Теория игр. Использование теории игр в практике принятия управленческих решений


Теория игр является математическим методом исследования оптимальных стратегий в играх. Под термином «игра» следует понимать взаимодействие двух или более сторон, которые стремятся реализовать свои интересы. У каждой стороны есть и своя стратегия, способная привести к победе или поражению, что зависит от того, каким образом ведут себя игроки. Благодаря теории игр появляется возможность найти максимально эффективную стратегию, беря во внимание представления о других игроках и их потенциале.

Теория игр представляет собой особый раздел исследования операций. В большинстве случаев методы теории игр используются в экономике, но иногда и в других социальных науках, например, в , политологии, социологии, этике и некоторых других. С 70-х годов XX века она также стала использоваться и биологами с целью изучения поведения животных и теории эволюции. Кроме того, сегодня теория игр имеет очень большое значение в области кибернетики и . Именно поэтому мы и хоти вам о ней рассказать.

История теории игр

Наиболее оптимальные стратегии в области математического моделирования учёные предлагали ещё в XVIII веке. В XIX веке задачи ценообразования и производства в условиях рынка с малой конкуренцией, впоследствии ставшие классическими примерами теории игр, рассматривались такими учёными, как Жозеф Бертран и Антуан Курно. А в начале XX столетия выдающимися математиками Эмилем Борелем и Эрнстом Цермело была выдвинута идея математической теории конфликта интересов.

Истоки математической теории игр следует искать в неоклассической экономике. Изначально основы и аспекты этой теории излагались в работе Оскара Моргенштерна и Джона фон Неймана «Теория игр и экономическое поведение» в 1944 году.

Представленная математическая область также нашла некоторое отражение и в социальной культуре. Например, в 1998 году Сильвия Назар (американская журналистка и писательница) выпустила книгу, посвящённую Джону Нэшу – лауреату Нобелевской премии по экономике и специалисту по теории игр. В 2001 году по мотивам данной работы сняли фильм «Игры разума». А ряд американских телешоу, таких как «NUMB3RS», «Alias» и «Friend or Foe» время от времени в своих эфирах также ссылаются на теорию игр.

Но отдельно следует сказать о Джоне Нэше.

В 1949 году им была написана диссертация на тему теории игр, а через 45 лет он был удостоен Нобелевской премии по экономике. В самых первых концепциях теории игр подвергались анализу игры антагонистического типа, в которых имеются игроки, выигравшие за счёт проигравших. Но Джон Нэш разработал такие аналитические методы, согласно которым все игроки либо проигрывают, либо выигрывают.

Разработанные Нэшем ситуации впоследствии назвали «равновесием по Нэшу». Отличаются они тем, что все стороны игры применяют наиболее оптимальные стратегии, благодаря чему и создаётся устойчивое равновесие. Сохранять равновесие очень выгодно для игроков, ведь в противном случае какое-то одно изменение может негативно сказаться на их положении.

Благодаря деятельности Джона Нэша теория игр получила мощный толчок в своём развитии. Кроме того, были подвергнуты серьёзному пересмотру математические инструменты экономического моделирования. Джон Нэш смог доказать, что классическая точка зрения на вопрос конкуренции, где каждый играет только за себя, не является оптимальной, и самыми эффективными стратегиями являются такие, в которых игроки делают лучше себе, изначально делая лучше другим.

Несмотря на то, что изначально в поле зрения теории игр находились и экономические модели, до 50-х годов прошлого века она была лишь формальной теорией, ограниченной рамками математики. Однако со второй половины XX века предпринимаются попытки её использования и в экономике, и в антропологии, и в технике, и в кибернетике, и в биологии. В период Второй мировой войны и по её окончании теорию игр начали рассматривать военные, разглядевшие в ней серьёзный аппарат в деле развития стратегических решений.

В период 60-70-х годов интерес к данной теории угас, невзирая даже на то, что она давала хорошие математические результаты. Но с 80-х годов начинается активное применение теории игр на практике, главным образом, в менеджменте и экономике. В течение же нескольких последних десятилетий актуальность её значительно выросла, а некоторые современные экономические направления и вовсе невозможно представить без неё.

Не будет лишним сказать также и о том, что существенный вклад в развитие теории игр внёс труд «Стратегия конфликта» 2005 года лауреата Нобелевской премии по экономике Томаса Шеллинга. В своей работе Шеллинг рассмотрел множество стратегий, которыми пользуются участники конфликтного взаимодействия. Данные стратегии совпали с тактиками конфликт-менеджмента и аналитическими принципами, применяющимися в , а также с тактиками, которые используются для управления конфликтами в организациях.

В психологической науке и ряде других дисциплин понятие «игра» имеет несколько иной смысл, чем в математике. Культурологическая интерпретация термина «игра» была представлена в книге «Homo Ludens» Йохана Хёйзинга, где автор толкует о применении игр в этике, культуре и правосудии, а также указывает на то, что сама игра существенно превосходит человека по возрасту, ведь и животные тоже склонны играть.

Также понятие «игра» можно встретить в концепции Эрика Бёрна, известного по книге « ». Здесь, правда, идёт речь об исключительно психологических играх, основой которых является трансакционный анализ.

Применение теории игр

Если говорить о математической теории игр, то в настоящее время она находится на стадии активного развития. Но математическая база по своей сути является очень затратной, по причине чего применяется она, главным образом, только если цели оправдывают средства, а именно: в политике, экономике монополий и распределения рыночной власти и т.д. В остальном же, теория игр применяется в исследованиях поведения людей и животных в огромном количестве ситуаций.

Как уже и было сказано, сначала теория игр развивалась в пределах границ экономической науки, благодаря чему стало возможным определить и интерпретировать поведение в различных ситуациях экономических агентов. Но позже область её применения значительно расширилась и стала включать в себя множество социальных наук, благодаря чему с помощью теории игр сегодня объясняется поведение человека в психологии, социологии и политологии.

