Три двери за одной из них убийца. Парадокс Монти Холла

Парадокс Монти Холла стал все чаще появляться на сайтах букмекерской тематики. Что же это такое и можно ли это использовать игроку в своих интересах?

Что такое парадокс Монти Холла

Парадокс Монти Холла - это задача из теории вероятности. Свою популярность приобрела благодаря американской телепередаче, где игроку предстоит открыть одну из трех дверей. Естественно приз только за одной дверью (машина), за двумя другими коза (шоу как-никак). Сначала игрок выбирает дверь. Она пока не открывается. Осталось две двери. Из этих двух дверей ведущий должен открыть ту, за которой коза. В итоге остается две неоткрытых двери, одна из которых та, что выбрал игрок. За одной коза, за другой автомобиль. Ведущий предлагает поменять игроку свой первоначальный выбор и открыть другую дверь. Что произойдет с шансами игрока выиграть приз, если он поменяет решение, и есть ли смысл это делать?

Если игрок меняет свой выбор, то он выигрывает с вероятностью 66.6%. Если остается при своем первоначальном мнении, шанс увидеть автомобиль ограничится 33.7%. В этом и заключается парадокс. Вроде бы всегда остается две двери, в которых один приз, а значит и вероятность выигрыша (меняй/не меняй) 50%. Но на деле все совсем по-другому. Если бы ведущий сразу открыл дверь с козой, а потом предложил игроку выбрать одну из двух дверей, то шанс действительно был бы 50%. Но сначала игрок делает свой выбор и вероятность выигрыша первоначально выбранной двери составляет 1/3.

При многократном повторении этого выбора его вероятность всегда будет оставаться на уровне 1/3 независимо ни от каких дальнейших действий ведущего либо самого игрока. Соответственно на две оставшиеся двери, всегда будет оставаться вероятность 2/3. А т.к. ведущий из этих двух дверей всегда оставляет одну, то она принимает на себя величину этой вероятности 2/3.

Вот и получается, первоначальный выбор игрока будет вести к выигрышу в трети всех случаев, а смена решения - к двум третям . Потому эта задача и называется парадоксом, что не поддается логике и здравому смыслу. Мозг человека привык работать шаблонно, потому и имеют место оптические обманы, иллюзии, парадоксы. Это не более, чем неосведомленность человека в конкретном вопросе. Даже написанное выше логическое объяснение задачи принимается не каждым, и приходится использовать более доступный метод просветления.

Представим данную задачу немного в другом, более расширенном формате. Дверей не 3, а 10, а условия все те же - игрок выбирает одну дверь, а ведущий открывает все двери и оставляет опять же одну. Ведущий может открыть только двери с козой. Т.е. игрок снова стоит перед выбором - дверь с козой/дверь с автомобилем. Здесь уже условия более понятны для понимания среднестатистическому человеку.

Понятно, что изначально выбрать дверь с призом очень трудно, а точнее вероятность составляет 1/10. И логично, что скорее всего автомобиль будет за оставшейся из 9 дверей. А т.к. ведущий открывает только невыигрышные, то дверь, которая останется не открытой после ведущего и будет предложена игроку, и будет являться дверью с призом. Если и такая формулировка вызвала трудности у человека, то можно условия упрощать еще больше, пока, как говорится, не дойдет. Это не признак большого или малого ума человека, скорее это отличный тест предмет "гуманитарий вы или технарь". Варианты с двумя, десятью, тысячами и т.д. дверями идентичны по своей сути, но различаются по трудности восприятия. Чем меньше дверей, тем легче сбить с толку человека.

Появление парадокса Монти Холла на сайтах, посвященных различным стратегиям, скорее радует, чем огорчает, особенно букмекеров. Правда пока и значение парадоксу Монти Холла придается исключительно прикладное. Это скорее как наглядный пример, что не все, что видишь, так и есть на самом деле. Что в тех же коэффициентах букмекера может быть заложено не только реальное распределение сил на основе статистики и текущих новостей из стана команд. Игроки также могут двигать линию и не основываясь на объективные причины. Тут может иметь место и обычный стадный рефлекс(), и договорняки. Да просто одна большая ставка на неперегруженное событие может сдвинуть линию.

