Точки пересечения прямых онлайн. Пересечение двух прямых

С помощю этого онлайн калькулятора можно найти точку пересечения прямых на плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых ("канонический", "параметрический" или "общий"), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить". Теоретическую часть и численные примеры смотрите ниже.

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Точка пересечения прямых на плоскости − теория, примеры и решения

1. Точка пересечения прямых, заданных в общем виде.

Oxy L 1 и L 2:

Построим расширенную матрицу:

Если B" 2 =0 и С" 2 =0, то система линейных уравнений имеет множество решений. Следовательно прямые L 1 и L 2 совпадают. Если B" 2 =0 и С" 2 ≠0, то система несовместна и, следовательно прямые параллельны и не имеют общей точки. Если же B" 2 ≠0, то система линейных уравнений имеет единственное решение. Из второго уравнения находим y : y =С" 2 /B" 2 и подставляя полученное значение в первое уравнение находим x : x =−С 1 −B 1 y . Получили точку пересечения прямых L 1 и L 2: M (x, y ).

2. Точка пересечения прямых, заданных в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L 1 и L 2:

Откроем скобки и сделаем преобразования:

Аналогичным методом получим общее уравнение прямой (7):

Из уравнений (12) следует:

Как найти точку пересечения прямых, заданных в каноническом виде описано выше.

4. Точка пересечения прямых, заданных в разных видах.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L 1 и L 2:

Найдем t :

A 1 x 2 +A 1 m t +B 1 y 2 +B 1 p t +C 1 =0,

Решим систему линейных уравнений отностительно x, y . Для этого воспользуемся методом Гаусса . Получим:

Пример 2. Найти точку пересечения прямых L 1 и L 2:

L 1: 2x +3y +4=0, (20)
(21)

Для нахождения точки пересечения прямых L 1 и L 2 нужно решить систему линейных уравнений (20) и (21). Представим уравнения в матричном виде.


При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Пример.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Решение.

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

Ответ:

M 0 (4, 2) x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду , а уже после этого находить координаты точки пересечения.

Пример.

и .

Решение.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения :

Ответ:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Пример.

Определите координаты точки пересечения прямых и .

Решение.

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

Ответ:

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Пример.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Решение.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Ответ:

Уравнения и определяют в прямоугольной системе координат Oxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Пример.

Найдите координаты точки пересечения прямых и , если это возможно.

Решение.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения , так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

- нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

Ответ:

Координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Пример.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Решение.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, 2x-1=0 и .

Ответ:

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Рассмотрим решения примеров.

Пример.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Решение.

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим А и ранг матрицы T . Используем

В былые времена я увлекался компьютерной графикой, как 2х так и 3х мерной, в том числе математическими визуализациями. Что называется just for fun, будучи студентом, написал программу визуализирующую N-мерные фигуры, вращающиеся в любых измерениях, хотя практически меня хватило только на определение точек для 4-D гиперкуба. Но это только присказка. Любовь к геометрии осталась у меня с тех пор и по сей день, и я до сих пор люблю решать интересные задачи интересными способами.
Одна из таких задач попалась мне в 2010 году. Сама задача достаточно тривиальна: необходимо найти, пересекаются ли два 2-D отрезка, и если пересекаются - найти точку их пересечения. Более интересно решение, которое, я считаю, получилось достаточно элегантным, и которое я хочу предложить на суд читателя. На оригинальность алгоритма не претендую (хотя и хотелось бы), но в сети подобных решений я найти не смог.
Задача
Даны два отрезка, каждый из которых задан двумя точками: (v11, v12), (v21, v22). Необходимо определить, пересекаются ли они, и если пересекаются, найти точку их пересечения.
Решение
Для начала необходимо определить, пересекаются ли отрезки. Необходимое и достаточное условие пересечения, которое должно быть соблюдено для обоих отрезков следующее: конечные точки одного из отрезков должны лежать в разных полуплоскостях, если разделить плоскость линией, на которой лежит второй из отрезков. Продемонстрируем это рисунком.