Специалисты используют теорию игр не только для того чтобы объяснить и предсказать человеческое поведение – было предпринято множество попыток по использованию этой теории с целью разработать эталонное поведение. Кроме того, философы и экономисты долгое время при помощи неё старались как можно лучше понять хорошее или достойное поведение.

Таким образом, можно заключить, что теория игр стала настоящим переломным моментом в развитии множества наук, и сегодня является неотъемлемой частью процесса изучения различных аспектов поведения человека.

ВМЕСТО ЗАКЛЮЧЕНИЯ: Как вы заметили, теория игр довольно тесно взаимосвязана с конфликтологией – наукой, посвящённой изучению поведения людей в процессе конфликтного взаимодействия. И, на наш взгляд, эта область является одной из самых главных не только среди тех, в которых теория игр должна применяться, но и среди тех, которые должен изучать сам человек, ведь конфликты, как ни крути, являются частью нашей жизни.

Если у вас есть желание разобраться в том, и какие вообще существуют стратегии поведения в них, мы предлагаем вам пройти наш курс по самопознанию, который в полной мере предоставит вам такую информацию. Но, помимо этого, пройдя наш курс, вы сможете провести всестороннюю оценку своей личности вообще. А это значит, что вы будете знать и о том, как вести себя в случае конфликта, и каковы ваши личностные преимущества и недостатки, жизненные ценности и приоритеты, предрасположенности к работе и творчеству, и много чего ещё. В общем, это очень полезный и нужный инструмент для каждого, кто стремится к развитию.

Наш курс находится – смело приступайте к самопознанию и совершенствуйте себя.

Мы желаем вам успехов и умения быть победителем в любой игре!

3.4.1. Основные понятия теории игр

В настоящее время многие решения проблем в производственной,экономической или коммерческой деятельности зависят от субъективных качеств лица, принимающего решение. При выборе решений в условиях неопределенности всегда неизбежен элемент произвола, а следовательно, и риска.

Задачами о принятии решений в условиях полной или частичной неопределенности занимается теория игр и статистических решений. Неопределенность может принимать форму противодействия другой стороны, которая преследует противоположные цели, препятствует теми или другими действиями или состояниями внешней среды. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания альтернатив и состояний можно представить в виде математической модели, которая называется игрой. Обе стороны конфликта не могут точно предсказать взаимные действия. Несмотря на такую неопределенность, принимать решения приходится каждой стороне конфликта.

Теория игр - это математическая теория конфликтных ситуаций. Основными ограничениями этой теории являются предположение о полной ("идеальной") разумности противника и принятие при разрешении конфликта наиболее осторожного " перестраховочного" решения.

Конфликтующие стороны называются игроками , одна реализация игры партией, исход игры – выигрышем или проигрышем.

Ходом в теории игр называется выбор одного из предусмотренных правилами действия и его реализацию.

Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление.

Случайным ходом называют выбор игроком, осуществляемый не волевым решением игрока, а каким либо механизмом случайного выбора (бросание монеты, сдача карт и т.п.) одного из возможных вариантов действия и его осуществление.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действия при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш (или, что то же самое, минимально возможный средний проигрыш).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

- Комбинаторные игры, в которых правила в принципе дают возможность каждому игроку проанализировать все разнообразные варианты поведения и, сравнив эти варианты выбрать из них наилучший. Неопределенность здесь состоит в слишком большом количестве вариантов, которые надо проанализировать.

- Азартные игры, в которых исход оказывается неопределенным в силу влияния случайных факторов.

- Стратегические игры, в которых неопределенность исхода вызвана тем, что каждый из игроков, принимая решение, не знает, какой стратегии будут придерживаться другие участники игры, так как отсутствует информация о последующих действиях противника (партнера).

- Игра называется парной , если в игре участвуют два игрока.

- Игра называется множественной , если в игре участвуют больше двух игроков.

- Игра называется с нулевой суммой , если каждый игрок выигрывает за счет других, а сумма выигрыша и проигрыша одной стороны равны другой.

- Парная игра с нулевой суммой называется антагонистической игрой.

- Игра называется конечной , если у каждого игрока имеется только конечное число стратегий. В противном случае - игра бесконечная.

- Одношаговые игры, когда игрок выбирает одну из стратегий и делает один ход.

- В многошаговых играх игроки для достижения своих целей делают ряд ходов, которые могут ограничиваться правилами игры или могут продолжаться до тех пор, пока у одного из игроков не останется ресурсов для продолжения игры.

- Деловые игры имитируют организационно-экономические взаимодействия в различных организациях и предприятиях. Преимущества игровой имитации перед реальным объектом таковы:

Наглядность последействий принимаемых решений;

Переменный масштаб времени;

Повторение имеющегося опыта с изменением установок;

Переменный охват явлений и объектов.

Элементами игровой модели являются:

- Участники игры.

- Правила игры.

- Информационный массив, отражающий состояние и движение моделируемой системы.

Проведение классификации и группировки игр позволяет для однотипных игр найти общие методы поиска альтернатив в принятии решения, выработать рекомендации по наиболее рациональному образу действий в ходе развития конфликтных ситуаций в различных сферах деятельности.

3.4.2. Постановка игровых задач

Рассмотрим конечную парную игру с нулевой суммой. Игрок А имеет m стратегий (А 1 А 2 А m), а игрок В – n стратегий (В 1 , В 2 Вn). Такая игра называется игрой размерностью m х n. Пусть а ij - выигрыш игрока А в ситуации, когда игрок А выбрал стратегию А i , а игрок В выбрал стратегию В j . Выигрыш игрока в данной ситуации обозначим b ij . Игра с нулевой суммой, следовательно, а ij = - b ij . Для проведения анализа достаточно знать выигрыш только одного из игроков, допустим А.

Если игра состоит только из личных ходов, то выбор стратегии (А i , В j),однозначно определяет исход игры. Если игра содержит также случайные ходы, то ожидаемый выигрыш – это среднее значение (математическое ожидание).

Предположим, что значения а ij известны для каждой пары стратегий(А i , В j). Составим прямоугольную таблицу, строки которой соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. Эта таблица называется платежной матрицей .