Хотя встречаются и уникумы, утверждающие, что данный парадокс легко можно применить и в ставках на спорт. К сожалению, это утверждения безо всяких доказательств. Представим парадокс Монти Холла в условиях ставок на спорт. Для начала нужно найти событие с равными тремя шансами на успех . Бывают и такие, хоть и редко. Встречается линия на футбол, где на победу одной команды, ничью и другой команды кэфы 2.7 - ровная линия до невозможности. Нам нужно выбрать свой вариант. Затем требуется, чтобы на определенном этапе одно событие отпало, и осталось два, наиболее вероятных. До конца матча нельзя откинуть ни одно событие, пусть даже оно и маловероятно.

На долгом отрезке пути оно обязательно сыграет и даст свой перекос в статистику. Но, даже если представить, что не сыграет, то на этапе, когда останется два варианта, эти варианты уже будут иметь значения, насоразмерные с изначальными. А все потому, что букмекер двигает коэффициенты в течение матча . Грубо говоря, когда придется выбирать из двух дверей, это уже будет не коза и машина, а коза и велосипед. Коза - это ноль, проигрыш - никуда не денется. А автомобиль превратится из кэфа 2.7 в велосипед с гораздо меньшим коэффициентом.

В итоге смена первоначального решения хоть и может дать увеличение процента выигрыша, но сам выигрыш будет иметь уже совсем другую ценность. Т.е. в парадоксе Монти Холла начальные условия не меняются, а в ставках на спорт меняются. Отсюда и его неприменимость в борьбе с букмекерами. А с другой стороны, кто знает? Может и здесь найдется какой-нибудь парадокс, просто его еще никто не видит.

Вывод

Мы продолжаем настоятельно рекомендовать пользоваться . Высокорисковые финансовые стратегии оставьте для казино или тренировочных игровых счетов. Для стабильного заработка на ставках нужна правильная , а не всевозможные вариации КАК сделать ставку, не понимая НА ЧТО .

В декабре 1963 года на американском телеканале NBC впервые вышла программа Let’s Make a Deal («Заключим сделку!»), в которой участники, выбранные из зрителей в студии, торговались друг с другом и с ведущим, играли в небольшие игры или просто угадывали ответ на вопрос. В конце передачи участники могли сыграть в «сделку дня». Перед ними было три двери, про которые было известно, что за одной из них - Главный Приз (например, автомобиль), а за двумя другими - менее ценные или вовсе абсурдные подарки (например, живые козы). После того как игрок делал свой выбор, ведущий программы Монти Холл (Monty Hall) открывал одну из двух оставшихся дверей, показывая, что за ней Приза нет и давая участнику порадоваться тому, что он сохраняет шансы на выигрыш.

В 1975 году учёный из Калифорнийского университета Стив Селвин (Steve Selvin) задался вопросом о том, что будет, если в этот момент, после открытия двери без Приза, предложить участнику поменять свой выбор. Изменятся ли в этом случае шансы игрока получить Приз, а если да, то в какую сторону? Он отправил соответствующий вопрос в виде задачи в журнал The American Statistician («Американский статистик»), а также - самому Монти Холлу, который дал на него довольно любопытный ответ . Несмотря на этот ответ (а может, и благодаря ему) задача получила распространение под именем «задача Монти Холла».


Задача

Вы оказались на шоу Монти Холла в роли участника - и в заключительный момент, открыв дверь с козой, ведущий предложил вам поменять свой выбор. Повлияет ли ваше решение - согласиться или нет - на вероятность выигрыша?


Подсказка

Попробуйте рассмотреть людей, выбравших в одном и том же случае (то есть когда Приз находится, например, за дверью №1) разные двери. Кто будет в выигрыше от изменения своего выбора, а кто - нет?

Решение

Как и было предложено в подсказке, рассмотрим людей, сделавших разный выбор. Предположим, что Приз находится за дверью №1, а за дверями №2 и №3 - козы. Пусть у нас есть шесть человек, причём каждую дверь выбрали по два человека, и из каждой пары один впоследствии изменил решение, а другой - нет.

