Структурное уравнение регрессии. Уравнение регрессии

Задача.

По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (Y, млн. руб.).

Таблица 1.

Зависимость объема выпуска продукции от объема капиталовложений.

X
Y

Требуется :

1. Найти параметры уравнения линейной регрессии , дать экономическую интерпретацию коэффициента регрессии.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.

3. Проверить выполнение предпосылок МНК.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α = 0,05).

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F - критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации . Сделать вывод о качестве модели.

6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α = 0,1, если прогнозное значения фактора Х составит 80% от его максимального значения.

7. Представить графически фактические и модельные значения Y точки прогноза.

8. Составить уравнения нелинейной регрессии и построить их графики:

Гиперболической;

Степенной;

Показательной.

9. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

Найдем параметры уравнения линейной регрессии и дадим экономическую интерпретацию коэффициента регрессии.

Уравнение линейной регрессии имеет вид: ,

Вычисления для нахождения параметров a и b приведены в таблице 2.

Таблица 2.

Расчет значений для нахождения параметров уравнения линейной регрессии.

Уравнение регрессии имеет вид: y = 13,8951 + 2,4016*x.

С увеличением объема капиталовложений (X) на 1 млн. руб. объем выпускаемой продукции (Y) увеличится в среднем на 2,4016 млн. руб. Таким образом, наблюдается положительная корреляция признаков, что свидетельствует об эффективности работы предприятий и выгодности капиталовложений в их деятельность.

2. Вычислим остатки; найдем остаточную сумму квадратов; оценим дисперсию остатков и построим график остатков.

Остатки вычисляются по формуле: e i = y i - y прогн.

Остаточная сумма квадратов отклонений: = 207,74.

Дисперсия остатков: 25.97.

Расчеты приведены в таблице 3.

Таблица 3.

Y X Y=a+b*x i e i = y i - y прогн. e i 2
100,35 3,65 13,306
81,14 -4,14 17,131
117,16 -0,16 0,0269
138,78 -1,78 3,1649
136,38 6,62 43,859
143,58 0,42 0,1744
73,93 8,07 65,061
102,75 -1,75 3,0765
136,38 -4,38 19,161
83,54 -6,54 42,78
Сумма 0,00 207,74
Среднее 111,4 40,6

График остатков имеет вид:


Рис.1. График остатков

3. Проверим выполнение предпосылок МНК, который включает элементы:

- проверка равенства математического ожидания случайной составляющей нулю;

- случайный характер остатков;

- проверка независимости;

- соответствие ряда остатков нормальному закону распределения.

Проверка равенства математического ожидания уровней ряда остатков нулю.

Осуществляется в ходе проверки соответствующей нулевой гипотезы H 0: . С этой целью строится t-статистика , где .

, таким образом, гипотеза принимается.

Случайный характер остатков.

Проверим случайность уровней ряда остатков с помощью критерия поворотных точек:

Количество поворотных точек определяем по таблице остатков:

e i = y i - y прогн. Точки поворота e i 2 (e i - e i -1) 2
3,65 13,31
-4,14 * 17,13 60,63
-0,16 * 0,03 15,80
-1,78 * 3,16 2,61
6,62 * 43,86 70,59
0,42 * 0,17 38,50
8,07 * 65,06 58,50
-1,75 * 3,08 96,43
-4,38 19,16 6,88
-6,54 42,78 4,68
Сумма 0,00 207,74 354,62
Среднее

= 6 > , следовательно, свойство случайности остатков выполняется.

Независимость остатков проверяется с помощью критерия Дарбина - Уотсона :

=4 - 1,707 = 2,293.

Так как попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости. Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определяется с помощью R/S-критерия с критическими уровнями (2,7-3,7);

Рассчитаем значение RS:

RS = (e max - e min)/ S,

где e max - максимальное значение уровней ряда остатков E(t) = 8,07;

e min - минимальное значение уровней ряда остатков E(t) = -6,54.

S - среднеквадратическое отклонение, = 4,8044.

RS = (e max - e min)/ S= (8,07 + 6,54)/4,8044 = 3,04.

