Среднее или всё же медиана? Формула моды и медианы в статистике.

Для характеристики рядов распределения (структуры вариационных рядов), наряду со средней, используются т. н. структурные средние : мода и медиана . Мода и медиана наиболее часто используются в экономической практике.

Мода - варианта, которая наиболее часто встречается в ряду распределения (в данной совокупности).

В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по следующим ценам в рублях:

44; 43; 44; 45; 43; 46; 42; 46;43. Так как чаще всего встречается цена 43 рубля, то она и будет модальной.

При характеристике социальных групп населения по уровню дохода следует использовать модальное значение, нежели среднее. Средняя будет занижать одни показатели и завышать другие - тем самым осредняя (уравнивания) доходы всех слоев населения.

В интервальных вариационных рядах моду определяют приближенно по формуле:

    ХМ0 - нижняя граница модального интервала;

    h Mo - величина (шаг, ширина) модального интервала;

    f 1 - локальная частота интервала, предшествующего модальному;

    f 2 - локальная частота модального интервала;

    f 3 - локальная частота интервала, следующего за модальным.

Распределение населения по уровню среднедушевого месячного дохода

Интервал 1000-3000 в данном распределении будет модальным, т.к. он имеет наибольшую частоту (f=35,5). Тогда по вышеуказанной формуле мода будет равна:

На графике (гистограмме распределения) моду определяют следующим образом: по оси ординат откладывают локальные частоты, а по оси абсцисс -интервалы либо центры интервалов. Выбирают самый высокий столбик, которому соответствует величина признака с наибольшей частотой в ряду распределения.

Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды.

Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значений изучаемого признака). Медиану иногда называют серединной вариантой , т.к. она делит совокупность на две равные части таким образом, чтобы по обе ее стороны находилось одинаковое число единиц совокупности. Если всем единицам ряда присвоить порядковые номера, то порядковый номер медианы будет определяться по формуле (n+1):2 для рядов, где n - нечетное . Если же ряд с четным числом единиц, томедианой будет являться среднее значение между двумя соседними вариантами, определенными по формуле: n:2, (n+1):2, (n:2)+1.

В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда.

Нахождение медианы в интервальных вариационных рядах требует предварительного определения интервала, в котором находится медиана, т.е. медианного интервала – этот интервал характеризуется тем, что его кумулятивная (накопленная) частота равна полусумме или превышает полусумму всех частот ряда.

    X Me -нижняя граница медианного интервала

    h Me -величина медианного интервала;

    S Me-1 -сумма накопленных частот интервала, предшествующего медианному интервалу;

    f Me -локальная частота медианного интервала.

По данным таблицы определим медианное значение среднедушевого дохода. Для этого необходимо определить какой интервал будет медианным. Используем формулу номера медианной единицы ряда, т.е. середины:

Дробное значение N (всегда при четном числе членов) равное 50,5% говорит о том, что середина ряда находится между 50% и 51%, т.е. в третьем интервале. Иными словами: медианным считается интервал, на который впервые приходится более половины суммы накопленных частот. Отсюда медиана:

Для того, чтобы определить графически интервал, в котором находится медиана, по оси ординат откладывают накопленные частоты, а по оси абсцисс - центры интервалов. Из точки на оси ординат, которой соответствует 50.5% суммы накопленных частот, проводят линию параллельно оси абсцисс до пересечения с кумулятой. Из точки пересечения опускают перпендикуляр на ось абсцисс.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M 0

Из соотношения этих показателей следует сделать вывод о правосторонней асимметрии распределения населения по уровню среднедушевого денежного дохода:

Квартиль –это четвертая часть совокупности, определяется как и медиана, только сумму частот необходимо разделить на 4, а при определении квартильного интервала, кумулятивная частота должна быть больше или равна четверти суммы частот совокупности.

Дециль – делит совокупность на десять равных частей. Определяется аналогично как и квартиль, только сумму частот необходимо разделить на 10.

В силу того, что исследователь не располагает данными об объеме продаж в каждом обменном пункте, расчет средней арифметической с целью определения средней цены за доллар нецелесообразен.

Медиана ряда чисел

Однако можно определить то значение признака, которое носит название медиана (Ме). Медиана

в нашем примере

Номер медианы: №Ме = ;

Мода

Таблица 3.6.

f — сумма частот ряда;

S накопительные частоты

12_

_

S — накопленные частоты.

На рис. 3.2. Изображена гистограмма ряда распределения банков по размеру прибыли (по данным табл. 3.6.).

х — размер прибыли, млн. руб.,

f — число банков.

"МЕДИАНА УПОРЯДОЧЕННОГО РЯДА"

Текстовая HTML-версия публикации


Конспект урока алгебры в 7 классе

Тема урока: «МЕДИАНА УПОРЯДОЧЕННОГО РЯДА».

учитель Озёрной школы филиал МКОУ Бурковская СОШ Ерёменко Татьяна Алексеевна
Цели:
понятие медианы как статистической характеристики упорядоченного ряда; формировать умение находить медиану для упорядоченных рядов с четным и нечетным числом членов; формировать умение интерпретировать значения медианы в зависимости от практической ситуации, закрепление понятия среднего арифметического набора чисел. Развивать навыки самостоятельной работы. Формировать интерес к математике.
Ход урока

Устная работа.
Даны ряды: 1) 4; 1; 8; 5; 1; 2) ; 9; 3; 0,5; ; 3) 6; 0,2; ; 4; 6; 7,3; 6. Найдите: а) наибольшее и наименьшее значения каждого ряда; б) размах каждого ряда; в) моду каждого ряда.
II. Объяснение нового материала.
Работа по учебнику. 1. Рассматрим задачу с п. 10 учебника. Что означает упорядоченный ряд? Подчеркну, что перед нахождением медианы нужно всегда упорядочить ряд данных. 2.На доске знакомимся с правилами нахождения медианы для рядов с четным и нечетным числом членов:
Медианой

упорядоченного

ряда
чисел
с

нечетным

числом

членов

называется число, записанное посередине, а
медианой

упорядоченного ряда
чисел
с четным числом членов
называется среднее арифметическое двух чисел, записанных посредине.
Медианой

произвольного

ряда
называется медиана 1 3 1 7 5 4 соответствующего упорядоченного ряда.
Отмечу, что показатели- среднее арифметическое, мода и медиана по

разному

характеризуют

данные,

полученные

результате

наблюдений.