Цель игрока А максимизировать свой выигрыш, а цель игрока В минимизировать свой проигрыш.

Таким образом, платежная матрица имеет вид:

Задача состоит в определении:

1) Наилучшей (оптимальной) стратегии игрока А из стратегий А 1 А 2 А m ;

2) Наилучшей (оптимальной) стратегии игрока В из стратегий В 1 , В 2 Вn.

Для решения задачи применяется принцип, согласно которому участники игры одинаково разумны и каждый из них делает все для того, чтобы добиться своей цели.

3.4.3. Методы решения игровых задач

Принцип минимакса

Проанализируем последовательно каждую стратегию игрока А. Если игрок А выбирает стратегию А 1 , то игрок В может выбрать такую стратегию В j , при которой выигрыш игрока А будет равен наименьшему из чисел a 1j . Обозначим его a 1:

то есть a 1 – минимальное значение из всех чисел первой строки.

Это можно распространить на все строки. Поэтому игрок А должен выбрать ту стратегию, для которой число a i - максимально.

Величина a - гарантированный выигрыш, который может обеспечить себе игрок а при любом поведении игрока В. Величина a называется нижней ценой игры.

Игрок В заинтересован в том, чтобы уменьшить свой проигрыш, то есть обратить выигрыш игрока А в минимум. Для выбора оптимальной стратегии он должен найти максимальное значение выигрыша в каждом столбце и среди них выбрать наименьшее.

Обозначим через b j максимальное значение в каждом столбце:

Наименьшее значение b j обозначим b.

b = min max a ij

b называется верхней границей игры. Принцип, диктующий игрокам выбор игрокам соответствующих стратегий, называется принципом минимакса.

Существуют матричные игры, для которых нижняя цена игры равна верхней, такие игры называются играми с седловой точкой. В этом случае g=a=b называется чистой ценой игры, а стратегии А * i , В * j , позволяющие достичь этого значения - оптимальными. Пара (А * i , В * j)называется седловой точкой матрицы, так как элемент a ij .= g одновременно является минимальным в i-строке и максимальным в j- столбце. Оптимальные стратегии А * i , В * j , и чистая цена являются решением игры в чистых стратегиях, т. е. без привлечения механизма случайного выбора.

Пример 1.

Пусть дана платежная матрица. Найти решение игры, т. е. определить нижнюю и верхнюю цены игры и минимаксные стратегии.

Здесь a 1 =min a 1 j =min(5,3,8,2) =2

a =max min a ij = max(2,1,4) =4

b = min max a ij =min(9,6,8,7) =6

таким образом, нижней цене игры (a=4) соответствует стратегия А 3 .Выбирая эту стратегию, игрок А достигнет выигрыша не менее 4 при любом поведении игрока В. Верхней цене игры (b=6) соответствует стратегия игрока В. Эти стратегии являются минимаксными. Если обе стороны будут придерживаться этих стратегий, выигрыш будет равен 4 (a 33).

Пример 2.

Дана платежная матрица. Найти нижнюю и верхнюю цены игры.

a =max min a ij = max(1,2,3) =3

b = min max a ij =min(5,6,3) =3

Следовательно, a =b=g=3. Седловой точкой является пара (А * 3 , В * 3). Если матричная игра содержит седловую точку, то ее решение находится по принципу минимакса.

Решение игр в смешанных стратегиях

Если платежная матрица не содержит седловой точки (aсмешанной стратегией .

Для применения смешанных стратегий требуются следующие условия:

1) В игре отсутствует седловая точка.

2) Игроками используется случайная смесь чистых стратегий с соответствующими вероятностями.

3) Игра многократно повторяется в одних и тех же условиях.

4) При каждом из ходов игрок не информирован о выборе стратегии другим игроком.

5) Допускается усреднение результатов игр.

В теории игр доказано, что любая парная игра с нулевой суммой имеет по крайней мере одно решение в смешанных стратегиях, отсюда следует, что каждая конечная игра имеет цену g. g - средний выигрыш, приходящийся на одну партию, удовлетворяющий условию a<=g<=b . Оптимальное решение игры в смешанных стратегиях обладает следующим свойством: каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии.

Стратегии игроков в их оптимальных смешанных стратегиях называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш(или минимальный средний проигрыш), равный цене игры g, независимо от того, какие действия предпринимает другой игрок, если он только не выходит за пределы своих активных стратегий.

Введем обозначения:

Р 1 Р 2 … Р m - вероятности использования игроком А стратегий А 1 А 2 ….. А m ;

Q 1 Q 2 …Q n вероятности использования игроком В стратегий В 1 , В 2….. Вn

Смешанную стратегию игрока А запишем в виде:

А 1 А 2 …. А m

Р 1 Р 2 … Р m

Смешанную стратегию игрока B запишем в виде:

B 1 B 2 …. B n

Зная платежную матрицу А, можно определить средний выигрыш (математическое ожидание) М(А,P,Q):

М(А,P,Q)=S Sa ij Р i Q j

Средний выигрыш игрока А:

a =max minМ(А,P,Q)

Средний проигрыш игрока В:

b = min maxМ(А,P,Q)

Обозначим через Р А * и Q В * векторы, соответствующие оптимальным смешанным стратегиям, при которых выполняется:

max minМ(А,P,Q) = min maxМ(А,P,Q)= М(А,P А * ,Q В *)

При этом выполняется условие:

maxМ(А,P,Q В *) <=maxМ(А,P А * ,Q В *)<= maxМ(А,P А * ,Q)

Решить игру – это означает найти цену игры и оптимальные стратегии.

Геометрический метод определения цены игры и оптимальных стратегий

(Для игры 2Х2)

На оси абсцисс откладывается отрезок длиной 1.Левый конец этого отрезка соответствует стратегии А 1 , правый – стратегии А 2 .

По оси ординат откладываются выигрыши а 11 и а 12 .