Так как 2,7 < 3,04 < 3,7, и полученное значение RS попало в за-данный интервал, значит, выполняется свойство нормальности распределения.

Таким образом, рассмотрев различные критерии выполнения предпосылок МНК, приходим к выводу, что предпосылки МНК выполняются.

4. Осуществим проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента α = 0,05.

Проверка значимости отдельных коэффициентов регрессии связана с определением расчетных значений t-критерия (t-статистики) для соответствующих коэффициентов регрессии:

Затем расчетные значения сравниваются с табличными t табл = 2,3060. Табличное значение критерия определяется при (n- 2) степенях свободы (n - число наблюдений) и соответствующем уровне значимости a (0,05)

Если расчетное значение t-критерия с (n- 2) степенями сво-боды превосходит его табличное значение при заданном уровне зна-чимости, коэффициент регрессии считается значимым.

В нашем случае коэффициенты регрессии a 0 - незначимый, а 1 - значимый коэффициенты.


Рис. 2.1. График линии регрессии

Первое выражение позволяет по заданным значениям фактора x рассчитать теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения лежат на прямой, которые представляют собой линию регрессии (рис. 2.1).

Построение линейной регрессии сводится к оценке ее параметров а и b . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и b, при которых сумма квадратов отклонений фактических значений от теоретических минимальна:

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров – а и b – и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n - объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительно а и b , получаем:

(7)

. (8)

Выражение (7) можно записать в другом виде:

(9)

где ковариация признаков, дисперсия фактора x.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально a – значение y при x = 0. Если x не имеет и не может иметь нулевого значения, то такая трактовка свободного члена a не имеет смысла. Параметр a может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при a < 0. Интерпретировать можно лишь знак при параметре a. Если a > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

< при > 0, > 0 <

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где , . При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами . При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции .

Таблица 2.1

Выпуск продукции тыс.ед.() Затраты на производство, млн.руб.()
31,1
67,9

Продолжение таблицы 2.1

141,6
104,7
178,4
104,7
141,6
Итого: 22 770,0

Система нормальных уравнений будет иметь вид:

Решая её, получаем a = -5,79, b = 36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значения y (последняя колонка таблицы).

Величина a не имеет экономического смысла. Если переменные x и y выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где , .

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r:

Величина характеризует долю дисперсии y , вызванную влиянием остальных, не учтенных в модели факторов.

2.3. Предпосылки МНК (условия Гаусса-Маркова)

Связь между y и x в парной регрессии является не функциональной, а корреляционной. Поэтому оценки параметров a и b являются случайными величинами, свойства которых существенно зависят от свойств случайной составляющей ε. Для получения по МНК наилучших результатов необходимо выполнение следующих предпосылок относительно случайного отклонения (условия Гаусса-Маркова):

1. Математическое ожидание случайного отклонения равно нулю для всех наблюдений: .

2. Дисперсия случайных отклонений постоянна: .

Выполнимость данной предпосылки называется гомоскедастичностью - постоянством дисперсии отклонений. Невыполнимость данной предпосылки называется гетероскедастичностью - непостоянством дисперсии отклонений.

3. Случайные отклонения ε i и ε j являются независимыми друг от друга для :

Выполнимость этого условия называется отсутствием автокорреляции .

4. Случайное отклонение должно быть независимо от объясняющих переменных. Обычно это условие выполняется автоматически, если объясняющие переменные в данной модели не являются случайными. Кроме того, выполнимость данной предпосылки для эконометрических моделей не столь критична по сравнению с первыми тремя.

При выполнимости указанных предпосылок имеет место теорема Гаусса-Маркова : оценки (7) и (8), полученные по МНК, имеют наименьшую дисперсию в классе всех линейных несмещенных оценок .

Таким образом, при выполнении условий Гаусса- Маркова оценки (7) и (8) являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными, т. е. имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин y i .

Именно понимание важности условий Гаусса- Маркова отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

2.4. Оценка существенности параметров линейной
регрессии и корреляции

После того, как найдено уравнение линейной регрессии (3), проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом дается с помощью F -критерия Фишера. При этом выдвигается нулевая гипотеза о том, что коэффициент регрессии равен нулю и, следовательно, фактор х не оказывает влияния на результат y.

