Создатель теории автоматов. Автоматов теория

Каждый вопрос размещен на одной отдельной странице (кроме одного - "Алгебраическая и структурная теория КА", который занимает две страницы). Формат шпаргалки: doc.

Вопросы шпаргалки

  1. Предмет теории автоматов
  2. Классификация автоматов
  3. Приложения теория автоматов
  4. Двоичное умножение
  5. Умножение в инверсных кодах
  6. Деление
  7. Деление в инверсных кодах. Особенности
  8. Особенности выполнения операций в формате с плавающей запятой
  9. Двоично-десятичные коды. Сложение в ДДК
  10. Модель дискретного преобразователя Глушкова
  11. Микропрограммирование
  12. Структуры операционных автоматов
  13. Синтез операционного автомата (ОА) процедурного типа
  14. Синтез ОА структурного типа
  15. Автоматные языки. Формальное задание Автомата
  16. Модели автоматов Мили и Мура
  17. Эквивалентность конечных автоматов (КА). Теорема Мура
  18. Минимизация конечных автоматов
  19. Эквивалентность автомата Мили и Мура
  20. Виды управляющего автомата (УА)
  21. Структурные схемы УА. Мили и Мура
  22. Этапы синтеза управляющего автомата с жесткой логикой (УАЖЛ)
  23. Примеры синтеза УАЖЛ
  24. Гонки и способы борьбы с ними
  25. УА с программируемой логикой (УАПЛ)
  26. Алгебраическая и структурная теория КА
  27. Объединение нескольких УА в один
  28. Программная реализация КА. Варианты реализации. Шаблон Состояние
  29. Назначение и краткая характеристика VHDL
  30. Реализация УА на VHDL
  31. Понятие о языке моделирования UML
  32. Понятие о языках и формальных грамматиках
  33. Классификация языков
  34. Лемма о накачке
  35. Понятие о НКА. Получение ДКА по НКА
  36. Регулярные выражения. Синтаксические диаграммы. Теорема Клини
  37. Применение РВ. Различные нотации РВ
  38. КС-грамматики и магазинные автоматы
  39. Машины Тьюринга
  40. Использование МТ для анализа алгоритмов

Пример вопроса из шпаргалки

Предмет теории автоматов

Автомат – объект (идеальный, материальный или более конкретно – устройство), осуществляющий переработку информации.

Изучение способов преобразования информации является предметом теории автоматов в широком смысле.

Теория автоматов является частью кибернетики, как науки о способах хранения, восприятия, передачи и переработки информации в машинах и живых организмах.

Теория автоматов использует различные математические модели. Наиболее общие из них изучают абстрактная теория автоматов и алгебраическая ТА.

С точки зрения абстрактной ТА автомат представляет собой совокупность множеств и отображений. Например, автомат может задаваться как шестерка объектов: А = , где:

  • X – множество входных символов автомата
  • Y – множество выходных символов автомата
  • Q – множество состояний автомата
  • q0 – начальные состояния автомата
  • A – функция перехода: Q x X -> Q
  • B – функция выхода: Q x X -> Y

Автоматные преобразования: выходные слова автомата зависят не только от выходных слов состояний, но и от значений слов в предыдущем состоянии.

Математический автомат рассматривается иногда как алгебра, при этом выделяется множество состояний автомата и операции над этим множеством.

Технический автомат – физическое устройство, для которого важно не только поведение или закон функционирования, но и его внутренняя структура, получение этой структуры, поэтому в технике рассматривают структурную теорию автомата, предметом которой является изучение структуры автомата, анализ и синтез схем автомата с заданными свойствами.

Можно выделить следующие виды Теорий Автоматов:

  • Абстрактные ТА (математические);
  • Структурные ТА (технические);
  • Общие ТА;
  • Прикладные ТА;

ПТЦА - дискретный автомат – устройство, выполняющее преобразование цифровой информации по заданному алгоритму.

ТТ-автомат – устройство, выполняющее преобразование (распознавание) входных слов (текста).

верификация систем взаимодействующих процессов;
  • Языки описания документов и объектно-ориентированных программ;
  • Оптимизация логических программ др.
  • Об этом можно судить по выступлениям на семинаре " Software 2000…" ученых и специалистов.