Заметим, что выбравшим дверь №1 Ведущий откроет одну из двух дверей на свой вкус, при этом, независимо от этого, Автомобиль получит тот, кто не изменит своего выбора, изменивший же свой первоначальный выбор останется без Приза. Теперь посмотрим на выбравших двери №2 и №3. Поскольку за дверью №1 стоит Автомобиль, открыть её Ведущий не может, что не оставляет ему выбора - он открывает им двери №3 и №2 соответственно. При этом изменивший решение в каждой паре в результате выберет Приз, а не изменивший - останется ни с чем. Таким образом, из троих людей, изменивших решения, двое получат Приз, а один - козу, в то время как из троих, оставивших свой изначальный выбор неизменным, Приз достанется лишь одному.

Необходимо отметить, что если бы Автомобиль оказался за дверью №2 или №3, результат был бы тем же, изменились бы лишь конкретные победители. Таким образом, предполагая, что изначально каждая дверь выбирается с равной вероятностью, мы получаем, что меняющие свой выбор выигрывают Приз в два раза чаще, то есть вероятность выигрыша в этом случае больше.

Посмотрим на эту задачу с точки зрения математической теории вероятностей. Будем предполагать, что вероятность изначального выбора каждой из дверей одинакова, равно как и вероятность нахождения за каждой из дверей Автомобиля. Кроме того, полезно сделать оговорку, что Ведущий, когда он может открыть две двери, выбирает каждую из них с равной вероятностью. Тогда окажется, что после первого принятия решения вероятность того, что Приз за выбранной дверью, равна 1/3, в то время как вероятность того, что он - за одной из двух других дверей, равна 2/3. При этом, после того как Ведущий открыл одну из двух «невыбранных» дверей, вся вероятность 2/3 приходится лишь на одну из оставшихся дверей, создавая тем самым основание для смены решения, которая увеличит вероятность выигрыша в 2 раза. Что, конечно, его нисколько не гарантирует в одном конкретном случае, но приведёт к более удачным результатам в случае многократного повторения эксперимента.

Послесловие

Задача Монти Холла - это не первая из известных формулировок данной проблемы. В частности, в 1959 году Мартин Гарднер опубликовал в журнале Scientific American аналогичную задачу «о трёх узниках» (Three Prisoners problem) со следующей формулировкой: «Из трёх узников одного должны помиловать, а двоих - казнить. Узник A уговаривает стражника назвать ему имя того из двух других, которого казнят (любого, если казнят обоих), после чего, получив имя B, считает, что вероятность его собственного спасения стала не 1/3, а 1/2. В то же время, узник C утверждает, что это вероятность его спасения стала 2/3, а для A ничего не изменилось. Кто из них прав? »

Однако и Гарднер был не первым, так как ещё в 1889 году в своём «Исчислении вероятностей» французский математик Жозеф Бертран (не путать с англичанином Бертраном Расселом!) предлагает похожую задачу (см. Bertrand"s box paradox): «Есть три ящика, в каждом из которых лежат две монеты: две золотых в первом, две серебряных во втором, и две разных - в третьем. Из наугад выбранного ящика наугад вытащили монету, которая оказалась золотой. Какова вероятность того, что оставшаяся монета в ящике - золотая? »

Если понять решения всех трёх задач, легко заметить схожесть их идей; математически же все их объединяет понятие условной вероятности, то есть вероятности события A, если известно, что событие B произошло. Простейший пример: вероятность того, что на обычном игральном кубике выпала единица, равна 1/6; однако если известно, что выпавшее число - нечётно, то вероятность того, что это - единица, будет уже 1/3. Задача Монти Холла, как и две другие приведённые задачи, показывают, что обращаться с условными вероятностями нужно аккуратно.