Перед расчетом критерия проводятся анализ дисперсии. Можно показать, что общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части – объясненную и необъясненную:


(Общая СКО) =

Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и .

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Но на практике в правой части (13) присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y . Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы. (df-degrees of freedom ) - это число независимо варьируемых значений признака.

Для общей СКО требуется независимых отклонений, т. к. что позволяет свободно варьировать значений, а последнее n -е отклонение определяется из общей суммы, равной нулю. Поэтому .

Факторную СКО можно выразить так:

Эта СКО зависит только от одного параметра b, поскольку выражение под знаком суммы к значениям результативного признака не относится. Следовательно, факторная СКО имеет одну степень свободы, и

Для определения воспользуемся аналогией с балансовым равенством (11). Так же, как и в равенстве (11), можно записать равенство и между числами степеней свободы:

Таким образом, можем записать . Из этого баланса определяем, что

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы:

. (15)

. (16)

. (17)

Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим F -критерий для проверки нулевой гипотезы, которая в данном случае записывается как

Если справедлива, то дисперсии не отличаются друг от друга. Для необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз.

Английским статистиком Снедекором разработаны таблицы критических значений F при разных уровнях существенности Снедекором и различных числах степеней свободы. Табличное значение F -критерия – это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы.

При нахождении табличного значения F -критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы – числителя (она равна единице) и знаменателя, равная

Вычисленное значение F признается достоверным (отличным от единицы), если оно больше табличного, т. е. (α;1; ). В этом случае отклоняется и делается вывод о существенности превышения D факт над D остат. , т. е. о существенности статистической связи между y и x.

Если , то вероятность выше заданного уровня (например: 0,05), и эта гипотеза не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи между y и x. Уравнение регрессии считается статистически незначимым, не отклоняется.

Величина F -критерия связана с коэффициентом детерминации.

, (19)

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров.

Стандартная ошибка коэффициента регрессии определяется по формуле:

, (20)

Остаточная дисперсия на одну степень свободы (то же, что и ).

Величина стандартной ошибки совместно с t- распределением Стьюдента при степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительных интервалов.

Величина коэффициента регрессии сравнивается с его стандартной ошибкой; определяется фактическое значение t- критерия Стьюдента

которое затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы . Здесь проверяется нулевая гипотеза в виде также предполагающая несущественность статистической связи между y и х , но только учитывающая значение b , а не соотношение между факторной и остаточной дисперсиями в общем балансе дисперсии результативного признака. Но общий смысл гипотез один и тот же: проверка наличия статистической связи между y и х или её отсутствия.

Если (α; ), то гипотеза должна быть отклонена, а статистическая связь y с х считается установленной. В случае (α; ) нулевая гипотеза не может быть отклонена, и влияние х на y признается несущественным.

Существует связь между и F :

Отсюда следует, что

Доверительный интервал для b определяется как

где – рассчитанное (оцененное) по МНК значение коэффициента регрессии.

Стандартная ошибка параметра определяется по формуле:

Процедура оценивания существенности a не отличается от таковой для параметра b . При этом фактическое значение t -критерия вычисляется по формуле:

Процедура проверки значимости линейного коэффициента корреляции отличается от процедур, приведенных выше. Это объясняется тем, что r как случайная величина распределена по нормальному закону лишь при большом числе наблюдений и малых значениях |r |. В этом случае гипотеза об отсутствии корреляционной связи между y и х проверяется на основе статистики

, (26)

которая при справедливости приблизительно распределена по закону Стьюдента с () степенями свободы. Если , то гипотеза отвергается с вероятностью ошибиться, не превышающей α . Из (19) видно, что в парной линейной регрессии . Кроме того, , поэтому . Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Но при малых выборках и значениях r , близких к , следует учитывать, что распределение r как случайной величины отличается от нормального, и построение доверительных интервалов для r не может быть выполнено стандартным способом. В этом случае вообще легко прийти к противоречию, заключающемуся в том, что доверительный интервал будет содержать значения, превышающие единицу.