III. Формирование умений и навыков.
1-я группа. Упражнения на применение формул нахождения медианы упорядоченного и неупорядоченного ряда. 1.
№ 186.
Решение: а) Число членов ряда п = 9; медиана Ме = 41; б) п = 7, ряд упорядочен, Ме = 207; в) п = 6, ряд упорядочен, Ме = = 21; г) п = 8, ряд упорядочен, Ме = = 2,9. Ответ: а) 41; б) 207; в) 21; г) 2,9. Учащиеся комментируют способ нахождения медианы. 2. Найдите среднее арифметическое и медиану ряда чисел: а) 27, 29, 23, 31, 21, 34; в) ; 1. б) 56, 58, 64, 66, 62, 74. Решение: Для нахождения медианы необходимо каждый ряд упорядочить: а) 21, 23, 27, 29, 31, 34. п = 6; X = = 27,5; Ме = = 28; 20 22 2 + 2, 6 3, 2 2 + 1125 ; ; ; 3636 21 23 27 29 31 34 165 66 +++++ = 27 29 2 + б) 56, 58, 62, 64, 66, 74.

Как найти медиану в статистике

п = 6; X = 63,3; Ме = = 63; в) ; 1. п = 5; X = : 5 = 3: 5 = 0,6; Ме = . 3.
№ 188
(устно). Ответ: да; б) нет; в) нет; г) да. 4. Зная, что в упорядоченном ряду содержится т чисел, где т – нечетное число, укажите номер члена, являющегося медианой, если т равно: а) 5; б) 17; в) 47; г) 201. Ответ: а) 3; б) 9; в) 24; г) 101. 2-я группа. Практические задачи на нахождение медианы соответствующего ряда и интерпретацию полученного результата. 1.
№ 189.
Решение: Число членов ряда п = 12. Для нахождения медианы ряд нужно упорядочить: 136, 149, 156, 158, 168, 174, 178, 179, 185, 185, 185, 194. Медиана ряда Ме = = 176. Выработка за месяц была больше медианы у следующих членов артели: 56 58 62 64 66 74 380 66 +++++ =≈ 62 64 2 + 1125 ; ; ; 3636 1125 12456 18 1:5:5 6336 6 6 ++++ ⎛⎞ ++++ = = ⎜⎟ ⎝⎠ 2 3 67 174 178 22 xx + + = 1) Квитко; 4) Бобков; 2) Баранов; 5) Рылов; 3) Антонов; 6) Астафьев. Ответ: 176. 2.
№ 192.
Решение: Упорядочим ряд данных: 30, 31, 32, 32, 32, 32, 32, 32, 33, 35, 35, 36, 36, 36, 38, 38, 38, 40, 40, 42; число членов ряда п = 20. Размах A = x max – x min = 42 – 30 = 12. Мода Мо = 32 (это значение встречается 6 раз – чаще других). Медиана Ме = = 35. В данном случае размах показывает наибольший разброс времени на обработку детали; мода показывает наиболее типическое значение времени обработки; медиана – время обработки, которое не превысили половина токарей. Ответ: 12; 32; 35.
IV. Итог урока.
– Что называется медианой ряда чисел? – Может ли медиана ряда чисел не совпадать ни с одним из чисел ряда? – Какое число является медианой упорядоченного ряда, содержащего 2п чисел? 2п – 1 чисел? – Как найти медиану неупорядоченного ряда?
Домашнее задание:
№ 187, № 190, № 191, № 254. 10 11 35 35 22 xx + + =

В раздел основное общее образование

Мода и медиана

К средним величинам относят также моду и медиану.

Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней (арифметической, гармонической и др.) невозможен или нецелесообразен.

Например, выборочное обследование в г. Омске 12 коммерческих пунктов обмена валюты позволило зафиксировать различные цены за доллар при его продаже (данные на 10 октября 1995г. при биржевом курсе доллара -4493руб).

В силу того, что исследователь не располагает данными об объеме продаж в каждом обменном пункте, расчет средней арифметической с целью определения средней цены за доллар нецелесообразен. Однако можно определить то значение признака, которое носит название медиана (Ме). Медиана лежит в середине ранжированного ряда и делит его пополам.

Расчет медианы по несгруппированным данным производится следующим образом:

а) расположим индивидуальные значения признака в возрастающем порядке:

4500 4500 4535 4540 4550 4560 4560 4560 4560 4570 4570 4570

б) определим порядковый номер медианы по формуле:

в нашем примере это означает, что медиана в данном случае расположена между шестым и седьмым значениями признака в ранжированном ряду, так как ряд имеет четное число индивидуальных значений. Таким образом, Ме равна средней арифметической из соседних значений: 4550, 4560.

в) рассмотрим порядок вычисления медианы в случае нечетного числа индивидуальных значений.

Допустим, мы наблюдаем не 12, а 11 пунктов обмена валюты, тогда ранжированный ряд будет выглядеть следующим образом (отбрасываем 12-й пункт):

4500 4500 4535 4540 4550 4560 4560 4560 4560 4570 4570

Номер медианы: №Ме = ;

на шестом месте стоит = 4560, который и является медианой: Ме=4560. По обе стороны от нее находится одинаковое число пунктов.

Мода — это наиболее часто встречающееся значение признака у единиц данной совокупности. Она соответствует определенному значению признака.

В нашем случае модальной ценой за доллар можно назвать 4560 руб.: это значение повторяется 4 раза, чаще, чем все другие.

На практике моду и медиану находят, как правило, по сгруппированным данным. В результате группировки был получен ряд распределения банков по величине полученной прибыли за год (табл. 3.6.).

Таблица 3.6.

Группировка банков по величине полученной прибыли за год

Для определения медианы надо подсчитать сумму накопительных частот. Наращивание итого продолжается до получения накопительной суммы частот, превышающей половину суммы частот. В нашем примере сумма накопленных частот (12), превышающая половину всех значений (20:2). Этому значению соответствует медианный интервал, который содержит медиану (5,5 — 6,4). Определим ее значение по формуле:

где начальное значение интервала, содержащего медиану;

— величина медианного интервала;

f — сумма частот ряда;

— сумма накопительных частот, предшествующих медианному интервалу;

— частота медианного интервала.

Таким образом, 50% банков имеют прибыль 6,1 млн. руб., а 50% банков — более 6,1 млн. руб.