Эти задачи также нередко называют парадоксами: парадокс Монти Холла, парадокс ящиков Бертрана (последний не следует путать с настоящим парадоксом Бертрана, приведённым в той же книге, который доказывал неоднозначность существовавшего на тот момент понятия вероятности) - что подразумевает некоторое противоречие (например, в «парадоксе Лжеца» фраза «это утверждение - ложно» противоречит закону исключённого третьего). В данном случае, однако, никакого противоречия со строгими утверждениями нет. Зато есть явное противоречие с «общественным мнением» или просто «очевидным решением» задачи. Действительно, большинство людей, глядя на задачу, полагают, что после открытия одной из дверей вероятность нахождения Приза за любой из двух оставшихся закрытыми равна 1/2. Тем самым они утверждают, что нет разницы, соглашаться или не соглашаться изменить своё решение. Более того, многие люди с трудом осознают ответ, отличный от этого, даже после того, как им было рассказано подробное решение.

September 19th, 2013

Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой - один доллар, в третьей - 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей - Кадиллак.

Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье). Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать «самое понятное» объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется «не изменять своего выбора») или открыть две другие (в старой формулировке это как раз и будет «изменить выбор». Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия «показал козу», никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать «спасибо» ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал «не ту» дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое «наивное» доказательство. Пусть тот, кто стоит на своем выборе, называется «Упрямым», а тот, кто следует указаниям ведущего, зовется «Внимательным». Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Монти Холл, продюсер и ведущий шоу Let’s Make a Deal с 1963-го по 1991 год.

В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 - то есть 60%

Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 - то есть примерно 36%

Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 1 %.

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода Более формально сценарий игры может быть описан c помощью дерева принятия решений. В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Если же вам непонятно все равно, плюньте на формулы и просто проверьте всё статистически . Еще один вариант объяснения:

  • Игрок, чья стратегия заключалась бы в том, чтобы каждый раз менять выбранную дверь, будет проигрывать только в том случае, если он изначально выбирает дверь, за которой находится автомобиль.
  • Поскольку вероятность выбрать автомобиль с первой попытки составляет один к трём (или 33%), то шанс не выбрать автомобиль, если игрок будет менять свой выбор, также равен один к трём (или 33%).
  • Это означает, что игрок, который использовал стратегию менять дверь, выиграет с вероятностью 66 % или два к трём.
  • Это удвоит шансы на выигрыш игрока, чья стратегия - каждый раз не менять свой выбор.

Всё ещё не верите? Предположим, что вы выбрали дверь №1. Здесь представлены все возможные варианты того, что может произойти в этом случае.

Всем нам знакома ситуация, когда мы вместо трезвого расчета полагались на свою интуицию. Ведь нужно признать, что далеко не всегда можно все просчитать прежде чем сделать выбор. И как бы не лукавили люди, которые привыкли делать свой выбор только после тщательного анализа, им ни один раз это приходилось делать по принципу «наверное так». Одной из причин подобного действия может быть банальное отсутствие необходимого времени для оценки ситуации.

При этом выбор ждет сложившаяся ситуация прямо сейчас, и не позволяет уйти от ответа или действия. Но еще более каверзные ситуации для нас, которые в буквальном смысле вызывает судорогу мозга, - это разрушение уверенности в правильности выбора или в его вероятном превосходстве над иными вариантами, основанных на логических умозаключениях. На этом основаны все существующие парадоксы.

Парадокс в игре телешоу «Let’s Make a Deal»

Один из парадоксов, который вызывает жаркие споры среди любителей головоломок, называется парадоксом Монти Холла. Назван он в честь ведущего телешоу в США под названием «Let’s Make a Deal». На телешоу ведущий предлагает открыть одну из трех дверей, где в качестве приза находится автомобиль, в то время когда за другими двумя находятся по одной козе.

Участник игры делает свой выбор, но ведущий, зная где находится авто, открывает при этом не ту дверь, которую указал игрок, а другую, в которой находится коза и предлагает сменить первоначальный выбор игрока. Для дальнейшего разбора мы принимаем именно этот вариант поведения ведущего, хотя на самом деле он может периодически меняться. Другие варианты сценария развития мы просто перечислим ниже в статье.

В чем суть парадокса?

Еще раз по пунктам обозначим условия и изменим объекты игры для разнообразия на свои.

Участник игры находитесь в помещении с тремя банковскими ячейками. В одной из трех ячеек золотой слиток золота, в других двух по одной монете номиналом в 1 копейку СССР.