    Дуг Росс: "…80 или даже 90 % информатики ( Computer Science ) будет в будущем основываться на теории конечных автоматов…"

    Herver Gallaire: "Я знаю людей из "Боинга", занимающихся системами стабилизации самолетов с использованием чистой теории автоматов. Даже трудно себе представить, что им удалось с помощью этой теории. "

    Brian Randell: "Большая часть теории автоматов была успешно использована в системных программах и текстовых фильтрах в ОС UNIX . Это позволяет множеству людей работать на высоком уровне и разрабатывать очень эффективные программы".

    1.1. Основные понятия и определения.

    Простейший преобразователь информации (рис.1.1,а) отображает некоторое множество элементов информации Х , поступающее на вход, в некоторое множество на выходе Y . Если множества Х и Y являются конечными и дискретными, то есть преобразование осуществляется в дискретные моменты времени, то такие преобразователи информации называются конечными преобразователями. Элементы множеств Х и Y в этом случае предварительно кодируют двоичными кодами и строят преобразование одного множества в другое.

    Результат преобразования зачастую зависит не только от того, какая информация в данный момент появилась на входе, но и от того, что происходило раньше, то есть от предыстории преобразования. Например, один и тот же вход - извинение соседа после того, как он вам наступил на ногу в переполненном автобусе - вызовет у вас одну реакцию в первый раз и совсем другую - в пятый раз.


    Рис. 1.1.

    Таким образом, существуют более сложные преобразователи информации (ПИ), реакция которых зависит не только от входных сигналов в данный момент, но и от того, что было раньше, от входной истории. Такие ПИ называются автоматами (схемами с памятью). В этом случае говорят об автоматном преобразовании информации (рис.1.1,б). На один и тот же входной сигнал автомат может реагировать по-разному, в зависимости от состояния, в котором он находился. Автомат меняет свое состояние с каждым входным сигналом.

    Рассмотрим несколько примеров.

    Пример 1 1Карпов Ю.Г. Теория автоматов-СПб.:Питер, 2003 . Автомат , описывающий поведение "умного" отца.

    Опишем поведение отца, сын которого учится в школе и приносит двойки и пятерки. Отец не хочет хвататься за ремень каждый раз, как только сын получит двойку, и выбирает более тонкую тактику воспитания. Зададим такой автомат графом , в котором вершины соответствуют состояниям, а дуга из состояния s в состояние q , помеченное x/y , проводится тогда, когда автомат из состояния s под воздействием входного сигнала х переходит в состояние q с выходной реакцией y . Граф автомата , моделирующего умное поведение родителя, представлен на рис.1.2. Этот автомат имеет четыре состояния , два входных сигнала - оценки и выходные сигналы , которые будем интерпретировать как действия родителя следующим образом:

    Брать ремень;

    Ругать сына;

    Успокаивать сына;

    Надеяться;

    Радоваться;

    Ликовать.


    Рис. 1.2.

    Сына, получившего одну и ту же оценку - двойку, ожидает дома совершенно различная реакция отца в зависимости от предыстории его учебы. Например, после третьей двойки в истории сына встретят ремнем, а в истории будут успокаивать и т.д.

    Конечный автомат может быть реализован как программно, так и аппаратно. Программную реализацию можно выполнить на любом языке высокого уровня разными способами. На рис.1.3 представлена блок-схема программы, реализующей поведение автомата примера 1. Нетрудно увидеть, что топология блок-схемы программы повторяет топологию графа переходов автомата . С каждым состоянием связана операция NEXT , выполняющая функцию ожидания очередного события прихода нового входного сигнала и чтения его в некоторый стандартный буфер х , а также последующий анализ того, какой это сигнал. В зависимости от того, какой сигнал пришел на вход, выполняется та или иная функция и происходит переход к новому состоянию.


    Рис. 1.3.

    Аппаратную реализацию автомата рассмотрим во второй части этого раздела.

    Пример 2. "Студент"

    Автомат , модель которого представлена на рис.1.4 , описывает поведение студента и преподавателей.


    Рис. 1.4.

    Состояния;

    - входные сигналы: "н", "2" и "5".

    Выходные реакции:

    Пример 3 1 . Электронные часы (рис.1.5).

    Электронные часы разнообразных функциональных возможностей являются одним из наиболее широко применяемых в быту электронных приборов, управление которыми построено на основе конечноавтоматной модели. Они обычно показывают: время, дату; у них имеется функции такие как "установка времени и даты", "Секундомер", "Будильник"и т.п. Упрощенная структурная схема электронных часов показана нарис.1.5


    Рис. 1.5.