Наибольшая частота соответствует также интервалу 5,5 — 6,4, т.е. мода должна находиться в этом интервале. Ее величину определим по формуле:

где — начальное значение интервала, содержащего моду;

— величина модального интервала;

— частота модального интервала;

— частота интервала, предшествующего модальному;

— частота интервала, следующего за модальным.

Приведенная формула моды может быть использована в вариационных рядах с равными интервалами.

Таким образом, в данной совокупности наиболее часто встречается размер прибыли 6,10 млн. руб.

Медиану и моду можно определить графически. Медиана определяется по кумуляте (рис. 3.1.). Для ее построения надо рассчитать накопительные частоты и частости. Накопительные частоты показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение, и определяется последовательным суммированием частот интервалов. При построении кумулятыы интервального ряда распределения нижней границе первого интервала соответствует частота, равная нулю, а верхней границе — вся частота данного интервала. Верхней границе второго интервала соответствует накопительная частота, равная сумме частот первых двух интервалов, и т.д.

Построим кумулятивную кривую по данным табл. 6 о распределении банков по размеру прибыли.

S накопительные частоты

12_

_

3,7-4,6 4,6-5,5 5,5-6,4 6,4-7,3 7,3-8,2 Х прибыль

Рис. 3.1. Кумулята ряда распределения банков по размеру прибыли:

х — размер прибыли, млн. руб.,

S — накопленные частоты.

Для определения медианы высоту наибольшей ординаты, которая соответствует общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения является медианой.

Мода определяется по гистограмме распределения. Гистограмма строится так:

на оси абсцисс откладываются равные отрезки, которые в принятом масштабе соответствуют величине интервалов вариационного ряда. На отрезках строятся прямоугольники, площади которых пропорциональны частотам (или частостям) интервала.

Медиана в статистике

3.2. Изображена гистограмма ряда распределения банков по размеру прибыли (по данным табл. 3.6.).

3,7-4,6 4,6-5,5 5,5-6,4 6,4-7,3 7,3-8,2 Х

Рис. 3.2. Распределение коммерческих банков по размеру прибыли:

х — размер прибыли, млн. руб.,

f — число банков.

Для определения моды правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника, а левую вершину модального прямоугольника — с левым верхним углом последующего прямоугольника. Абсцисса точки пересечения этих прямых и будет модой распределения.

Медиана (статистика)

Медиана (статистика) , в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности.

Задача №1. Расчёт средней арифметической, модального и медианного значения

Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

  • Среднее значение
  • Медиана
  • Мода

Медиана (статистика)

Медиана (статистика) , в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5.

5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах

Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:

  • Среднее значение — среднее арифметическое, которое вычисляется сложением множества чисел с последующим делением полученной суммы на их количество.
    Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.
  • Медиана — число, которое является серединой множества чисел: половина чисел имеют значения большие, чем медиана, а половина чисел — меньшие.
    Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.
  • Мода — число, наиболее часто встречающееся в данном множестве чисел.
    Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

Урок алгебры в 7 классе.

Тема «Медиана как статистическая характеристика».

Учитель Егорова Н.И.

Цель урока: сформировать у учащихся представление о медиане набора чисел и умение вычислять ее для несложных числовых наборов, закрепление понятия среднего арифметического набора чисел.

Тип урока: объяснение нового материала.

Ход урока

1. Организационный момент.

Сообщить тему урока и сформулировать его цели.

2. Актуализация прежних знаний.

Вопросы учащимся:

Что называется средним арифметическим набора чисел?

Где располагается среднее арифметическое внутри набора чисел?

Что характеризует среднее арифметическое набора чисел?

Где часто применяется среднее арифметическое набора чисел?

Устные задачи:

Найти среднее арифметическое набора чисел:

Проверка домашнего задания.

Учебник: №169, №172.

3. Изучение нового материала.

На предыдущем уроке мы познакомились с такой статистической характеристикой как среднее арифметическое набора чисел. Сегодня мы посвятим урок еще одной статистической характеристике – медиане.

Не только среднее арифметическое показывает, где на числовой прямой располагаются числа какого-либо набора и где их центр. Другим показателем является медиана.

Медианой набора чисел называется такое число, которое разделяет набор на две равные по численности части. Вместо “медиана” можно было бы сказать “середина”.

Сначала на примерах разберем, как найти медиану, а затем дадим строгое определение.

Рассмотрим следующий устный пример с применением проектора

В конце учебного года 11 учеников 7-го класса сдали норматив по бегу на 100 метров. Были зафиксированы следующие результаты:

После того как ребята пробежали дистанцию, к преподавателю подошел Петя и спросил, какой у него результат.

“Самый средний результат: 16,9 секунды”, – ответил учитель

“Почему?” – удивился Петя. – Ведь среднее арифметическое всех результатов – примерно 18,3 секунды, а я пробежал на секунду с лишним лучше. И вообще, результат Кати (18,4) гораздо ближе к среднему, чем мой”.

“Твой результат средний, так как пять человек пробежали лучше, чем ты, и пять – хуже. То есть ты как раз посередине”, – сказал учитель.

Записать алгоритм нахождения медианы набора чисел:

Упорядочить числовой набор (составить ранжированный ряд).

Одновременно зачеркиваем “самое большое” и “самое маленькое” числа данного набора чисел до тех пор, пока не останется одно число или два числа.

Если осталось одно число, то оно и есть медиана.

Если осталось два числа, то медианой будет среднее арифметическое двух оставшихся чисел.

Предложить учащимся самостоятельно сформулировать определение медианы набора чисел, затем прочитать в учебнике определение медианы (стр. 40), далее решить № 186(а,б), № 187(а) учебника (стр.41).

Замечание:

Обратить внимание учащихся на важное обстоятельство: медиана практически не чувствительна к значительным отклонениям отдельных крайних значений наборов чисел. В статистике это свойство называется устойчивостью. Устойчивость статистического показателя – очень важное свойство, оно страхует нас от случайных ошибок и отдельных недостоверных данных.

4. Закрепление изученного материала.

Решение задач.

Обозначим х-среднее арифметическое, Ме-медиана.

Набор чисел: 1,3,5,7,9.

х=(1+3+5+7+9):5=25:5=5,

Набор чисел: 1,3,5,7,14.

х=(1+3+5+7+14):5=30:5=6.

а) Набор чисел: 3,4,11,17,21

б) Набор чисел: 17,18,19,25,28

в) Набор чисел:25, 25, 27, 28, 29, 40, 50

Вывод: медиана набора чисел, состоящего из нечетного числа членов равна числу, стоящему посередине.