Чтобы обойти это затруднение, используется так называемое
z -преобразование Фишера:

, (27)

которое дает нормально распределенную величину z , значения которой при изменении r от –1 до +1 изменяются от -∞ до +∞. Стандартная ошибка этой величины равна:

. (28)

Для величины z имеются таблицы, в которых приведены её значения для соответствующих значений r .

Для z выдвигается нуль-гипотеза , состоящая в том, что корреляция отсутствует. В этом случае значения статистики

которая распределена по закону Стьюдента с () степенями свободы, не превышает табличного на соответствующем уровне значимости.

Для каждого значения z можно вычислить критические значения r . Таблицы критических значений r разработаны для уровней значимости 0,05 и 0,01 и соответствующего числа степеней свободы. Если вычисленное значение r превышает по абсолютной величине табличное, то данное значение r считается существенным. В противном случае фактическое значение несущественно.

2.5. Нелинейные модели регрессии
и их линеаризация

До сих пор мы рассматривали лишь линейную модель регрессионной зависимости y от x (3). В то же время многие важные связи в экономике являются нелинейными . Примерами такого рода регрессионных моделей являются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства – трудом, капиталом и т. п.) и функции спроса (зависимости между спросом на какой-либо вид товаров или услуг, с одной стороны, и доходом и ценами на этот и другие товары – с другой).

При анализе нелинейных регрессионных зависимостей наиболее важным вопросом применения классического МНК является способ их линеаризации. В случае линеаризации нелинейной зависимости получаем линейное регрессионное уравнение типа (3), параметры которого оцениваются обычным МНК, после чего можно записать исходное нелинейное соотношение.

Несколько особняком в этом смысле стоит полиномиальная модель произвольной степени:

к которой обычный МНК можно применять без всякой предварительной линеаризации.

Рассмотрим указанную процедуру применительно к параболе второй степени:

. (31)

Такая зависимость целесообразна в случае, если для некоторого интервала значений фактора возрастающая зависимость меняется на убывающую или наоборот. В этом случае можно определить значение фактора, при котором достигается максимальное или минимальное значение результативного признака. Если исходные данные не обнаруживают изменение направленности связи, параметры параболы становятся трудно интерпретируемыми, и форму связи лучше заменить другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени сводится к дифференцированию суммы квадратов остатков регрессии по каждому из оцениваемых параметров и приравниванию полученных выражений нулю. Получается система нормальных уравнений, число которых равно числу оцениваемых параметров, т. е. трем:

(32)

Решать эту систему можно любым способом, в частности, методом определителей.

Экстремальное значение функции наблюдается при значении фактора, равном:

Если , то имеет место максимум, т. е. зависимость сначала растет, а затем падает. Такого рода зависимости наблюдаются в экономике труда при изучении заработной платы работников физического труда, когда в роли фактора выступает возраст. При парабола имеет минимум, что обычно проявляется в удельных затратах на производство в зависимости от объема выпускаемой продукции.

В нелинейных зависимостях, неявляющихся классическими полиномами, обязательно проводится предварительная линеаризация, которая заключается в преобразовании или переменных, или параметров модели, или в комбинации этих преобразований. Рассмотрим некоторые классы таких зависимостей.

Зависимости гиперболического типа имеют вид:

. (33)

Примером такой зависимости является кривая Филлипса , констатирующая обратную зависимость процента прироста заработной платы от уровня безработицы. В этом случае значение параметра b будет больше нуля.

Другим примером зависимости (33) являются кривые Энгеля , формулирующие следующую закономерность: с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается, а доля доходов, расходуемых на непродовольственные товары, будет возрастать. В этом случае а результативный признак в (33) показывает долю расходов на непродовольственные товары.

Линеаризация уравнения (33) сводится к замене фактора , и уравнение регрессии имеет вид (3), в котором вместо фактора х используем фактор z :

К такому же линейному уравнению сводится полулогарифмическая кривая:

, (35)

которая может быть использована для описания кривых Энгеля. Здесь ln(x ) заменяется на z и получается уравнение (34).