    Регистры отображают либо время, либо дату, либо секундомер в зависимости от "Управления". Устройство управления построено на основе модели конечного автомата . Конечный автомат реагирует на нажатия кнопки "а" на корпусе переходом в состояние "Установка минут", в котором событие нажатия кнопки "b" вызовет увеличение числа.

    Федеральное агентство по образованию

    Государственное образовательное учреждение высшего профессионального образования

    «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

    ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ»

    Кафедра ИТ-4 «Персональные компьютеры и сети»

    «УТВЕРЖДАЮ»

    Заведующий кафедрой ИТ-4

    Михайлов Б.М.

    «___»__________________2007г.

    ЛЕКЦИИ

    По дисциплине 1425 «Теория автоматов»

    Для студентов 2 курса факультета ИТ

    Специальности 230101

    «Вычислительные машины, комплексы, системы и сети»

    Обсуждены на заседании кафедры

    «___»________________2007г.

    Протокол № _____

    Москва 2007

    ^ Общие положения

    Цели и задачи дисциплины

    Целью дисциплины является изложение принципов организации программных и аппаратных средств, в рамках персональных ЭВМ с использованием теории автоматов, овладение навыками разработки программного обеспечения и аппаратных средств ЭВМ.

    ^ Требования к уровню освоения содержания дисциплины

    Знания, приобретенные в результате освоения дисциплины:


    • Принципы и основные понятия теории автоматов;

    • Применение теории автоматов для построения трансляторов алгоритмических языков;

    • Применение теории автоматов при разработке устройств и дискретной аппаратуры в рамках персональных ЭВМ;
    Умения и навыки, приобретенные в результате освоения дисциплины:

    • Применение теории автоматов для решения прикладных задач;

    • Проектирование дискретных устройств;

    • Проектирование трансляторов;

    Основная литература

    1. Савельев А.Я. Основы информатики: учебник для вузов.-М.:Издательство МГТУ им. Н.Баумана,2001.-328с.

    2. Карпов Ю.Г.Теория автоматов:СПб.:Питер,2003.-224 с.:ил.

    3. Зайцев Е.И. Теория автоматов: Учебное пособие.-М.:МГАПИ,2002.-59с.

    Дополнительная литература

    1. Хопкрофт Д., Мотвани Р., Введение в теорию автоматов, языков и вычислений: пер с англ.-М.:Издат. Дом Вильямс,2002.-528с.

    Лекция №1.

    Основные понятия и определения

    Продолжительность: 2 часа (90) минут

    1.1. Ключевые (основные) вопросы (моменты)

    Место дисциплины «Теория автоматов» в ряду дисциплин, читаемых на кафедре

    Объекты Теории автоматов

    Задачи Теории автоматов

    Основные понятия и определения.

    ^ ТЕОРИЯ АВТОМАТОВ.

    1.2.1. Основные положения теории автоматов. До 20 минут

    Автомат (от греческого   - самодействующий) - управляющая система , являющаяся конечным автоматом или некоторой его модификацией, полученной путем изменения его компонент или функционирования. Основное понятие - конечный автомат - возникло в середине 20 века в связи с попытками описать на математическом языке функционирование нервных систем, универсальных вычислительных машин и других реальных автоматов. Характерной особенностью такого описания является дискретность соответствующих математических моделей и конечность областей значений их параметров, что приводит к понятию конечного автомата.

    Теория автоматов - это раздел теории управляющих систем , изучающий математические модели преобразователей дискретной информации, называемые автоматами . С определенной точки зрения такими преобразователями являются как реальные устройства (вычислительные машины, автоматы, живые организмы и т.д.), так и абстрактные системы (например, формальная система, аксиоматические теории и т.д.). Наиболее тесно связана с теорией алгоритмов .

    Большинство задач теории автоматов - общие для основных видов управляющих систем. К ним относятся задачи анализа и синтеза автоматов, задачи полноты, минимизации, эквивалентных преобразований автоматов и другие. Задача анализа состоит в том, чтобы по заданному автомату описать его поведение или по неполным данным об автомате и его функционированию установить те или иные его свойства. Задача синтеза автоматов состоит в построении автомата с наперед заданным поведением или функционированием. Задача полноты состоит в выяснении, обладает ли множество M" M автоматов свойством полноты, т.е. совпадает ли с M множество всех автоматов, которые получаются путем конечного числа применений некоторых операций к автоматам из заданного подмножества автоматов M" . Задача эквивалентных преобразований в общем виде состоит в том, чтобы найти систему правил преобразований (так называемую полную систему правил) автоматов, которые удовлетворяют определенным условиям и позволяют преобразовать произвольный автомат в любой эквивалентный ему автомат (два автомата эквивалентны, если они имеют одинаковое поведение автомата. Поведение автомата - математическое понятие, описывающее взаимодействие автомата с внешней средой. Примером внешней среды конечного автомата является множество входных слов, а поведением - словарная функция, реализуемая автоматом, или событие, представимое автоматом.)