а) Набор чисел:2, 4, 8, 9.

Ме = (4+8):2=12:2=6

б) Набор чисел:1,3,5,7,8,9.

Ме = (5+7):2=12:2=6

Медиана набора чисел, содержащего четное число членов равна полусумме двух чисел, стоящих посередине.

Ученик получил в течении четверти следующие оценки по алгебре:

5, 4, 2, 5, 5, 4, 4, 5, 5, 5.

Найдите средний балл и медиану этого набора.

Найдем средний балл, то есть среднее арифметическое:

х= (5+4+2+5+5+4+4+5+5+5): 10=44:10 = 4,4

Найдем медиану этого набора чисел:

Упорядочим набор чисел: 2,4,4,4,5,5,5,5,5,5

Всего 10 чисел, чтобы найти медиану надо взять два средних числа и найти их полусумму.

Ме = (5+5):2 = 5

Вопрос к учащимся: Если бы вы были учителем, какую бы вы поставили оценку за четверть этому ученику? Ответ обоснуйте.

Президент компании получает зарплату 300000 руб. три его заместителя получают по 150000 руб., сорок служащих – по 50000 руб. и зарплата уборщицы составляет 10000 руб. Найдите среднее арифметическое и медиану зарплат в компании. Какую из этих характеристик выгоднее использовать президенту в рекламных целях?

х = (300000+3·150000+40·50000+10000):(1+3+40+1) = 2760000:45=61333,33 (руб.)

№ 6. Устно.

А) Сколько чисел в наборе, если его медианой служит ее девятый член?

Б) Сколько чисел в наборе, если его медианой служит среднее арифметическое 7-го и 8-го членов?

В) В наборе из семи чисел наибольшее число увеличили на 14. Изменится ли при этом и как среднее арифметическое и медиана?

Г) Каждое из чисел набора увеличили на 3. Что произойдет со средним арифметическим и медианой?

Конфеты в магазине продают на вес. Чтобы узнать, сколько конфет содержится в одном килограмме, Маша решила найти вес одной конфеты. Она взвесила несколько конфет и получила следующие результаты:

12, 13, 14, 12, 15, 16, 14, 13, 11.

Для оценки веса одной конфеты пригодны обе характеристики, т.к. они не сильно отличаются друг от друга.

Итак, для характеристики статистической информации используют среднее арифметическое и медиану. Во многих случаях какая-то из характеристик может не иметь никакого содержательного смысла (например, имея сведения о времени дорожно-транспортных происшествий, вряд ли имеет смысл говорить о среднем арифметическом этих данных).

Домашнее задание:пункт 10, № 186(в,г), № 190.

5. Итоги урока. Рефлексия.

  1. «Статистические исследования: сбор и группировка статистических данных»

    Урок

    темы , предлагаемые для седьмого класса . ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ. § 1. Статистические характеристики . П 1. Среднее арифметическое, размах и мода 1ч. П 2. Медиана как статистическая характеристика

  2. Рабочая программа учебного курса «алгебра» в 7 классе (базовый уровень) пояснительная записка

    Рабочая программа

    … п.10 Медиана как статистическая характеристика 23 п.9 Среднее арифметическое, размах и мода 24 Контрольная работа № 2 по теме

  3. Рабочая программа. Математика. 5 класс с. Канаши. 2011г

    Рабочая программа

    … уравнений. Среднее арифметическое, размах и мода. Медиана как статистическая характеристика . Цель – систематизировать и обобщить сведения о … и навыков, полученных на уроках по данным темам (курс алгебры 10 класса ). 11 класс (4 часа в неделю …

  4. Приказ №51 от «30» август 2012 г. Рабочая программа по алгебре 7 класс

    Рабочая программа

    … учебным материалом Медиана как статистическая характеристика Знать определение среднего арифметического, размаха, моды и медианы как статистической характеристики Фронтальная и индивидуальная …

  5. Рабочая программа по математике 7 класс ii ступень базовый уровень (1)

    Рабочая программа

    Как найти медиану ряда

    же, как в 6 классе . Изучение темы завершается ознакомлением учащихся с про­стейшими статистическими характеристиками : средним … М. : Издательский дом «Генжер», 2009. 3. Жохов, В. И. Уроки алгебры в 7 классе : кн. для учителя / В. И. Жохов …

Другие похожие документы..

Функция МЕДИАНА в Excel используется для анализа диапазона числовых значений и возвращает число, которое является серединой исследуемого множества (медианой). То есть, данная функция условно разделяет множество чисел на два подмножества, первое из которых содержит числа меньше медианы, а второе – больше. Медиана является одним из нескольких методов определения центральной тенденции исследуемого диапазона.

Примеры использования функции МЕДИАНА в Excel

При исследовании возрастных групп студентов использовались данные случайно выбранной группы учащихся в ВУЗе. Задача – определить срединный возраст студентов.

Исходные данные:

Формула для расчета:


Описание аргумента:

  • B3:B15 – диапазон исследуемых возрастов.

Полученный результат:

То есть в группе есть студенты, возраст которых меньше 21 года и больше этого значения.



Сравнение функций МЕДИАНА и СРЗНАЧ для вычисления среднего значения

Во время вечернего обхода в больнице каждому больному была замерена температура тела. Продемонстрировать целесообразность использования параметра медиана вместо среднего значения для исследования ряда полученных значений.

Исходные данные:

Формула для нахождения среднего значения:

Формула для нахождения медианы:

Как видно из показателя среднего значения, в среднем температура у пациентов выше нормы, однако это не соответствует действительности. Медиана показывает, что как минимум у половины пациентов наблюдается нормальная температура тела, не превышающая показатель 36,6.

Внимание! Еще одним методом определения центральной тенденции является мода (наиболее часто встречающееся значение в исследуемом диапазоне). Чтобы определить центральную тенденцию в Excel следует использовать функцию МОДА. Обратите внимание: в данном примере значения медианы и моды совпадают:

То есть срединная величина, делящая одно множество на подмножества меньших и больших значений также является и наиболее часто встречающимся значением в множестве. Как видно, у большинства пациентов температура составляет 36,6.

Пример расчета медианы при статистическом анализе в Excel

Пример 3. В магазине работают 3 продавца. По результатам последних 10 дней необходимо определить работника, которому будет выдана премия. При выборе лучшего работника учитывается степень эффективности его работы, а не число проданных товаров.