Достаточно широкий класс экономических показателей характеризуется приблизительно постоянным темпом относительного прироста во времени. Этому соответствуют зависимости показательного (экспоненциального) типа, которые записываются в виде:

или в виде

. (37)

Возможна и такая зависимость:

. (38)

В регрессиях типа (36) – (38) применяется один и тот же способ линеаризации – логарифмирование. Уравнение (36) приводится к виду:

. (39)

Замена переменной сводит его к линейному виду:

, (40)

где . Если Е удовлетворяет условиям Гаусса-Маркова, параметры уравнения (36) оцениваются по МНК из уравнения (40). Уравнение (37) приводится к виду:

который отличается от (39) только видом свободного члена, и линейное уравнение выглядит так:

, (42)

где . Параметры А и b получаются обычным МНК, затем параметр a в зависимости (37) получается как антилогарифм А . При логарифмировании (38) получаем линейную зависимость:

, (43)

где , а остальные обозначения те же, что и выше. Здесь также применяется МНК к преобразованным данным, а параметр b для (38) получается как антилогарифм коэффициента В .

Широко распространены в практике социально-экономических исследований степенные зависимости. Они используются для построения и анализа производственных функций. В функциях вида:

особенно ценным является то обстоятельство, что параметр b равен коэффициенту эластичности результативного признака по фактору х . Преобразуя (44) путем логарифмирования, получаем линейную регрессию:

, (45)

Еще одним видом нелинейности, приводимым к линейному виду, является обратная зависимость:

. (46)

Проводя замену , получим.

Министерство образования и науки РФ

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Всероссийский заочный финансово-экономический институт

Филиал в г. Туле

Контрольная работа

по дисциплине «Эконометрика»

Тула - 2010 г.

Задача 2 (а, б)

По предприятиям легкой промышленности получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (Х, млн. руб.) табл. 1.

Х 33 17 23 17 36 25 39 20 13 12
Y 43 27 32 29 45 35 47 32 22 24

Требуется:

1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков

; построить график остатков.

3. Проверить выполнение предпосылок МНК.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.

6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α=0,1, если прогнозное значение фактора Х составит 80% от его максимального значения.

7. Представить графически: фактические и модельные значения Y, точки прогноза.

8. Составить уравнения нелинейной регрессии:

гиперболической;

степенной;

показательной.

Привести графики построенных уравнений регрессии.

9. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

1. Линейная модель имеет вид:

Параметры уравнения линейной регрессии найдем по формулам

Расчет значения параметров представлен в табл. 2.

t y x yx
1 43 33 1419 1089 42,236 0,764 0,584 90,25 88,36 0,018
2 27 17 459 289 27,692 -0,692 0,479 42,25 43,56 0,026
3 32 23 736 529 33,146 -1,146 1,313 0,25 2,56 0,036
4 29 17 493 289 27,692 1,308 1,711 42,25 21,16 0,045
5 45 36 1620 1296 44,963 0,037 0,001 156,25 129,96 0,001
6 35 25 875 625 34,964 0,036 0,001 2,25 1,96 0,001
7 47 39 1833 1521 47,69 -0,69 0,476 240,25 179,56 0,015
8 32 20 640 400 30,419 1,581 2,500 12,25 2,56 0,049
9 22 13 286 169 24,056 -2,056 4,227 110,25 134,56 0,093
10 24 12 288 144 23,147 0,853 0,728 132,25 92,16 0,036
336 235 8649 6351 12,020 828,5 696,4 0,32
Средн. 33,6 23,5 864,9 635,1

Определим параметры линейной модели

Линейная модель имеет вид

Коэффициент регрессии

показывает, что выпуск продукции Y возрастает в среднем на 0,909 млн. руб. при увеличении объема капиталовложений Х на 1 млн. руб.

2. Вычислим остатки

, остаточную сумму квадратов , найдем остаточную дисперсию по формуле:

Расчеты представлены в табл. 2.


Рис. 1. График остатков ε.

3. Проверим выполнение предпосылок МНК на основе критерия Дарбина-Уотсона.