По линии, параллельной оси ординат из точки 1 откладываются выигрыши а 21 и а 22 .

Если игрок В применяет стратегию В 1 , то соединяем точки а 11 и а 21 , если – В 2, то – а 12 и а 22 .

Средний выигрыш изображается точкой N, точка пересечения прямых В 1 В 1 и В 2 В 2 .Абсцисса этой точки равна Р 2 , а ордината цене игры - g.

По сравнению с прежней технологией выигрыш составляет 55%.

В практической деятельности часто приходится принимать решения в условиях противодействия другой стороны, которая может преследовать противоположные или иные цели, препятствовать теми или иными действиями или состояниями внешней среды достижению намеченной цели. Причем, эти воздействия противоположной стороны могут носить пассивный или активный характер. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны, ответные действия и их возможные последствия.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания вариантов и состояний часто представляют в видематематической модели,которую называют игрой .

Если в качестве противодействующей стороны выступает неактивная, пассивная сторона, которая сознательно не противодействует достижению намеченной цели, то такую игру называют игрой с «природой». Под природой понимают обычно совокупность обстоятельств, в которых приходится принимать решения (неясность погодных условий, неизвестность поведения клиентов в коммерческой деятельности, неопределенность реакции населения на новые виды товаров и услуг и т. д.)

В других ситуациях противоположная сторона активно, сознательно противостоит достижению намеченной цели. В подобных случаях происходит столкновение противоположных интересов, мнений, идей. Такие ситуации называются конфликтными , а принятие решений в конфликтной ситуации затрудняется из-за неопределенности поведения противника. Известно, что противник сознательно стремится предпринять наименее выгодные для вас действия, чтобы обеспечить себе наибольший успех. Неизвестно, в какой мере противник умеет оценить обстановку и возможные последствия, как он оценивает ваши возможности и намерения. Обе стороны не могут предсказать взаимные действия. Несмотря на такую неопределенность, принимать решение приходится каждой стороне конфликта

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. К ним относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом и т. д. Во всех этих примерах конфликтная ситуация порождается различием интересов партнеров и стремлением каждого из них принимать оптимальные решения. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать неизвестные заранее его возможные действия.

Необходимость обоснования оптимальных решений в конфликтных ситуациях привела к возникновению теории игр.

Теория игр - это математическая теория конфликтных ситуаций . Исходными положениями этой теории являются предположение о полной «идеальной» разумности противника и принятие при разрешении конфликта наиболее осторожного решения.

Конфликтующие стороны называются игроками , одна реализация игры – партией , исход игры – выигрышем или проигрышем . Любое возможное для игрока действие (в рамках заданных правил игры) называется его стратегией .

Смысл игры состоит в том, что каждый из игроков в рамках заданных правил игры стремится применить оптимальную для него стратегию, то есть стратегию, которая приведет к наилучшему для него исходу. Одним из принципов оптимального (целесообразного) поведения является достижение равновесной ситуации, в нарушении которой не заинтересован ни один из игроков.

Именно ситуация равновесия может быть предметом устойчивых договоров между игроками. Кроме того, ситуации равновесия являются выгодными для каждого игрока: в равновесной ситуации каждый игрок получает наибольший выигрыш, в той мере, в какой это от него зависит.

Математическая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, называются игроками.

Для каждой формализованной игры вводятся правила. В общем случае правилами игры устанавливаются варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Развитие игры во времени происходит последовательно, по этапам или ходам. Ходом в теории игр называют выбор одного из предусмотренных правилами игры действия и его реализацию. Ходы бывают личные и случайные. Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление. Случайным ходом называют выбор, осуществляемый не волевым решением игрока, а каким-либо механизмом случайного выбора (бросание монеты, пасовка, сдача карт и т. д.).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

Комбинированные игры, в которых правила дают в принципе возможность каждому игроку проанализировать все разнообразные варианты своего поведения и, сравнив эти варианты, избрать тот из них, который ведет к наилучшему для этого игрока исходу. Неопределенность исхода связана обычно с тем, что количество возможных вариантов поведения (ходов) слишком велико и игрок практически не в состоянии их всех перебрать и проанализировать.

Азартные игры , в которых исход оказывается неопределенным в силу влияния различных случайных факторов. Азартные игры состоят только из случайных ходов, при анализе которых применяется теория вероятностей. Азартными играми математическая теория игр не занимается.

Стратегические игры , в которых полная неопределенность выбора обоснована тем, что каждый из игроков, принимая решение о выборе предстоящего хода, не знает, какой стратегии будут придерживаться другие участники игры, причем незнание игрока о поведении и намерениях партнеров носит принципиальный характер, так как отсутствует информация о последующих действиях противника (партнера).

Существуют игры, сочетающие в себе свойства комбинированных и азартных игр, стратегичность игр может сочетаться с комбинаторностью и т. д.

В зависимости от числа участников игры подразделяются на парные и множественные. В парной игре число участников равно двум, во множественной игре число участников более двух. Участники множественной игры могут образовывать коалиции. В этом случае игры называют коалиционными . Множественная игра обращается в парную, если ее участники образуют две постоянные коалиции.

Одним из основных понятий теории игр является стратегия. Стратегией игрока называется совокупность правил, определяющих выбор варианта действий при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры.

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш или минимально возможный проигрыш независимо от поведения противника.

Игра называется конечной , если число стратегий игроков конечно, и бесконечной , если хотя бы у одного из игроков число стратегий является бесконечным.

В многоходовых задачах теории игр понятия «стратегия» и «вариант возможных действий» существенно отличаются друг от друга. В простых (одноходовых) игровых задачах, когда в каждой партии игры каждый игрок может сделать по одному ходу, эти понятия совпадают, а, следовательно, совокупность стратегий игрока охватывает все возможные действия, которые он может предпринять в любой возможной ситуации и при любой возможной фактической информации.