    Помимо перечисленных, в теории автоматов имеются специфические проблемы, характерные для автоматов. Так, в зависимости от условий задачи поведение автомата удобно задавать на разных языках, в связи с чем важными задачами являются выбор достаточно удобного адекватного языка и перевод с одного языка на другой. В тесной связи с задачами синтеза и эквивалентных преобразований находится задача минимизации числа состояний автомата, а также получение соответствующих оценок. Близкий круг вопросов возникает в связи с моделированием поведения автоматов одного класса автоматами другого класса. Здесь также представляют интерес вопросы минимизации моделирующих автоматов и оценки их сложности. Специальный раздел теории автоматов связан с так называемыми экспериментами с автоматами (т.е. способами получения информации о внутренней структуре автоматов по их поведению). Основная задача здесь состоит в том, чтобы получить определенные сведения о строении автомата путем наблюдения его реакции на те или иные внешние воздействия. При этом возникает большой круг задач, связанный с классификацией экспериментов и с вопросами разрешимости задач определенными видами экспериментов, а также с оценками длин минимальных экспериментов, достаточных для решения тех или иных задач. Понятие эксперимента с автоматами используется также в задачах надежности и контроля управляющих систем, в частности контроля автоматов. Многие из перечисленных выше задач могут рассматриваться как алгоритмические проблемы. Для конечных автоматов большинство из них имеют положительное решение.

    Теория автоматов находит применение как и в других областях математики, так и в решении практических задач. Например, средствами теории автоматов доказывается разрешимость некоторых формальных исчислений. Применение методов и понятий теории автоматов к изучению формальных и естественных языков привело к возникновению математической лингвистики (математическая лингвистика - математическая дисциплина, предметом которой является разработка формального аппарата для описания строения естественных и некоторых искусственных языков.) Понятие автомата может служить модельным объектом в самых разнообразных задачах, благодаря чему возможно применение теории автоматов в различных научных и прикладных исследованиях.

    ^ 1.2.2. Проблемы и задачи, решаемые теорией автоматов. До 30 минут

    Теория автоматов – раздел дискретной математики, изучающий математические модели реальных (технических, биологических, экономических) или возможных устройств, перерабатывающих дискретную информацию дискретными временными тактами.

    В этой теории достаточно четко выявляются ее направления, обусловленные:


    1. выбором изучаемых типов автоматов (конечные, бесконечные, детерминированные, вероятностные, автономные, комбинационные, без выхода)

    2. принятым уровнем абстракции (абстрактные и структурные автоматы)

    3. спецификой применяемых математических (алгебраическая теория автоматов)
    При этом в дискретных моделях рассматриваемых объектов учитывается лишь логика происходящих процессов изменений автомата без учета количественных характеристик.

    Центральными проблемами читаемой теории являются проблемы синтаксиса и анализа (т.е. разработка функциональной схемы автомата по заданному его поведению и описание поведения автомата по известной его структуре). С этими проблемами тесно связаны задачи полноты, эквивалентности, минимизации числа состояний автоматов.

    Далее автомат, как устройство, предназначенное для выполнения целенаправленных действий без участия человека, рассматривается либо как реализующий ту или иную формальную грамматику (абстрактный автомат), либо как множество элементов и схема их соединения (структурный автомат).

    АВТОМАТОВ ТЕОРИЯ, раздел дискретной математики, изучающий математические модели преобразователей дискретной информации, называемых автоматами. Примерами таких преобразователей являются как реальные системы (вычислительные машины, технические автоматы, живые организмы), так и абстрактные системы (абстрактные вычислительные машины, аксиоматические теории). Автоматов теория возникла в середине 20 века в связи с изучением автоматов как математических моделей биологических систем и вычислительных машин. В дальнейшем проблематика автоматов теории существенно расширилась.

    Автоматов теория тесно связана с теорией алгоритмов, в частности с теорией абстрактных вычислительных машин, поскольку автоматы можно рассматривать как случай их аппроксимации.