Итак, участник перед выбором и условия игры следующие:

  1. Участник может выбрать лишь одну из трех ячеек.
  2. Банкир знает изначально расположение слитка.
  3. Банкир всегда открывает ячейку с монетой, отличную от выбора игрока, и предлагает поменять выбор игроку.
  4. Игрок может в свою очередь поменять свой выбор или оставить первоначальный.

Что говорит интуиция?

Парадокс состоит в том, что для большинства людей, которые привыкли мыслить логически, шансы на выигрыш в случае смены своего первоначального выбора 50 на 50. Ведь, после того, как банкир открывает другую ячейку с монеткой, отличную от первоначального выбора игрока, остаются 2 ячейки, в одной из которых слиток золота, а в другой монетка. Игрок выигрывает слиток, если принимает предложение банкира сменить ячейку при условии, если в первоначально выбранной игроком ячейке не было слитка. И наоборот при данном условии - проигрывает, в случае если он откажется принять предложение.

Как подсказываем здравый смысл вероятность выбора слитка и выигрыша в таком случае 1/2. Но на самом деле ситуация иная! «Но как же так, здесь же все очевидно?» - спросите вы. Допустим вы выбрали ячейку № 1. Интуитивно да, неважно какой был у вас выбор первоначально, в конечном итоге у вас по факту перед выбором монета и слиток. И если изначально у вас была вероятность получения приза 1/3 , то в конечном итоге при открытии одной ячейки банкиром вы получаете вероятность 1/2. Казалось, вероятность увеличилась с 1/3 до 1/2. При внимательном разборе игры выясняется, что при смене решения вероятность увеличивается до 2/3 вместо интуитивных 1/2. Давайте рассмотрим за счет чего это происходит.

В отличие от интуитивного уровня, где наше сознание рассматривает событие после смены ячейки как нечто отдельное и забывает о первоначальном выборе, математика не разрывает эти два события, а наоборот сохраняет цепочку событий от начала до конца. Итак, как мы ранее и говорили, шансы на выигрыш при попадании сходу на слиток у нас 1/3, а вероятность, что мы выберем ячейку с монетой 2/3 (поскольку у нас есть один слиток и две монеты).

  1. Выбираем изначально банковскую ячейку со слитком - вероятность 1/3.
    • Если игрок изменяет свой выбор, принимая предложение банкира, - он проигрывает.
    • Если игрок не изменяет выбор, не принимая предложение банкира, - он выигрывает.
  2. Выбираем с первого раза банковскую ячейку с в монеткой - вероятность 2/3.
    • Если игрок поменяет свой выбор - выиграл.
    • Если игрок не изменяет выбор - проиграл.

Итак, для того, чтобы игрок ушел из банка со слитком золота в кармане, он должен выбрать изгначально проигрышную позицию с монеткой (вероятность 1/3), и после этого принять предложение банкира сменить ячейку.

Для того, чтобы понять данный парадокс и вырваться из оков шаблона первоначального выбора и оставшихся ячеек, давайте представим поведение игрока ровным счетом наоборот. Перед тем как банкир предложит ячейку для выбора, игрок мысленно точно определяется с тем, что он меняет свой выбор, и только после этого для него следует событие открытия лишней двери. Почему нет? Ведь открытая дверь не дает для него большей информации в такой логической последовательности. На первом этапе времени игрок разделяет ячейки на две разные области: первая - область с одной ячейкой с его первоначальным выбором, вторая с двумя оставшимися ячейками. Далее игроку предстоит сделать выбор между двумя областями. Вероятность достать из ячейки золотой слиток из первой области 1/3, из второй 2/3. Выбор следует за второй областью, в которой он может открыть две ячейки, первую откроет банкир, вторую он сам.

Существует еще более понятное объяснение парадокса Монти Холла. Для этого необходимо поменять формулировку задания. Банкир дает понять, что в одной из трех банковских ячеек находится золотой слиток. В первом случае он предлагает открыть одну из трех ячеек, а во втором - одновременно две. Что выберет игрок? Ну конечно сразу две, за счет повышения вероятности в два раза. И тот момент, когда банкир открыл ячейку с монеткой, это игроку на самом деле никак не помогает и не препятствует выбору, ведь банкир в любом случае покажет эту ячейку с монеткой, поэтому игрок может попросту игнорировать это действие. Со стороны игрока можно лишь только поблагодарить банкира за то, что он ему облегчил жизнь, и вместо двух ему пришлось открыть одну ячейку. Ну и окончательно можно избавится от синдрома парадокса если поставить себя на место банкира, который изначально знает, что игрок в двух из трех случаев указывает на неправильную дверь. Для банкира парадокс отсутствует как таковой, ведь он точно в такой инверсии событий уверен, что в случае смены событий игрок забирает золотой слиточек.