Различают игры и по сумме выигрыша. Игра называется игрой с нулевой суммо й , если каждый игрок выигрывает за счет других, а сумма выигрыша одной стороны равна сумме проигрыша другой. В парной игре с нулевой суммой интересы игроков прямо противоположны. Парная игра с нулевой суммой называется антагонистической игрой .

Игры, в которых выигрыш одного игрока и проигрыш другого не равны между собой, называются играми с ненулевой суммой .

Существует два способа описания игр: позиционный и нормальный . Позиционный способ связан с развернутой формой игры и сводится к графу последовательных шагов (дереву игры). Нормальный способ заключается в явном представлении совокупности стратегий игроков и платежной функции . Платежная функция в игре определяет для каждой совокупности выбранных игроками стратегий выигрыш каждой из сторон.

Предисловие

Задача данной статьи заключается в ознакомлении читателя с базовыми понятиями теории игр. Из статьи читатель узнает, что из себя представляет теория игр, рассмотрит краткую историю теории игр, познакомится с основными положениями теории игр, включая основные типы игр и формы их представления. В статье будет затронута классическая задача и фундаментальная проблема теории игр. Заключительный раздел статьи посвящен рассмотрению проблем применения теории игр для принятии управленческих решений и практического применения теории игр в управлении.

Введение.

21 век. Век информации, бурно развивающихся информационных технологий, инноваций и технологических новшеств. Но почему именно век информации? Почему информация играет ключевую роль практически во всех процессах, происходящих в обществе? Все очень просто. Информация даёт нам бесценное время, а в некоторых случаях даже возможность его опередить. Ведь ни для кого не секрет, что в жизни часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределённости, в условиях отсутствия информации об ответных реакциях на твои действия т. е. возникают ситуации, в которых две (или более) стороны преследуют различные цели, а результаты любого действия каждой из сторон зависят от мероприятий партнёра. Такие ситуации возникают каждый день. Например, при игре в шахматы, шашки, домино и так далее. Несмотря на то, что игры носят в основном развлекательный характер, по природе своей они относятся к конфликтным ситуациям, в которых конфликт уже заложен в цели игры - выигрыш одного из партнёров. При этом, результат каждого хода игрока зависит от ответного хода противника. В экономике конфликтные ситуации встречаются очень часто и имеют разнообразный характер, а количество их настолько велико, что невозможно подсчитать все конфликтные ситуации, возникающие на рынке хотя бы за один день. К конфликтным ситуациям в экономике относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Во всех вышеперечисленных примерах конфликтная ситуация порождается различием интересов партнёров и стремлением каждого из них принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнёра, и учитывать неизвестные заранее решения, которые эти партнёры будут принимать. Для грамотного решения задач в конфликтных ситуациях необходимы научно обоснованные методы. Такие методы разработаны математической теорией конфликтных ситуаций, которая носит название теории игр.

Что такое теория игр?

Теория игр представляет из себя сложное многоаспектное понятие, поэтому представляется невозможным привести толкование теории игр, используя лишь одно определение. Рассмотрим три подхода к определению теории игр.

1.Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

2.Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение теория игр имеет для искусственного интеллекта и кибернетики.

3.Одна из важнейших переменных, от которой зависит успех организации - конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации. Теория игр - метод моделирования оценки воздействия принятого решения на конкурентов.

История теории игр

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение».

Джон Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Нэша сделали серьезный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Джон Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других. В 1949 году Джон Нэш пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике.

Хотя теория игр первоначально и рассматривала экономические модели вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960 - 1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии и в управлении конфликтами в организации.

Основные положения теории игр

Ознакомимся с основными понятиями теории игр. Математическая модель конфликтной ситуации называется игрой, стороны, участвующие в конфликте - игроками . Чтобы описать игру, необходимо сначала выявить ее участников (игроков). Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат и т.п. Иначе обстоит дело с "рыночными играми". Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных. Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Случайный ход - это случайно выбранное действие (например, выбор карты из перетасованной колоды). Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют "платежи" (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах. Еще одним понятием данной теории является стратегия игрока. Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определённую стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Иначе говоря, под стратегией понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему "лучшим ответом" на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры. Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: 1) варианты действий игроков; 2) объём информации каждого игрока о поведении партнёров; 3) выигрыш, к которому приводит каждая совокупность действий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулём, выигрыш - единицей, а ничью - ½. Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т. е. для полного задания игры достаточно указать величину одного из них. Если обозначить а - выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = -а, поэтому достаточно рассматривать, например а. Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае. Для того чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными . Оптимальные стратегии должны также удовлетворять условию устойчивости , т. е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре. Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях. Целью теории игр является определение оптимальной стратегии для каждого игрока . При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Кооперативные и некооперативные

Игра называется кооперативной, или коалиционной , если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные

Несимметричная игра

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя». В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

Игры с нулевой суммой - особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство .

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока , который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля , где каждый участник извлекает выгоду. Сюда также относятся шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается. Широко известным примером, где она уменьшается, является война .

Параллельные и последовательные

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических , играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной , например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной.

С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся «соль» Дилеммы заключённого заключается в её неполноте.

Примеры игр с полной информацией: шахматы, шашки и другие.

Часто понятие полной информации путают с похожим - совершенной информации . Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии.

Дискретные и непрерывные игры

Большинство изучаемых игр дискретны : в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры находят своё применение в технике и технологиях, физике.

Метаигры

Это такие игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом ). Цель метаигр - увеличить полезность выдаваемого набора правил.

Форма представления игры

В теории игр наряду с классификацией игр огромную роль играет форма представления игры. Обычно выделяют нормальную, или матричную форму и развернутую, заданную в виде дерева. Эти формы для простой игры представлены на рис. 1а и 1б.

Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором. В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль П K . При вступлении в жесткую конкурентную борьбу оба получают прибыль П W . Если один из конкурентов устанавливает высокую цену, а второй - низкую, то последний реализует монопольную прибыль П M , другой же несет убытки П G . Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена.

При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия "низкой цены" является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль П K (которая для обоих игроков выше, чем прибыль П W) не достигается.