    Автомат можно охарактеризовать как устройство, имеющее входной и выходной каналы и находящееся в каждый дискретный момент времени в одном из внутренних состояний. По входному каналу в такой момент поступают сигналы-воздействия. В те же моменты по выходному каналу устройство выдаёт сигналы-реакции. Состояния автомата, сигналы-воздействия и сигналы-реакции задаются буквами соответствующих алфавитов: алфавита состояний, а также алфавитов входных и выходных сигналов. Законы взаимодействия букв этих алфавитов задаются двумя функциями - функцией переходов и функцией выходов, отображающими пары (состояние - входная буква), в состояния и выходные буквы соответственно. Входной средой для автомата является множество слов во входном алфавите, а внутренней и выходной его средами являются множества слов в алфавите состояний и выходном алфавите. Автомат побуквенно перерабатывает слова из входной среды в слова двух других сред. Этот процесс называется поведением автомата. Свойства алфавитов и функций определяют различные типы автоматов. В случае, когда все алфавиты конечны, получают конечный автомат, в противном случае автомат называют бесконечным. Замена функций на отношения приводит к частичным и недетерминированным автоматам; использование случайных функций приводит к вероятностному автомату. При интерпретации входной среды термами или графами приходят к автоматам над термами и автоматам в лабиринтах.

    Большинство задач автоматов теории являются общими для основных видов управляющих систем, к ним относятся задачи анализа и синтеза автоматов, задачи о полноте, минимизации, а также задачи, связанные с эквивалентными преобразованиями автоматов. Задача анализа состоит в том, чтобы по заданному автомату описать его поведение или по неполным данным об автомате и его функционированию установить те или иные его свойства. Задача синтеза состоит в построении автомата с заданным поведением, или функционированием. К этой задаче примыкают проблемы, связанные с оценкой сложности автоматов, обладающих заданным поведением, а также с построением оптимальных в определённом смысле автоматов. Задача о полноте состоит в том, чтобы выяснить, можно ли данное множество автоматов получить из меньшего множества с помощью некоторых операций над автоматами. Задача минимизации автоматов состоит в минимизации значений параметров автоматов (например, числа состояний), при которой получается автомат, эквивалентный в том или ином смысле исходному. Помимо задач, общих для основных видов управляющих систем, в автоматов теории рассматриваются специфические проблемы, характерные для автоматов. Так, в зависимости от условий задачи поведение автоматов удобно задавать на разных языках (регулярные выражения, канонические уравнения, язык логики предикатов и т.п.), в связи, с чем важными задачами являются выбор достаточно удобного адекватного языка и перевод с одного языка на другой. С задачами синтеза и эквивалентных преобразований связана задача минимизации числа состояний автомата. В связи с моделированием поведения автоматов одного класса автоматами другого класса возникают задачи минимизации моделирующих автоматов и оценки их сложности. Специальный раздел автоматов теории связан с так называемыми экспериментами с автоматами. Основная задача этого раздела состоит в том, чтобы получить определённые сведения о строении автомата путём наблюдения его реакции на те или иные внешние воздействия. При этом возникают задачи, связанные с классификацией экспериментов и с вопросами разрешимости задач определёнными видами экспериментов, а также с оценками длин минимальных экспериментов, достаточных для решения тех или иных задач. Понятие эксперимента с автоматами используется также в задачах контроля автоматов. Специальными разделами автоматов теории являются игры автоматов и поведение автоматов в случайной среде, в которых рассматриваются вопросы взаимодействия автоматов друг с другом и с определёнными внешними средами. Многие из перечисленных выше задач могут рассматриваться как массовые проблемы (смотри Алгоритмическая проблема). Для конечных автоматов большинство из них имеет положительное решение.

    Автоматов теория находит применение во многих областях. Например, средствами автоматов теории доказывается разрешимость некоторых формальных исчислений. Методы и понятия автоматов теории существенно используются в математической лингвистике. Понятие автомата может служить модельным объектом в разнообразных задачах, благодаря чему возможно применение автоматов теории в различных прикладных исследованиях.

    Лит.: Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М., 1985.

    Теория автоматов

    Теория автоматов - раздел дискретной математики , изучающий абстрактные автоматы - вычислительные машины, представленные в виде математических моделей - и задачи, которые они могут решать.

    Теория автоматов наиболее тесно связана с теорией алгоритмов : автомат преобразует дискретную информацию по шагам в дискретные моменты времени и формирует результат по шагам заданного алгоритма .

    Терминология

    Символ - любой атомарный блок данных, который может производить эффект на машину. Чаще всего символ - это буква обычного языка, но может быть, к примеру, графическим элементом диаграммы.