Парадокс Монти Холла явно не позволяет быть в выигрыше консерваторам, которые железобетонно стоят на своем первоначальном выборе и теряют свой шанс роста вероятности. Для консерваторов он так и останется 1/3. Для бдительных и рассудительных людей он вырастает до вышеуказанных 2/3.

Все приведенные утверждения актуальны лишь в соблюдении изначально оговоренных условий.

Что если увеличить количество ячеек?

Что если увеличить количество ячеек? Допустим вместо трех их будет 50. Золотой слиток будет лежать лишь только в одной ячейке, а в остальных 49 - монеты. Соответственно в отличии от классического случая вероятность попадания с ходу в цель 1/50 или 2% вместо 1/3, в то время как вероятность выбора ячейки с монетой составляет 98%. Далее ситуация развивается, как и в прежнем случае. Банкир предлагает открыть любую из 50 ячеек, участник выбирает. Допустим, игрок открывает ячейку под порядковым номеров 49. Банкир в свою очередь, как и в классическом варианте, не спешит выполнять желание игрока и открывает другие 48 ячеек с монетами и предлагает поменять свой выбор на оставшуюся под номером 50.

Здесь важно понимать, что банкир открывает именно 48 ячеек, а не 30, и оставляет при этом 2, включая выбранную игроком. Именно такой выбор позволяет парадоксу идти в разрез с интуицией. Как и в случае с классическим вариантом, открытие банкиром 48 ячеек оставляет только один единственный альтернативный вариант для выбора. Случай варианта меньшего открытия ячеек не позволяет поставить в один ряд задачу с классикой и ощутить парадокс.

Но раз уж мы и коснулись такого варианта, то давайте предположим, что банкир оставляет не одну, кроме выбранной игроком, а несколько ячеек. Представлено, как и прежде, 50 ячеек. Банкир после выбора игрока открывает только одну ячейку, оставляя при этом закрытыми 48 ячеек, включая выбранную игроком. Вероятность выбора слитка с первого раза 1/50. В сумме вероятность нахождения слитка в остальных ячейках 49/50, которая в свою очередь раскидывается не на 49, а на 48 ячеек. Не сложно посчитать, что вероятность нахождения слитка в таком варианте равна (49/50)/48=49/2900 . Вероятность пусть не на много, но все равно выше, чем 1/50 приблизительно на 1%.

Как мы и упоминали в самом начале ведущий Монти Холл в классическом сценарии игры с дверьми, козами и призовым авто может изменять условия игры и вместе с нем и вероятность выигрыша.

Математика парадокса

Могут ли математические формулы доказать увеличение вероятности при смене выбора?
Представим цепочку событий в виде множества, разделенного на две части, первую часть примем за X – это выбор на первом этапе ячейки сейфа игроком; и второе множество Y - оставшиеся две остальных ячейки. Вероятность (В) выигрыша для ячеек 2 и 3 можно выразить с помощью формул.

В(2) = 1/2 * 2/3 = 1/3
В(3) = 1/2 * 2/3= 1/3

Где 1/2 это вероятность, с которой банкир откроет ячейку 2 и 3 при условии, если игрок изначально выбрал ячейку без слитка.
Далее условная вероятность 1/2 при открытии банкиром ячейки с монетой изменяется на 1 и 0. Тогда формулы приобретают следующий вид:

В(2) = 0 * 2/3 = 0
B(3) = 1 * 2/3 = 1

Здесь мы наглядно видим, что вероятность выбора слитка в ячейке 3 - 2/3, а это чуть более 60 процентов.
Программист самого начального уровня может без труда проверить данный парадокс, написав программу, которая считает вероятность при смене выбора или наоборот и сверить результаты.