Стратегическая комбинация "низкие цены/низкие цены" с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования.

Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков. Если предприятие имеет возможность пересмотреть свои стратегические переменные (в данном случае цену), то может быть найдено кооперативное решение проблемы даже без жесткого договора между игроками. Интуиция подсказывает, что при многократных контактах игроков появляются возможности добиться приемлемой "компенсации". Так, при известных обстоятельствах нецелесообразно стремиться к краткосрочным высоким прибылям путем ценового демпинга, если в дальнейшем может возникнуть "война цен".

Как отмечалось, оба рисунка характеризуют одну и ту же игру. Предоставление игры в нормальной форме в обычном случае отражает "синхронность". Однако это не означает "одновременность" событий, а указывает на то, что выбор стратегии игроком осуществляется в условиях неведения о выборе стратегии соперником. При развернутой форме такая ситуация выражается через овальное пространство (информационное поле). При отсутствии этого пространства игровая ситуация приобретает иной характер: сначала решение должен бы принимать один игрок, а другой мог бы делать это вслед за ним.

Классическая задача в теории игр

Рассмотрим классическую задачу в теории игр. Охота на оленя - кооперативная симметричная игра из теории игр, описывающая конфликт между личными интересами и общественными интересами. Игра была впервые описана Жан-Жаком Руссо в 1755 году:

" Если охотились на оленя, то каждый понимал, что для этого он обязан оставаться на своем посту; но если вблизи кого-либо из охотников пробегал заяц, то не приходилось сомневаться, что этот охотник без зазрения совести пустится за ним вдогонку и, настигнув добычу, весьма мало будет сокрушаться о том, что таким образом лишил добычи своих товарищей."

Охота на оленя - классический пример задачи обеспечения общественного блага при искушении человека поддаться своекорыстию. Должен ли охотник остаться с товарищами и сделать ставку на менее благоприятный случай доставить крупную добычу всему племени, либо покинуть товарищей и вверить себя более надежному случаю, сулящему его собственной семье зайца?

Фундаментальная проблема в теории игр

Рассмотрим фундаментальную проблему в теории игр под названием Дилемма заключенного.

Дилемма заключённого - фундаментальная проблема в теории игр, согласно которой игроки не всегда будут сотрудничать друг с другом, даже если это в их интересах. Предполагается, что игрок («заключённый») максимизирует свой собственный выигрыш, не заботясь о выгоде других. Суть проблемы была сформулирована Мерилом Фладом и Мелвином Дрешером в 1950 году. Название дилемме дал математик Альберт Такер.

В дилемме заключённого предательство строго доминирует над сотрудничеством, поэтому единственное возможное равновесие - предательство обоих участников. Проще говоря, неважно, что сделает другой игрок, каждый выиграет больше, если предаст. Поскольку в любой ситуации предать выгоднее, чем сотрудничать, все рациональные игроки выберут предательство.

Ведя себя по отдельности рационально, вместе участники приходят к нерациональному решению: если оба предадут, они получат в сумме меньший выигрыш, чем если бы сотрудничали (единственное равновесие в этой игре не ведёт к Парето-оптимальному решению, т.е. решению, которое не может быть улучшено без ухудшения положения других элементов.). В этом и заключается дилемма.

В повторяющейся дилемме заключённого игра происходит периодически, и каждый игрок может «наказать» другого за несотрудничество ранее. В такой игре сотрудничество может стать равновесием, а стимул предать может перевешиваться угрозой наказания.

Классическая дилемма заключённого

Во всех судебных системах кара за бандитизм (совершение преступлений в составе организованной группы) намного тяжелее, чем за те же преступления, совершённые в одиночку (отсюда альтернативное название - «дилемма бандита»).

Классическая формулировка дилеммы заключённого такова:

Двое преступников, А и Б, попались примерно в одно и то же время на сходных преступлениях. Есть основания полагать, что они действовали по сговору, и полиция, изолировав их друг от друга, предлагает им одну и ту же сделку: если один свидетельствует против другого, а тот хранит молчание, то первый освобождается за помощь следствию, а второй получает максимальный срок лишения свободы (10 лет)(20 лет). Если оба молчат, их деяние проходит по более лёгкой статье, и они приговариваются к 6 месяцам(1 год). Если оба свидетельствуют против друг друга, они получают минимальный срок (по 2 года)(5 лет). Каждый заключённый выбирает, молчать или свидетельствовать против другого. Однако ни один из них не знает точно, что сделает другой. Что произойдёт?

Игру можно представить в виде следующей таблицы:

Дилемма появляется, если предположить, что оба заботятся только о минимизации собственного срока заключения.

Представим рассуждения одного из заключённых. Если партнёр молчит, то лучше его предать и выйти на свободу (иначе - полгода тюрьмы). Если партнёр свидетельствует, то лучше тоже свидетельствовать против него, чтобы получить 2 года (иначе - 10 лет). Стратегия «свидетельствовать» строго доминирует над стратегией «молчать». Аналогично другой заключённый приходит к тому же выводу.

С точки зрения группы (этих двух заключённых) лучше всего сотрудничать друг с другом, хранить молчание и получить по полгода, так как это уменьшит суммарный срок заключения. Любое другое решение будет менее выгодным.

Обобщённая форма

  1. В игре - два игрока и банкир. Каждый игрок держит 2 карты: на одной написано «сотрудничать», на другой - «предать» (это стандартная терминология игры). Каждый игрок кладёт одну карту перед банкиром лицом вниз (то есть никто не знает чужого решения, хотя знание чужого решения не влияет на анализ доминирования). Банкир открывает карты и выдаёт выигрыш.
  2. Если оба выбрали «сотрудничать», оба получают C . Если один выбрал «предать», другой «сотрудничать» - первый получает D , второй с . Если оба выбрали «предать» - оба получают d .
  3. Значения переменных C, D, c, d могут быть любого знака (в примере выше все меньше либо равны 0). Обязательно должно соблюдаться неравенство D > C > d > c, чтобы игра представляла собой «Дилемму заключённого» (ДЗ).
  4. Если игра повторяется, то есть играется больше 1 раза подряд, общий выигрыш от сотрудничества должен быть больше суммарного выигрыша в ситуации, когда один предаёт, а другой - нет, то есть 2C > D + c.