На левом рисунке (1) показаны два отрезка, для обоих из которых условие соблюдено, и отрезки пересекаются. На правом (2) рисунке условие соблюдено для отрезка b, но для отрезка a оно не соблюдается, соответственно отрезки не пересекаются.
Может показаться, что определить, с какой стороны от линии лежит точка - нетривиальная задача, но у страха глаза велики, и всё не так сложно. Мы знаем, что векторное умножение двух векторов даёт нам третий вектор, направление которого зависит от того, положительный или отрицательный угол между первым и вторым вектором, соответственно такая операция антикоммутативна. А так как все вектора лежат на плоскости X-Y, то их векторное произведение (которое обязано быть перпендикулярным перемножаемым векторам) будет иметь ненулевой только компоненту Z, соответственно и отличие произведений векторов будет только в этой компоненте. Причем при изменении порядка перемножения векторов (читай: угла между перемножаемыми векторами) состоять оно будет исключительно в изменении знака этой компоненты.
Поэтому мы можем умножить попарно-векторно вектор разделяющего отрезка на векторы направленные от начала разделяющего отрезка к обеим точкам проверяемого отрезка.

Если компоненты Z обоих произведений будет иметь различный знак, значит один из углов меньше 0 но больше -180, а второй больше 0 и меньше 180, соответственно точки лежат по разные стороны от прямой. Если компоненты Z обоих произведений имеют одинаковый знак, следовательно и лежат они по одну сторону от прямой.
Если один из компонент Z является нулём, значит мы имеем пограничный случай, когда точка лежит аккурат на проверяемой прямой. Оставим пользователю определять, хочет ли он считать это пересечением.
Затем нам необходимо повторить операцию для другого отрезка и прямой, и убедиться в том, что расположение его конечных точек также удовлетворяет условию.
Итак, если всё хорошо и оба отрезка удовлетворяют условию, значит пересечение существует. Давайте найдём его, и в этом нам также поможет векторное произведение.
Так как в векторном произведении мы имеем ненулевой лишь компоненту Z, то его модуль (длина вектора) будет численно равен именно этой компоненте. Давайте посмотрим, как найти точку пересечения.

Длина векторного произведения векторов a и b (как мы выяснили, численно равная его компоненте Z) равна произведению модулей этих векторов на синус угла между ними (|a| |b| sin(ab)). Соответственно, для конфигурации на рисунке мы имеем следующее: |AB x AC| = |AB||AC|sin(α), и |AB x AD| = |AB||AD| sin(β). |AC|sin(α) является перпендикуляром, опущенным из точки C на отрезок AB, а |AD|sin(β) является перпендикуляром, опущенным из точки D на отрезок AB (катетом ADD"). Так как углы γ и δ - вертикальные углы, то они равны, а значит треугольники PCC" и PDD" подобны, а соответственно и длины всех их сторон пропорциональны в равном отношении.
Имея Z1 (AB x AC, а значит |AB||AC|sin(α)) и Z2 (AB x AD, а значит |AB||AD|sin(β)), мы можем рассчитать CC"/DD" (которая будет равна Z1/Z2), а также зная что CC"/DD" = CP/DP легко можно высчитать местоположение точки P. Лично я делаю это следующим образом:

Px = Cx + (Dx-Cx)*|Z1|/|Z2-Z1|;
Py = Cy + (Dy-Cy)*|Z1|/|Z2-Z1|;

Вот и все. Мне кажется что это действительно очень просто, и элегантно. В заключение хочу привести код функции, реализующий данный алгоритм. В функции использован самодельный шаблон vector, который является шаблоном вектора размерностью int с компонентами типа typename. Желающие легко могут подогнать функцию к своим типам векторов.