Исходная таблица данных:


Для характеристики эффективности будем использовать сразу три показателя: среднее значение, медиана и мода. Определим их для каждого работника с использованием формул СРЗНАЧ, МЕДИАНА и МОДА соответственно:


Для определения степени разброса данных используем величину, которая является суммарным значением модуля разницы среднего значения и моды, среднего значения и медианы соответственно. То есть коэффициент x=|av-med|+|av-mod|, где:

  • av – среднее значение;
  • med – медиана;
  • mod – мода.

Рассчитаем значение коэффициента x для первого продавца:

Аналогично проведем расчеты для остальных продавцов. Полученные результаты:


Определим продавца, которому будет выдана премия:

Примечание: функция НАИМЕНЬШИЙ возвращает первое минимальное значение из рассматриваемого диапазона значений коэффициента x.


Коэффициент x является некоторой количественной характеристикой стабильности работы продавцов, которую ввел экономист магазина. С его помощью удалось определить диапазон с наименьшими отклонениями значений. Этот способ демонстрирует, как можно использовать сразу три метода определения центральной тенденции для получения наиболее достоверных результатов.

Особенности использования функции МЕДИАНА в Excel

Функция имеет следующий синтаксис:

МЕДИАНА(число1; [число2];...)

Описание аргументов:

  • число1 – обязательный аргумент, характеризующий первое числовое значение, содержащееся в исследуемом диапазоне;
  • [число2] – необязательный второй (и последующие аргументы, всего до 255 аргументов), характеризующий второе и последующие значения исследуемого диапазона.

Примечания 1:

  1. При расчетах удобнее передавать сразу весь диапазон исследуемых значений вместо последовательного ввода аргументов.
  2. В качестве аргументов принимаются данные числового типа, имена, содержащие числа, данные ссылочного типа и массивы (например, =МЕДИАНА({1;2;3;5;7;10})).
  3. При расчете медианы учитываются ячейки, содержащие пустые значения или логические ИСТИНА, ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно. Например, результат выполнения функции с логическими значениями в аргументах (ИСТИНА;ЛОЖЬ) эквивалентен результату выполнения с аргументами (1;0) и равен 0,5.
  4. Если один или несколько аргументов функции принимают текстовые значения, которые не могут быть преобразованы в числовые, или содержат коды ошибок, результатом выполнения функции будет код ошибки #ЗНАЧ!.
  5. Для определения медианы выборки могут быть использованы другие функции Excel: ПРОЦЕНТИЛЬ.ВКЛ, КВАРТИЛЬ.ВКЛ, НАИБОЛЬШИЙ Примеры использования:
  • =ПРОЦЕНТИЛЬ.ВКЛ(A1:A10;0,5), поскольку по определению медиана – 50-я процентиль.
  • =КВАРТИЛЬ.ВКЛ(A1:A10;2), так как медиана – 2-я квартиль.
  • =НАИБОЛЬШИЙ(A1:A9;СЧЁТ(A1:A9)/2), но только если количество чисел в диапазоне является нечетным числом.

Примечания 2:

  1. Если в исследуемом диапазоне все числа распределены симметрично относительно среднего значения, среднее арифметическое и медиана для данного диапазона будут эквивалентны.
  2. При больших отклонениях данных в диапазоне («разбросе» значений) медиана лучше отражает тенденцию распределения значений, чем среднее арифметическое. Отличным примером является использование медианы для определения реального уровня зарплат у населения государства, в котором чиновники получают на порядок больше обычных граждан.
  3. Диапазон исследуемых значений может содержать:
  • Нечетное количество чисел. В этом случае медианой будет являться единственное число, разделяющее диапазон на два подмножества больших и меньших значений соответственно;
  • Четное количество чисел. Тогда медиана вычисляется как среднее арифметическое для двух числовых значений, разделяющих множество на два указанных выше подмножества.

Наряду со средними величинами в качестве статистических характеристик вариационных рядов распределения рассчитываются структурные средние – мода и медиана .
Мода (Mo) представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой, т.е. мода – значение признака, встречающееся чаще всего.
Медианой (Me) называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности, т.е. медиана – центральное значение вариационного ряда.
Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины ∑|x i - Me|=min.

Определение моды и медианы по несгруппированным данным

Рассмотрим определение моды и медианы по несгруппированным данным . Предположим, рабочие бригады, состоящей из 9 человек, имеют следующие тарифные разряды: 4 3 4 5 3 3 6 2 6 . Так как в данной бригаде больше всего рабочих 3-го разряда, этот тарифный разряд будет модальным. Mo = 3.
Для определения медианы необходимо провести ранжирование: 2 3 3 3 4 4 5 6 6 . Центральным в этом ряду является рабочий 4-го разряда, следовательно, данный разряд и будет медианным. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.
Если мода отражает наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальному закону распределения совокупности. Проиллюстрируем ее познавательное значение следующим примером.
Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 200 долларов в месяц, а месячные доходы последнего составляют 50000 долларов (табл. 1).
Таблица 1 - Месячные доходы исследуемой группы людей. Если воспользоваться средней арифметической, то получим средний доход, равный примерно 600 – 700 долларов, который имеет мало общего с доходами основной части группы. Медиана же, равная в данном случае Me = 163 доллара, позволит дать объективную характеристику уровня доходов 99 % данной группы людей.
Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).
Предположим, распределение рабочих всего предприятия в целом по тарифному разряду имеет следующий вид (табл. 2).
Таблица 2 - Распределение рабочих предприятия по тарифному разряду

Расчет моды и медианы для дискретного ряда

Расчет моды и медианы для интервального ряд

Расчет моды и медианы для вариационного ряда

Определение моды по дискретному вариационному ряду

Используется построенный ранее ряд значений признака, отсортированных по величине. Если объем выборки нечетный, берем центральное значение; если объем выборки четный, берем среднее арифметическое двух центральных значений.
Определение моды по дискретному вариационному ряду : наибольшую частоту (60 человек) имеет 5-й тарифный разряд, следовательно, он и является модальным. Mo = 5.
Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда (N Me): , где n - объем совокупности.
В нашем случае: .
Полученное дробное значение, всегда имеющее место при четном числе единиц совокупности, указывает, что точная середина находится между 95 и 96 рабочими. Необходимо определить, к какой группе относятся рабочие с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Рабочих с этими номерами нет в первой группе, где всего лишь 12 человек, нет их и во второй группе (12+48=60). 95-й и 96-й рабочие находятся в третьей группе (12+48+56=116), следовательно, медианным является 4-й тарифный разряд.