0,584
2,120 0,479
0,206 1,313
6,022 1,711
1,615 0,001
0,000 0,001
0,527 0,476
5,157 2,500
13,228 4,227
2,462 0,728
31,337 12,020

d1=0,88; d2=1,32 для α=0,05, n=10, k=1.

,

значит, ряд остатков не коррелирован.

4. Осуществим проверку значимости параметров уравнения на основе t-критерия Стьюдента. (α=0,05).

для ν=8; α=0,05.

Расчет значения

произведен в табл. 2. Получим:
, то можно сделать вывод, что коэффициенты регрессии a и b с вероятностью 0,95 значимы.

5. Найдем коэффициент корреляции по формуле

Расчеты произведем в табл. 2.

. Т.о. связь между объемом капиталовложений Х и выпуском продукции Y можно считать тесной, т.к. .

Коэффициент детерминации найдем по формуле

х - называется предиктором - независимой или объясняющей переменной.

Для данной величины х, Y — значение переменной у (называемой зависимой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а - свободный член (пересечение) линии оценки; это значение Y, когда х = 0.

b - угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например: при увеличении температуры тела человека на 1 о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.


Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r 2). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признака-результата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Пример

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид:

САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115) = 101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) = 108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx 1 +b 2 x 2 +.... + b n х n

Можно интересоваться результатом влияния нескольких независимых переменных х 1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример

Поскольку между ростом и массой тела ребёнка существует сильная зависимость, можно поинтересоваться, изменяется ли также соотно-шение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД = 79,44 - (0,03 х рост) + (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 - мальчик, 1 - девочка)

Согласно этому уравнению, девочка, рост которой 115 см и масса тела 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 - (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь» = 1, «не имеет болезни» = 0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице.

Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии — натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx 1 +b 2 x 2 +.... + b n х n

logit (р) — оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а — оценка константы (свободный член, пересечение);

b 1 , b 2 ,... ,b n — оценки коэффициентов логистической регрессии.

1. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсона?

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?

При наличии корреляционной связи между факторными и результативными признаками врачам нередко приходится устанавливать, на какую величину может измениться значение одного признака при изменении другого на общепринятую или установленную самим исследователем единицу измерения.

Например, как изменится масса тела школьников 1-го класса (девочек или мальчиков), если рост их увеличится на 1 см. В этих целях применяется метод регрессионного анализа.

Наиболее часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

  1. Определение регрессии . Регрессия - функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

    С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

  2. Определение коэффициента регрессии . Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.
  3. Формула коэффициента регрессии . R у/х = r ху x (σ у / σ x)
    где R у/х - коэффициент регрессии;
    r ху - коэффициент корреляции между признаками х и у;
    (σ у и σ x) - среднеквадратические отклонения признаков x и у.

    В нашем примере ;
    σ х = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;
    σ у = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).
    Таким образом, R у/х - коэффициент регрессии.
    R у/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

  4. Уравнение регрессии . у = М у + R y/x (х - М x)
    где у - средняя величина признака, которую следует определять при изменении средней величины другого признака (х);
    х - известная средняя величина другого признака;
    R y/x - коэффициент регрессии;
    М х, М у - известные средние величины признаков x и у.

    Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, R у/х = 1,8 заболеваний, М х = -7°, М у = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.
    Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

  5. Назначение уравнения регрессии . Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график - линия регрессии , по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
  6. Сигма регрессии (формула) .
    где σ Rу/х - сигма (среднеквадратическое отклонение) регрессии;
    σ у - среднеквадратическое отклонение признака у;
    r ху - коэффициент корреляции между признаками х и у.

    Так, если σ у - среднеквадратическое отклонение числа простудных заболеваний = 8,65; r ху - коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен - 0,96, то

  7. Назначение сигмы регрессии . Дает характеристику меры разнообразия результативного признака (у).

    Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х 1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.
    При х 2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

    Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

  8. Данные, необходимые для расчета и графического изображения шкалы регрессии
    • коэффициент регрессии - R у/х;
    • уравнение регрессии - у = М у + R у/х (х-М x);
    • сигма регрессии - σ Rx/y
  9. Последовательность расчетов и графического изображения шкалы регрессии .
    • определить коэффициент регрессии по формуле (см. п. 3). Например, следует определить, насколько в среднем будет меняться масса тела (в определенном возрасте в зависимости от пола), если средний рост изменится на 1 см.
    • по формуле уравнения регрессии (см п. 4) определить, какой будет в среднем, например, масса тела (у, у 2 , у 3 ...)* для определеного значения роста (х, х 2 , х 3 ...).
      ________________
      * Величину "у" следует рассчитывать не менее чем для трех известных значений "х".

      При этом средние значения массы тела и роста (М х, и М у) для определенного возраста и пола известны

    • вычислить сигму регрессии, зная соответствующие величины σ у и r ху и подставляя их значения в формулу (см. п. 6).
    • на основании известных значений х 1 , х 2 , х 3 и соответствующих им средних значений у 1 , у 2 у 3 , а также наименьших (у - σ rу/х)и наибольших (у + σ rу/х) значений (у) построить шкалу регрессии.

      Для графического изображения шкалы регрессии на графике сначала отмечаются значения х, х 2 , х 3 (ось ординат), т.е. строится линия регрессии, например зависимости массы тела (у) от роста (х).

      Затем в соответствующих точках у 1 , y 2 , y 3 отмечаются числовые значения сигмы регрессии, т.е. на графике находят наименьшее и наибольшее значения у 1 , y 2 , y 3 .

  10. Практическое использование шкалы регрессии . Разрабатываются нормативные шкалы и стандарты, в частности по физическому развитию. По стандартной шкале можно дать индивидуальную оценку развития детей. При этом физическое развитие оценивается как гармоничное, если, например, при определенном росте масса тела ребенка находится в пределах одной сигмы регрессии к средней расчетной единице массы тела - (у) для данного роста (x) (у ± 1 σ Ry/x).

    Физическое развитие считается дисгармоничным по массе тела, если масса тела ребенка для определенного роста находится в пределах второй сигмы регрессии: (у ± 2 σ Ry/x)

    Физическое развитие будет резко дисгармоничным как за счет избыточной, так и за счет недостаточной массы тела, если масса тела для определенного роста находится в пределах третьей сигмы регрессии (у ± 3 σ Ry/x).

По результатам статистического исследования физического развития мальчиков 5 лет известно, что их средний рост (х) равен 109 см, а средняя масса тела (у) равна 19 кг. Коэффициент корреляции между ростом и массой тела составляет +0,9, средние квадратические отклонения представлены в таблице.

Требуется:

  • рассчитать коэффициент регрессии;
  • по уравнению регрессии определить, какой будет ожидаемая масса тела мальчиков 5 лет при росте, равном х1 = 100 см, х2 = 110 см, х3= 120 см;
  • рассчитать сигму регрессии, построить шкалу регрессии, результаты ее решения представить графически;
  • сделать соответствующие выводы.

Условие задачи и результаты ее решения представлены в сводной таблице.

Таблица 1

Условия задачи Pезультаты решения задачи
уравнение регрессии сигма регрессии шкала регрессии (ожидаемая масса тела (в кг))
М σ r ху R у/x х У σ R x/y y - σ Rу/х y + σ Rу/х
1 2 3 4 5 6 7 8 9 10
Рост (х) 109 см ± 4,4см +0,9 0,16 100см 17,56 кг ± 0,35 кг 17,21 кг 17,91 кг
Масса тела (y) 19 кг ± 0,8 кг 110 см 19,16 кг 18,81 кг 19,51 кг
120 см 20,76 кг 20,41 кг 21,11 кг

Решение .

Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка. Для этого следует восстановить перпендикуляр к линии регрессии.

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. - 464 с.
  2. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2007. - 512 с.
  3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. - М.: Медицина, 2003. - 368 с.
  4. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). - СПб, 1998. -528 с.
  5. Кучеренко В.З., Агарков Н.М. и др.Социальная гигиена и организация здравоохранения (Учебное пособие) - Москва, 2000. - 432 с.
  6. С. Гланц. Медико-биологическая статистика. Пер с англ. - М., Практика, 1998. - 459 с.



Top