1 template 2 bool are_crossing(vector const &v11, vector const &v12, vector const &v21, vector const &v22, vector *crossing) 3 { 4 vector cut1(v12-v11), cut2(v22-v21); 5 vector prod1, prod2; 6 7 prod1 = cross(cut1 * (v21-v11)); 8 prod2 = cross(cut1 * (v22-v11)); 9 10 if(sign(prod1[Z]) == sign(prod2[Z]) || (prod1[Z] == 0) || (prod2[Z] == 0)) // Отсекаем также и пограничные случаи 11 return false; 12 13 prod1 = cross(cut2 * (v11-v21)); 14 prod2 = cross(cut2 * (v12-v21)); 15 16 if(sign(prod1[Z]) == sign(prod2[Z]) || (prod1[Z] == 0) || (prod2[Z] == 0)) // Отсекаем также и пограничные случаи 17 return false; 18 19 if(crossing) { // Проверяем, надо ли определять место пересечения 20 (*crossing)[X] = v11[X] + cut1[X]*fabs(prod1[Z])/fabs(prod2[Z]-prod1[Z]); 21 (*crossing)[Y] = v11[Y] + cut1[Y]*fabs(prod1[Z])/fabs(prod2[Z]-prod1[Z]); 22 } 23 24 return true; 25 }

Если прямые пересекаются в точке , то её координаты являются решениемсистемы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение одной прямой.
2) Составить уравнение второй прямой.
3) Выяснить взаимное расположение прямых.
4) Если прямые пересекаются, то найти точку пересечения.

Пример 13.

Найти точку пересечения прямых

Решение : Точку пересечения целесообразно искать аналитическим методом. Решим систему:

Ответ :

П.6.4. Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точкидо прямой выражается формулой

Пример 14.

Найти расстояние от точки до прямой

Решение : всё что нужно - аккуратно подставить числа в формулу и провести вычисления:

Ответ :

П.6.5. Угол между прямыми.

Пример 15.

Найти угол между прямыми .

1. Проверяем перпендикулярны ли прямые:

Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.
2. Угол между прямыми найдём с помощью формулы:

Таким образом:

Ответ :

Кривые второго порядка. Окружность

Пусть на плоскости задана прямоугольная система координат 0ху.

Кривой второго порядка называется линия на плоскости, определяемая уравнением второй степени относительно текущих координат точки М(х, у, z). В общем случае это уравнение имеет вид:

где коэффициенты А, В, С, D, E, L – любые действительные числа, причем хотя бы одно из чисел А, B, С отлично от нуля.



1.Окружностью называется множество точек на плоскости, расстояние от которых до фиксированной точки М 0 (х 0 , у 0) постоянно и равно R. Точка М 0 называется центром окружности, а число R – ее радиусом

– уравнение окружности с центром в точке М 0 (х 0 , у 0) и радиусом R.

Если центр окружности совпадает с началом координат, то имеем:

– каноническое уравнение окружности.

Эллипс.

Эллипсом называется множество точек на плоскости, для каждой из которых сумма расстояний до двух данных точек есть величина постоянная (причем эта величина больше расстояний между данными точками). Данные точки называются фокусами эллипса .

– каноническое уравнение эллипса.

Отношение называется эксцентриситетом эллипса и обозначается: , . Так как , то < 1.

Следовательно, с уменьшением отношение стремится к 1, т.е. b мало отличается от а и форма эллипса становится ближе к форме окружности. В предельном случае при , получается окружность, уравнение которой есть

х 2 + у 2 = а 2 .

Гипербола

Гиперболой называется множество точек на плоскости, для каждой из которых абсолютная величина разности расстояний до двух данных точек, называемыхфокусами , есть величина постоянная (при условии, что эта величина меньше расстояния между фокусами и не равна 0).

Пусть F 1 , F 2 – фокусы, расстояние между ними обозначим через 2с, параметром параболы).

– каноническое уравнение параболы.

Заметим, что уравнение при отрицательном р также задает параболу, которая будет расположена слева от оси 0у. Уравнение описывает параболу, симметричную относительно оси 0у, лежащую выше оси 0х при р > 0 и лежащую ниже оси 0х при р < 0.




Top