Расчет моды и медианы в интервальном ряду

В отличие от дискретных вариационных рядов определение моды и медианы по интервальным рядам требует проведения определенных расчетов на основе следующих формул:
, (5.6)
где x 0 – нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту);
i – величина модального интервала;
f Mo – частота модального интервала;
f Mo -1 – частота интервала, предшествующего модальному;
f Mo +1 – частота интервала, следующего за модальным.
(5.7)
где x 0 – нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот);
i – величина медианного интервала;
S Me -1 – накопленная интервала, предшествующего медианному;
f Me – частота медианного интервала.
Проиллюстрируем применение этих формул, используя данные табл. 3.
Интервал с границами 60 – 80 в данном распределении будет модальным, т.к. он имеет наибольшую частоту. Использую формулу (5.6), определим моду:

Для установления медианного интервала необходимо определять накопленную частоту каждого последующего интервала до тех пор, пока она не превысит половины суммы накопленных частот (в нашем случае 50 %) (табл. 5.11).
Установили, что медианным является интервал с границами 100 – 120 тыс. руб. Определим теперь медиану:

Таблица 3 - Распределение населения РФ по уровню среднедушевых номинальных денежных доходов в марте 1994г.
Группы по уровню среднедушевого месячного дохода, тыс. руб. Удельный вес населения, %
До 20 1,4
20 – 40 7,5
40 – 60 11,9
60 – 80 12,7
80 – 100 11,7
100 – 120 10,0
120 – 140 8,3
140 –160 6,8
160 – 180 5,5
180 – 200 4,4
200 – 220 3,5
220 – 240 2,9
240 – 260 2,3
260 – 280 1,9
280 – 300 1,5
Свыше 300 7,7
Итого 100,0

Таблица 4 - Определение медианного интервала
Таким образом, в качестве обобщенной характеристики значений определенного признака у единиц ранжированной совокупности могут быть использованы средняя арифметическая, мода и медиана.
Основной характеристикой центра распределения является средняя арифметическая, для которой характерно то, что все отклонения от нее (положительные и отрицательные) в сумме равняются нулю. Для медианы характерно, что сумма отклонений от нее по модулю является минимальной, а мода представляет собой значение признака, которое наиболее часто встречается.
Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. В симметричных распределениях все три характеристики совпадают. Чем больше расхождение между модой и средней арифметической, тем более асимметричен ряд. Для умеренно асимметричных рядов разность между модой и средней арифметической примерно в три раза превышает разность между медианой и средней, т.е.:
|Mo –`x| = 3 |Me –`x|.

Определение моды и медианы графическим методом

Моду и медиану в интервальном ряду можно определить графически . Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Из точки их пересечения опускаем перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 5.3).


Рис. 5.3. Графическое определение моды по гистограмме.


Рис. 5.4. Графическое определение медианы по кумуляте
Для определения медианы из точки на шкале накопленных частот (частостей), соответствующей 50 %, проводится прямая, параллельная оси абсцисс до пересечения с кумулятой. Затем из точки пересечения опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Квартили, децили, перцентили

Аналогично с нахождением медианы в вариационных рядах распределения можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, например, можно найти значение признака у единиц, делящих ряд на четыре равные части, на 10 или на 100 частей. Эти величины называются «квартили», «децили», «перцентили».
Квартили представляют собой значение признака, делящее ранжированную совокупность на 4 равновеликие части.
Различают квартиль нижний (Q 1), отделяющий ¼ часть совокупности с наименьшими значениями признака, и квартиль верхний (Q 3), осекающий ¼ часть с наибольшими значениями признака. Это означает, что 25 % единиц совокупности будут меньше по величине Q 1 ; 25 % единиц будут заключены между Q 1 и Q 2 ; 25 % - между Q 2 и Q 3 , а остальные 25 % превосходят Q 3 . Средним квартилем Q 2 является медиана.
Для расчета квартилей по интервальному вариационному ряду используются формулы:
, ,
где x Q 1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25 %);
x Q 3 – нижняя граница интервала, содержащего верхний квартиль (интервал определяется по накопленной частоте, первой превышающей 75 %);
i – величина интервала;
S Q 1-1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;
S Q 3-1 – накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль;
f Q 1 – частота интервала, содержащего нижний квартиль;
f Q 3 – частота интервала, содержащего верхний квартиль.
Рассмотрим расчет нижнего и верхнего квартилей по данным табл. 5.10. Нижний квартиль находится в интервале 60 – 80, накопленная частота которого равна 33,5 %. Верхний квартиль лежит в интервале 160 – 180 с накопленной частотой 75,8 %. С учетом этого получим:
,
.
Кроме квартилей в вариационных радах распределения могут определяться децили – варианты, делящие ранжированный вариационный ряд на десять равных частей. Первый дециль (d 1) делит совокупность в соотношении 1/10 к 9/10, второй дециль (d 1) – в соотношении 2/10 к 8/10 и т.д.
Вычисляются они по формулам:
, .
Значения признака, делящие ряд на сто частей, называются перцентилями. Соотношения медианы, квартилей, децилей и перцентилей представлены на рис. 5.5.

В 1906 году великий ученый и известный специалист по евгенике Фрэнсис Гальтон посетил ежегодную выставку достижений животноводства и птицеводства в западной Англии, где совершенно случайно провел интересный эксперимент.

Как отмечает Джеймс Суровецки, автор книги «Мудрость толпы», на ярмарке Гальтона заинтересовало одно соревнование, в рамках которого люди должны были угадать вес забитого быка. Назвавший наиболее близкое к истинному число объявлялся победителем.

Гальтон был известен своим презрением к интеллектуальным способностям обычных людей. Он считал, что только настоящие эксперты смогут сделать точные утверждения о весе быка. А 787 участников соревнования не были экспертами.

Ученый собирался доказать некомпетентность толпы, вычислив среднее число из ответов участников. Каково же было его удивление, когда оказалось, что полученный им результат почти в точности соответствовал настоящему весу быка!

Среднее значение — позднее изобретение

Конечно, точность ответа поразила исследователя. Но еще более примечательным является тот факт, что Гальтон вообще догадался воспользоваться средним значением.