    • Слово - строка символов, создаваемая через конкатенацию (соединение).
    • Алфавит - конечный набор различных символов (множество символов)
    • Язык - множество слов, формируемых символами данного алфавита. Может быть конечным или бесконечным.
    Автомат Автомат - последовательность (кортеж) из пяти элементов , где: Слово Автомат читает конечную строку символов a 1 ,a 2 ,…., a n , где a i ∈ Σ, и называется словом .Набор всех слов записывается как Σ*. Принимаемое слово Слово w ∈ Σ* принимается автоматом, если q n ∈ F.

    Говорят, что язык L читается (принимается) автоматом M, если он состоит из слов w на базе алфавита таких, что если эти слова вводятся в M, по окончанию обработки он приходит в одно из принимающих состояний F:

    Обычно автомат переходит из состояния в состояние с помощью функции перехода , читая при этом один символ из ввода. Есть также автоматы, которые могут перейти в новое состояния без чтения символа. Функция перехода без чтения символа называется -переход (эпсилон-переход).

    Применение

    Практически теория автоматов применяется при разработке лексеров и парсеров для формальных языков (в том числе языков программирования), а также при построении компиляторов и разработке самих языков программирования.

    Другое важнейшее применение теории автоматов - математически строгое нахождение разрешимости и сложности задач.

    Типовые задачи

    • Построение и минимизация автоматов - построение абстрактного автомата из заданного класса, решающего заданную задачу (принимающего заданный язык), возможно, с последующей минимизацией по числу состояний или числу переходов.
    • Синтез автоматов - построение системы из заданных «элементарных автоматов», эквивалентную заданному автомату. Такой автомат называется структурным . Применяется, например, при синтезе цифровых электрических схем на заданной элементной базе.

    См. также

    Литература

    • Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. - М .: Вильямс, 2002. - С. 528. - ISBN 0-201-44124-1
    • Касьянов В. Н. Лекции по теории формальных языков, автоматов и сложности вычислений. - Новосибирск: НГУ, 1995. - C. 112.

    Ссылки


    Wikimedia Foundation . 2010 .

    • Азиатская конфедерация футбола
    • Теория сложности вычислений

    Смотреть что такое "Теория автоматов" в других словарях:

      Теория автоматов

      Теория автоматов - раздел теоретической кибернетики, который изучает математические модели (называемые здесь автоматами или машинами) реальных или возможных устройств, перерабатывающих дискретную ин­формацию дискретными же тактами. Основными… … Экономико-математический словарь

      теория автоматов - Раздел теоретической кибернетики, который изучает математические модели (называемые здесь автоматами или машинами) реальных или возможных устройств, перерабатывающих дискретную информацию дискретными же тактами. Основными понятиями этой теории… … Справочник технического переводчика

      теория автоматов - сущ., кол во синонимов: 1 тавт (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

      теория автоматов - automatų teorija statusas T sritis automatika atitikmenys: angl. automata theory vok. Automatentheorie, f rus. теория автоматов, f pranc. théorie des automates, f … Automatikos terminų žodynas

      Диаграмма состояний (теория автоматов) - У этого термина существуют и другие значения, см. Диаграмма состояний. Диаграмма состояний ориентированный граф для конечного автомата, в котором вершины обозначают состояния дуги показывают переходы между двумя состояниями На практике… … Википедия

      Теория механизмов и машин - Теория машин и механизмов (ТММ) это научная дисциплина об общих методах исследования, построения, кинематики и динамики механизмов и машин и о научных основах их проектирования. Содержание 1 История развития дисциплины 2 Основные понятия … Википедия

      ТЕОРИЯ - (1) система научных идей и принципов, обобщающих практический опыт, отражающих объективные природные закономерности и положения, которые образуют (см.) или раздел какой либо науки, а также совокупность правил в области какого либо знания млн.… … Большая политехническая энциклопедия

      Теория алгоритмов Экономико-математический словарь

      Теория алгоритмов - раздел математики, изучающий общие свойства алгоритмов. Проблема построения алгоритма с теми или иными свойствами называется алгоритмической проблемой, ее неразрешимость означает отсутствие соответствующего алгоритма; если… … Экономико-математический словарь

    Книги

    • Теория автоматов. Учебник для бакалавриата и магистратуры , Кудрявцев В.Б.. Учебник содержит обширный материал по теории автоматов. В нем вводится понятие автомата, даны теории…


    
    Top