Эти правила были установлены Дугласом Хофштадтером и образуют каноническое описание типичной дилеммы заключённого.

Похожая, но другая игра

Хофштадтер предположил, что люди проще понимают задачи, как задача дилемма заключенного, если она представлена в виде отдельной игры или процесса торговли. Один из примеров - «обмен закрытыми сумками »:

Два человека встречаются и обмениваются закрытыми сумками, понимая, что одна из них содержит деньги, другая - товар. Каждый игрок может уважать сделку и положить в сумку то, о чём договорились, либо обмануть партнёра, дав пустую сумку.

В этой игре обман всегда будет наилучшим решением, означая также, что рациональные игроки никогда не будут играть в неё, и что рынок обмена закрытыми сумками будет отсутствовать.

Применение теории игр для принятия стратегических управленческих решений

В качестве примеров можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д. Положения теории игр в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.

 Инструментарий теории игр особенно целесообразно применять, когда между участниками процесса существуют важные зависимости в области платежей . Ситуация с возможными конкурентами приведена на рис. 2.

 Квадранты 1 и 2 характеризуют ситуацию, когда реакция конкурентов не оказывает существенного влияния на платежи фирмы. Это происходит в тех случаях, когда у конкурента нет мотивации (поле 1 ) или возможности (поле 2 ) нанести "ответный удар". Поэтому нет необходимости в детальном анализе стратегии мотивированных действий конкурентов.

Аналогичный вывод следует, хотя и по другой причине, и для ситуации, отражаемой квадрантом 3 . Здесь реакция конкурентов могла бы изрядно воздействовать на фирму, но поскольку ее собственные действия не могут сильно повлиять на платежи конкурента, то и не следует опасаться его реакции. В качестве примера можно привести решения о вхождении в рыночную нишу: при определенных обстоятельствах у крупных конкурентов нет оснований реагировать на подобное решение небольшой фирмы.

Лишь ситуация, показанная в квадранте 4 (возможность ответных шагов рыночных партнеров), требует использования положений теории игр. Однако здесь отражены лишь необходимые, но недостаточные условия, чтобы оправдать применение базы теории игр для борьбы с конкурентами. Бывают ситуации, когда одна стратегия безусловно доминирует над всеми другими независимо от того, какие действия предпримет конкурент. Если взять, например, рынок лекарственных препаратов, то для фирмы часто бывает важно первой заявить новый товар на рынке: прибыль "первопроходца" оказывается столь значительной, что всем другим "игрокам" остается только быстрее активизировать инновационную деятельность.

 Тривиальным с позиций теории игр примером "доминирующей стратегии" является решение относительно проникновения на новый рынок. Возьмем предприятие, которое выступает в качестве монополиста на каком-либо рынке (например, IВМ на рынке персональных компьютеров в начале 80-х годов). Другое предприятие, действующее, к примеру, на рынке периферийного оборудования для ЭВМ, обдумывает вопрос о проникновении на рынок персональных компьютеров с переналадкой своего производства. Компания-аутсайдер может принять решение о вступлении или невступлении на рынок. Компания-монополист может отреагировать на появление нового конкурента агрессивно или дружественно. Оба предприятия вступают в двухэтапную игру, в которой первый ход делает компания-аутсайдер. Игровая ситуация с указанием платежей показана в виде дерева на рис.3.

 Та же самая игровая ситуация может быть представлена и в нормальной форме (рис.4).

Здесь обозначены два состояния - "вступление/дружественная реакция" и "невступление/ агрессивная реакция". Очевидно, что второе равновесие несостоятельно. Из развернутой формы следует, что для уже закрепившейся на рынке компании нецелесообразно реагировать агрессивно на появление нового конкурента: при агрессивном поведении теперешний монополист получает 1(платеж), а при дружественном - 3. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере (-1) компания-аутсайдер не понесет.

Подобное рациональное равновесие характерно для "частично усовершенствованной" игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор "лучшего" хода на последнем этапе игры, затем выбирается "лучший" ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.

Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. В связи с объявлением о подготовительных планах последней к вступлению на рынок состоялось "кризисное" совещание руководства IВМ, на котором были проанализированы мероприятия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок. Компании Telex, видимо, стало известно об этих мероприятиях. Анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны. Это свидетельствует, что компаниям полезно в обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход "невступление", если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию монополиста. В этом случае в соответствии с критерием ожидаемой стоимости разумно выбрать ход "невступление" при вероятности агрессивного ответа 0,5.

 Следующий пример связан с соперничеством компаний в области технологического лидерства. Исходной является ситуация, когда предприятие 1 ранее обладало технологическим превосходством, но в настоящее время располагает меньшими финансовыми ресурсами для научных исследований и разработок (НИР), чем его конкурент. Оба предприятия должны решить вопрос, попытаться ли с помощью крупных капиталовложений добиться доминирующего положения на мировом рынке в соответствующей технологической области. Если оба конкурента вложат в дело крупные средства, то перспективы на успех у предприятия 1 будут лучше, хотя оно и понесет большие финансовые расходы (как и предприятие 2 ). На рис. 5 эта ситуация представлена платежами с отрицательными значениями.

Для предприятия 1 лучше всего было бы, если бы предприятие 2 отказалось от конкуренции. Его выгода в таком случае составила бы 3 (платежа). С большой вероятностью предприятие 2 выиграло бы соперничество, когда предприятие 1 приняло бы урезанную программу инвестиций, а предприятие 2 - более широкую. Это положение отражено в правом верхнем квадранте матрицы.