В сегодняшнем мире средние, и так называемые медианные показатели встречаются на каждом шагу: средняя температура в Нью-Йорке в апреле равняется 52 градусам по Фаренгейту; Стивен Карри в среднем зарабатывает 30 очков за игру; медианный семейный доход в США составляет $51 939/год.

Однако же идея о том, что множество различных результатов можно репрезентировать одним числом, довольна нова. До 17-ого века средние числа вообще не использовались.

Каким же образом появилась и развилась концепция средних и медианных значений? И как ей удалось стать главной измерительной методикой в наше время?

Преобладание средних значений над медианными имело далеко идущие последствия для на нашего понимания информации. И нередко оно приводило людей в заблуждение.

Среднее и медианное значения

Представьте, что вы рассказываете историю о четырех людях, ужинавших прошлым вечером с вами в ресторане. Одному из них вы бы дали 20 лет, другому — 30, третьему — 40, а четвертому — 50. Что вы скажете об их возрасте в своей истории?

Скорее всего, вы назовете их средний возраст.

Среднее значение часто используется для передачи информации о чем-либо, а также для описания некоего множества измерений. Технически, среднее значение — это то, что математики называют «средним арифметическим» — сумма всех измерений, разделенная на число измерений.

Хотя слово «среднее» (average) часто используется как синоним слова «медианное» (median), последним чаще обозначается середина чего-либо. Это слово происходит от латинского «medianus», что значит «середина».

Медианное значение в Древней Греции

История медианного значения берет свое начало с учения древнегреческого математика Пифагора. Для Пифагора и его школы медиана имела четкое определение и сильно отличалась от того, как мы понимаем среднее значение сегодня. Оно использовалось только в математике, а не в анализе данных.

В школе пифагорейцев медианное значение было средним числом в трехчленной последовательности чисел, находящемся в «равном» отношении с соседними членами. «Равное» отношение могло означать одинаково расстояние. Например, число 4 в ряду 2,4,6. Однако оно также могло выражать геометрическую прогрессию, например 10 в последовательности 1,10,100.

Статистик Черчилль Эйзенхарт объясняет, что в Древней Греции, медианное значение не использовалось в качестве репрезентирующего или заменяющего какой-либо набор чисел. Оно просто обозначало середину, и часто использовалось в математических доказательствах.

Эйзенхарт посвятил целых десять лет изучению среднего и медианного значений. Изначально он пытался отыскать репрезентирующую функцию медианы в ранних научных построениях. Однако вместо этого он обнаружил, что большинство ранних физиков и астрономов опирались на единичные, умело проведенные измерения, и у них не было методологии, позволявшей выбрать лучший результат среди множества наблюдений.

Современные исследователи основывают свои выводы на сборе больших объемов данных, как, например, биологи, изучающие человеческий геном. Древние ученые же могли провести несколько измерений, но выбирали лишь самое лучшее для построения своих теорий.

Как писал историк астрономии Отто Нойгебауэр, «это согласуется с осознанным стремлением античных людей минимизировать количество эмпирических данных в науке, потому что они не верили в точность непосредственных наблюдений».

Например, греческий математик и астроном Птолемей вычислил угловой диаметр Луны, используя метод наблюдения и теорию движения земли. Его результат был равен 31’20. Сегодня же мы знаем, что диаметр Луны колеблется от 29’20 до 34’6 в зависимости от расстояния от Земли. Птолемей в своих вычислениях использовал мало данных, но у него были все основания полагать, что они были точными.

Эйзенхарт пишет: «Необходимо иметь в виду, что связь между наблюдением и теорией в античности была иной, нежели сегодня. Результаты наблюдений понимались не как факты, под которые должна подстраиваться теория, но как конкретные случаи, которые могут быть полезны лишь в качестве иллюстративных примеров истинности теории»

В конце концов, ученые обратятся к репрезентативным измерениям данных, но изначально ни средние, ни медианные значения не использовались в этой роли. Со времен античности до сегодняшнего дня в качестве такого репрезентативного средства использовался другой математический концепт — полусумма крайних значений.

Полусумма крайних значений

Новые научные средства почти всегда возникают из необходимости решить определенную задачу в какой-либо дисциплине. Необходимость найти лучшее значение среди множества измерений возникло из потребности точно определить географическое положение.

Интеллектуальный гигант 11-ого века Аль-Бируни известен как один из первых людей, использовавших методологию репрезентирующих значений. Аль-Бируни писал, что когда в его распоряжении было множество измерений, и он хотел найти лучшее среди них, он использовал следующее «правило»: нужно отыскать число, соответствующее середине между двумя крайними значениями. При вычислении полусуммы крайних значений не принимаются во внимание все числа между максимальным и минимальным значениями, а находится среднее только для этих двух чисел.

Аль-Бируни применял этот метод в разных областях, в том числе для вычисления долготы города Газни, что находится на территории современного Афганистана, а также в своих исследованиях свойств металлов.

Однако в последние несколько веков полусумма крайних значений используется все реже. На самом деле, в современной науке она и вовсе не актуальна. На место полусуммы пришло медианное значение.

Переход к средним значениям

К началу 19-ого века использование медианного/среднего значения стало распространенным методом нахождения наиболее точно репрезентирующего значения из группы данных. Фридрих фон Гаусс, выдающийся математик своего времени, в 1809-ом году писал: «Считалось, что если некоторое число было определено несколькими прямыми наблюдениями, совершенными в одинаковых условиях, то среднее арифметическое значение является наиболее истинным значением. Если оно и не совсем строгое, то, по крайней мере, оно близко к действительности, и поэтому на него всегда можно положиться».

Почему произошел подобный сдвиг в методологии?

На этот вопрос довольно трудно ответить. В своем исследовании Черчилль Эйзенхарт предполагает, что метод нахождения среднего арифметического мог зародиться в области измерения магнитного отклонения, то есть в отыскании отличия между направлением стрелки компаса, указывающей на север, и реальным севером. Это измерение было крайне важным в эпоху Великих Географических Открытий.

Эйзенхарт выяснил, что до конца 16-ого века большинство измерявших магнетическое отклонение ученых использовали метод ad hoc (от лат. «к этому, для данного случая, для этой цели») при выборе наиболее точного измерения.

