегральной функции распределения F(x) , также рассматриваемой в курсе теории вероятностей.

В основном понятия гистограммы и кумуляты связывают именно с непрерывными данными и их интервальными вариационными рядами, так как их графики являются эмпирическими оценками функции плотности вероятности и функции распределения соответственно.

Построение интервального вариационного ряда начинают с определения числа интервалов k. И эта задача, пожалуй, является самой сложной, важной и неоднозначной в изучаемом вопросе.

Число интервалов не должно быть слишком малым, так как при этом гистограмма получается слишком сглаженной (oversmoothed), теряет все особенности изменчивости исходных данных – на рис. 1.17 можно увидеть, как те же данные, по которым построены графики рис. 1.15, использованы для построения гистограммы с меньшим числом интервалов (левый график).

В то же время число интервалов не должно быть слишком велико – иначе мы не сможем оценить плотность распределения изучаемых данных по числовой оси: гистограмма получится недосглажепная (undersmoothed), с незаполненными интервалами, неравномерная (см. рис. 1.17, правый график).

Рис. 1.17.

Как же определить наиболее предпочтительное число интервалов?

Еще в 1926 г. Герберт Стерджес (Herbert Sturges) предложил формулу для вычисления количества интервалов, на которые необходимо разбить исходное множество значений изучаемого признака . Эта формула поистине стала сверхпопулярной – большинство статистических учебников предлагают именно ее, по умолчанию ее используют и множество статистических пакетов. Насколько это оправдано и во всех ли случаях – является весьма серьезным вопросом.

Итак, на чем основана формула Стерджеса?

Рассмотрим биномиальное распределение }


Top