Анализ ситуации показывает, что равновесие наступает при высоких затратах на НИР предприятия 2 и низких предприятия 1 . При любом другом раскладе у одного из конкурентов появляется резон отклониться от стратегической комбинации: так, для предприятия 1 предпочтителен сокращенный бюджет, если предприятие 2 откажется от участия в соперничестве; в то же время предприятию 2 известно, что при низких затратах конкурента ему выгодно инвестировать в НИР.

Предприятие, имеющее технологическое преимущество, может прибегнуть к анализу ситуации на базе теории игр, чтобы в конечном счете добиться оптимального для себя результата. С помощью определенного сигнала оно должно показать, что готово осуществить крупные затраты на НИР. Если такой сигнал не поступил, то для предприятия 2 ясно, что предприятие 1 выбирает вариант низких затрат.

О достоверности сигнала должны свидетельствовать обязательства предприятия. В данном случае это может быть решение предприятия 1 о закупке новых лабораторий или найме на работу дополнительного научно-исследовательского персонала.

С точки зрения теории игр подобные обязательства равнозначны изменению хода игры: ситуация одновременного принятия решений сменяется ситуацией последовательных ходов. Предприятие 1 твердо демонстрирует намерение пойти на крупные затраты, предприятие 2 регистрирует этот шаг и у него нет больше резона участвовать в соперничестве. Новое равновесие вытекает из расклада "неучастие предприятия 2 " и "высокие затраты на НИР предприятия 1 ".

 К числу известных областей применения методов теории игр следует отнести также ценовую стратегию, создание совместных предприятий, расчет времени разработки новой продукции.

Важный вклад в использование теории игр вносят экспериментальные работы . Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат импульсом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам целесообразно сотрудничать и добиваться лучших для себя результатов.

Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации "выигрыш/выигрыш". Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.

Проблемы практического применения в управлении

Безусловно, следует указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых, это тот случай, когда у предприятий сложились разные представления об игре, в которой они участвуют, или когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно оперировать сопоставлением подобных случаев с учетом определенных различий.

Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Легко представить более сложную ситуацию проникновения на рынок, чем та, которая рассмотрена выше. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

Теория игр используется не так часто. К сожалению, ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики фирмы. Тем не менее, теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет руководству учесть дополнительные переменные или факторы, могущие повлиять на ситуацию, и тем самым повышает эффективность решения.

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Список литературы

1. Теория игр и экономическое поведение, фон Нейман Дж., Моргенштерн О., изд-во Наука, 1970

2. Петросян Л.А., Зенкевич Н.А., Семина Е.А. Теория игр: Учеб. пособие для ун-тов - М.: Высш. шк., Книжный дом «Университет», 1998

3. Дубина И. Н. Основы теории экономических игр: учебное пособие.- М.: КНОРУС, 2010

4. Архив журнала "Проблемы Теории и Практики Управления"., Райнер Фелькер

5. Теория игр в управлении организационными системами. 2-е издание ., Губко М.В., Новиков Д.А. 2005


- Ж. Ж. Руссо. Рассуждение о происхождении и основаниях неравенства между людьми // Трактаты / Пер. с франц. А. Хаютина - М.: Наука, 1969. - С. 75.

Раздел Теория игр представлен тремя онлайн-калькуляторами :

  1. Решение матричной игры . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения.
  2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц – стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице – выигрыши второго.
  3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

Ситуация, в которой эффективность принимаемого одной стороной решения зависит от действий другой стороны, называется конфликтной . Конфликт всегда связан с определенного рода разногласиями (это не обязательно антагонистическое противоречие).

Конфликтная ситуация называется антагонистической , если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину, и наоборот.

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. Например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Каждый из них имеет свои интересы и стремится принимать оптимальные решения, помогающие достигнуть поставленных целей в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать решения, которые эти партнеры будут принимать (они заранее могут быть неизвестны). Чтобы в конфликтных ситуациях принимать оптимальные решения, создана математическая теория конфликтных ситуаций, которая называется теорией игр . Возникновение этой теории относится к 1944 г., когда была издана монография Дж. фон Неймана «Теория игр и экономическое поведение»

Игра – это математическая модель реальной конфликтной ситуации . Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры – это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рассматривать только парные игры. Игроки обозначаются A и B .

Игра называется антагонистической (с нулевой суммой ), если выигрыш одного из игроков равен проигрышу другого.

Выбор и осуществление одного из вариантов действий, предусмотренных правилами, называется ходом игрока. Ходы могут быть личными и случайными.
Личный ход – это сознательный выбор игроком одного из вариантов действий (например, в шахматах).
Случайный ход – это случайно выбранное действие (например, бросание игральной кости). Мы будем рассматривать только личные ходы.

Стратегия игрока – это совокупность правил, определяющих поведение игрока при каждом личном ходе. Обычно в процессе игры на каждом этапе игрок выбирает ход в зависимости от конкретной ситуации. Возможно также, что все решения приняты игроком заранее (т.е. игрок выбрал определенную стратегию).

Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной – в противном случае.

Цель теории игр – разработать методы для определения оптимальной стратегии каждого игрока.

Стратегия игрока называется оптимальной , если она обеспечивает этому игроку при многократном повторении игры максимально возможный средний выигрыш (или минимально возможный средний проигрыш независимо от поведения противника).

Пример 1. Каждый из игроков, A или B , может записать, независимо от другого, цифры 1, 2 и 3. Если разность между цифрами, записанными игроками, положительна, то A выигрывает количество очков, равное разности между цифрами. Если разность меньше 0, выигрывает B . Если разность равна 0 – ничья.
У игрока A три стратегии (варианта действия): A 1 = 1 (записать 1), A 2 = 2, A 3 = 3, у игрока тоже три стратегии: B 1 , B 2 , B 3 .

B
A
B 1 =1 B 2 = 2 B 3 =3
A 1 = 1 0 -1 -2
A 2 = 2 1 0 -1
A 3 = 3 2 1 0

Задача игрока A – максимизировать свой выигрыш. Задача игрока B – минимизировать свой проигрыш, т.е. минимизировать выигрыш A . Это парная игра с нулевой суммой .


Top