Но в 1580-ом году ученый Уильям Боро подошел к проблеме иначе. Он взял восемь различных измерений отклонения и, сравнив их, пришел к выводу, что наиболее точное значение было между 11 ⅓ и 11 ¼ градусами. Вероятно, он вычислил среднее арифметическое, которое находилось в этом диапазоне. Однако сам Боро открыто не называл свой подход новым методом.

До 1635-ого года вообще не было однозначных случаев использования среднего значения в качестве репрезентирующего числа. Однако именно тогда английский астроном Генри Геллибренд взял два различных результата измерения магнетического отклонения. Одно из них было сделано утром (11 градусов), а другое — днем (11 градусов и 32 минуты). Вычисляя наиболее истинное значение, он писал:

«Если мы найдем среднее арифметическое, мы с большой вероятностью можем утверждать, что результат точного измерения должен быть около 11 градусов 16 минут».

Вполне вероятно, что это был первый случай использования среднего значения как наиболее близкого к истинному!

Слово «среднее» (average) применялось в английском языке в начале 16-ого века для обозначения финансовых потерь от ущерба, которое получило судно или перевозимый груз во время плавания. В течение следующих ста лет оно обозначало именно эти потери, которые высчитывались как среднее арифметическое. Например, если корабль во время плавания был поврежден, и команде приходилось выбрасывать за борт некоторые товары, чтобы сохранить вес судна, инвесторы несли финансовые потери, эквивалентные сумме их инвестиции — эти потери вычислялись так же, как среднее арифметическое. Так постепенно значения среднего (average) и среднего арифметического сближались.

Медианное значение

В наши дни среднее значение или среднее арифметическое используются как основной способ для выбора репрезентативного значения множества измерений. Как же это произошло? Почему эта роль не была отведена медианному значению?

Френсис Гальтон был чемпионом медианного значения

Термин «медианное значение» (median) — средний член в ряде чисел, разделяющий этот ряд наполовину — появился примерно в то же время, что и среднее арифметическое. В 1599-ом году математик Эдвард Райт, работавший над проблемой нормального отклонения в компасе, впервые предложил использовать медианное значение.

«…Допустим, множество лучников стреляют в некоторую мишень. Цель впоследствии убирают. Каким образом можно узнать, где была цель? Нужно найти среднее место между всеми стрелами. Аналогично, среди множества результатов наблюдений ближе всего к истине будет то, которое находится посередине».

Медианное значение широко использовалось в девятнадцатом столетии, став обязательной частью любого анализа данных в то время. Им также пользовался и Френсис Гальтон, выдающийся аналитик девятнадцатого века. В истории о взвешивании быка, рассказанной вначале этой статьи, Гальтон изначально использовал медианное значение как представляющее мнение толпы.

Множество аналитиков, включая Гальтона, предпочитали медианное значение, поскольку его легче рассчитать для небольших наборов данных.

Тем не менее, медианное значение никогда не было более популярным, чем среднее. Скорее всего, это произошло из-за особых статистических свойств, присущих среднему значению, а также его отношения к нормальному распределению.

Связь среднего значения и нормального распределения

Когда мы проводим множество измерений, их результаты, как говорят статистики, «нормально распределены». Это значит, что если эти данные нанести на график, то точки на нем будут изображать нечто похожее на колокол. Если их соединить, получится «колоколообразная» кривая. Нормальному распределению соответствуют многие статистические данные, например, рост людей, показатель интеллекта, а также показатель самой высокой годовой температуры.

Когда данные нормально распределены, среднее значение будет очень близким к высшей точке на колоколообразной кривой, и очень большое количество измерений будет близким к среднему значению. Существует даже формула, предсказывающая, как много результатов измерений будут находиться на некотором расстоянии от среднего значения.

Таким образом, вычисление среднего значения дает исследователям много дополнительной информации.

Связь среднего значения со стандартным отклонением дает ему большое преимущество, ведь у медианного значения такой связи нет. Эта связь — важная часть анализа экспериментальных данных и статистической обработки информации. Именно поэтому среднее значение стало ядром статистики и всех наук, полагающихся в своих заключениях на множественные данные.

Преимущество среднего значения также связано с тем, что оно легко вычисляется компьютерами. Хотя медианное значение для небольшой группы данных довольно легко вычислить самостоятельно, все же намного проще написать компьютерную программу, которая находила бы среднее значение. Если вы пользуетесь Microsoft Excel, то наверняка знаете, что медианную функцию не так просто рассчитать, как функцию среднего значения.

В итоге, благодаря большому научному значению и простоте использования среднее значение стало главной репрезентативной величиной. Тем не менее, этот вариант далеко не всегда является самым лучшим.

Преимущества медианного значения

Во многих случаях, когда мы хотим вычислить центральное значение распределения, медианное значение является лучшим показателем. Так происходит потому, что среднее значение во многом определяется крайними результатами измерений.

Многие аналитики считают, что бездумное использование среднего значения отрицательно сказывается на нашем понимании количественной информации. Люди смотрят на среднее значение и думают, что это «норма». Но на самом деле оно может быть определено каким-нибудь одним сильно выдающимся из однородного ряда членом.

Представьте себе аналитика, желающего узнать репрезентативное значение для стоимости пяти домов. Четыре дома стоят $100,000, а пятый — $900,000. Среднее значение, таким образом, будет равняться $200,000, а медианное — $100,000. В этом, как и во многих других случаях, медианное значение дает лучшее понимание того, что можно назвать «стандартом».

Понимая, насколько сильно крайние значения могут сказаться на среднем, для отражения изменений в семейных доходах США используется медианное значение.

Медианные показатель также менее чувствителен к «грязным» данным, с которыми сегодня имеют дело аналитики. Многие статистики и аналитики собирают информацию, опрашивая людей в интернете. Если пользователь случайно добавит в ответ лишний ноль, который превратит 100 в 1000, то эта ошибка намного сильнее скажется на среднем значении, чем на медианном.

Среднее или медианное?

Выбор между медианным и средним значением имеет далеко идущие последствия — от нашего понимания влияния лекарств на здоровье до знаний относительно того, какой семейный бюджет можно назвать стандартным.

Поскольку сбор и анализ данных все больше определяет то, как мы понимаем мир, растет и значение используемых нами величин. В идеальном мире аналитики использовали бы и среднее, и медианное значение для графического выражения данных.

Но мы живем в условиях ограниченного времени и внимания. Из-за этих ограничений часто нам необходимо выбрать лишь что-то одно. И во многих случаях предпочтительней именно медианное значение.




Top