Объяснение парадокса в фильме 21 (Двадцать одно)

Наглядное разъяснение парадокса Монти Пола приводится в фильме «21» (Двадцать одно) , режиссера Роберта Лукетича. Профессор Микки Роса на лекции приводит пример из шоу Let’s Make a Deal и задает вопрос о распределении вероятности у студента Бена Кэмпбелла (актер и певец Джеймс Энтони), который дает правильный расклад и тем самым удивляет преподавателя.

Самостоятельное изучение парадокса

Для людей, которые хотят проверить результат самостоятельно на деле, но не имеющих математического базиса, мы предлагаем самостоятельно смоделировать игру, в которой вы будете ведущим, а кто-то будет игроком. Можете задействовать в этой игре детей, которые будут выбирать конфеты или фантики от них в заранее приготовленных картонных коробочках. При каждом выборе обязательно фиксируйте результат для дальнейшего подсчета.

Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание гипотетической игры, основанной на американском телешоу «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Хотя данная формулировка задачи является наиболее известной, она несколько проблематична, поскольку оставляет некоторые важные условия задачи неопределенными. Ниже приводится более полная формулировка.

При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен. Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.

Словесное решение

Правильным ответом к этой задаче является следующее: да, шансы выиграть автомобиль увеличиваются в 2 раза, если игрок будет следовать совету ведущего и изменит свой первоначальный выбор.

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье).

Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать "самое понятное" объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется "не изменять своего выбора") или открыть две другие (в старой формулировке это как раз и будет "изменить выбор". Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия "показал козу", никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать "спасибо" ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал "не ту" дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое "наивное" доказательство. Пусть тот, кто стоит на своем выборе, называется "Упрямым", а тот, кто следует указаниям ведущего, зовется "Внимательным". Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Ключи к пониманию

Несмотря на простоту объяснения этого явления, множество людей интуитивно полагают, что вероятность выигрыша не меняется при изменении игроком своего выбора. Обычно невозможность изменения вероятности выигрыша мотивируется тем, что при вычислении вероятности происшедшие в прошлом события не имеют значения, как это происходит, например, при подбрасывании монетки — вероятность выпадения орла или решки не зависит от того, сколько раз до этого выпал орёл или решка. Поэтому многие считают, что в момент выбора игроком одной двери из двух уже не имеет значения, что в прошлом имел место выбор одной двери из трёх, и вероятность выиграть автомобиль одинаковая как при изменении выбора, так и при оставлении первоначального выбора.

Однако, хотя такие соображения верны в случае подбрасывания монетки, они верны не для всех игр. В данном случае должно быть проигнорировано открытие двери ведущим. Игрок по существу выбирает между той одной дверью, которую он выбрал сначала, и остальными двумя — открытие одной из них служит лишь для отвлечения внимания игрока. Известно, что имеется один автомобиль и две козы. Первоначальный выбор игроком одной из дверей делит возможные исходы игры на две группы: либо автомобиль находится за дверью, выбранной игроком (вероятность этого 1/3), либо за одной из двух других (вероятность этого 2/3). При этом уже известно, что в любом случае за одной из двух оставшихся дверей находится коза, и, открывая эту дверь, ведущий не даёт игроку никакой дополнительной информации о том, что находится за выбранной игроком дверью. Таким образом, открытие ведущим двери с козой не меняет вероятности (2/3) того, что автомобиль находится за одной из оставшихся дверей. А поскольку уже открытую дверь игрок не выберет, то вся эта вероятность оказывается сосредоточена в том событии, что автомобиль находится за оставшейся закрытой дверью.

Более интуитивно понятное рассуждение: Пусть игрок действует по стратегии «изменить выбор». Тогда проиграет он только в том случае, если изначально выберет автомобиль. А вероятность этого — одна треть. Следовательно, вероятность выигрыша: 1-1/3=2/3. Если же игрок действует по стратегии «не менять выбор», то он выиграет тогда и только тогда, когда изначально выбрал автомобиль. А вероятность этого — одна треть.

Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал "не ту" дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Другая частая причина трудного понимания решения этой задачи состоит в том, что нередко люди представляют себе немного другую игру — когда заранее неизвестно, будет ли ведущий открывать дверь с козой и предлагать игроку изменить свой выбор. В этом случае игрок не знает тактики ведущего (то есть, по существу, не знает всех правил игры) и не может сделать оптимальный выбор. Например, если ведущий будет предлагать смену варианта лишь в случае, когда игрок изначально выбрал дверь с автомобилем, то, очевидно, игрок должен всегда оставлять первоначальное решение без изменения. Именно поэтому важно иметь в виду точную формулировку задачи Монти Холла. (при таком варианте ведущий с разными стратегиями может добиться любой вероятности между дверями, в общем(среднем) случае будет 1/2 на 1/2).

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 0.01 %.

Дерево принятия решений

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода

Более формально сценарий игры может быть описан c помощью дерева принятия решений.

В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Суммарная вероятность того, что изменение выбора приведёт к выигрышу, эквивалентна сумме вероятностей первых двух исходов, то есть


Соответственно, вероятность того, что отказ от изменения выбора приведёт к выигрышу, равна

Проведение похожего эксперимента

Существует простой способ убедиться в том, что изменение первоначального выбора приводит к выигрышу в двух случаях из трёх в среднем. Для этого можно сымитировать игру, описанную в задаче Монти Холла, с помощью игральных карт. Один человек (раздающий карты) при этом играет роль ведущего Монти Холла, а второй — роль игрока. Для игры берутся три карты, из которых одна изображает дверь с автомобилем (например, туз пик), а две других, одинаковых (например, две красные двойки) — двери с козами.

Ведущий выкладывает три карты рубашкой вверх, предлагая игроку взять одну из карт. После того, как игрок выберет карту, ведущий смотрит в две оставшиеся карты и открывает красную двойку. После этого открываются карты, оставшиеся у игрока и у ведущего, и если выбранная игроком карта — туз пик, то записывается очко в пользу варианта, когда игрок не меняет свой выбор, а если у игрока оказывается красная двойка, а у ведущего остаётся туз пик, то записывается очко в пользу варианта, когда игрок меняет свой выбор. Если провести множество таких раундов игры, то соотношение между очками в пользу двух вариантов достаточно хорошо отразит соотношение вероятностей этих вариантов. При этом оказывается, что число очков в пользу смены первоначального выбора примерно в два раза больше.

Такой эксперимент позволяет не только убедиться в том, что вероятность выигрыша при изменении выбора в два раза больше, но и хорошо иллюстрирует, почему так происходит. В тот момент, когда игрок выбрал себе карту, уже определено, находится ли в его руке туз пик или нет. Дальнейшее открытие ведущим одной из своих карт не меняет ситуации — игрок уже держит карту в руке, и она остаётся там независимо от действий ведущего. Вероятность же для игрока выбрать туз пик из трёх карт равна, очевидно, 1/3, и, таким образом, вероятность его не выбрать (и тогда игрок выиграет, если изменит первоначальный выбор) равна 2/3.

Упоминание

В фильме Двадцать одно преподаватель, Мики Роса, предлагает главному герою, Бену, решить задачку: за тремя дверьми два самоката и один автомобиль, необходимо угадать дверь, чтобы выиграть автомобиль. После первого выбора Мики предлагает изменить выбор. Бен соглашается и математически аргументирует свое решение. Так он непроизвольно проходит тест в команду Мики.

В романе Сергея Лукьяненко «Недотепа» главные герои при помощи такого приема выигрывают карету и возможность продолжить своё путешествие.

В телесериале «4исла» (13 эпизод 1 сезона «Man Hunt») один из главных героев, Чарли Эппс, на популярной лекции по математике объясняет парадокс Монти Холла, наглядно иллюстрируя его с помощью маркерных досок, на обратных сторонах которых нарисованы козы и автомобиль. Чарли действительно находит автомобиль, изменив выбор. Однако следует отметить, что он проводит всего один эксперимент, в то время как преимущество стратегии смены выбора является статистическим, и для корректной иллюстрации следует проводить серию экспериментов.

http://dic.academic.ru/dic.nsf/ruwiki/36146




Top