Воздушные слои земли. Атмосфера Земли: строение и состав

СТРОЕНИЕ АТМОСФЕРЫ

Атмосфе́ра (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.

Физические свойства

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м 3 . Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура - −140,7 °C; критическое давление - 3,7 МПа; C p при 0 °C - 1,0048·10 3 Дж/(кг·К), C v - 0,7159·10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C - 0,0036 %, при 25 °C - 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м 3 , барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Строение атмосферы

Атмосфера имеет слоистое строение. Слои атмосферы отличаются друг от друга температурой воздуха, его плотностью, количеством водяного пара в воздухе и другими свойствами.

Тропосфе́ра (др.-греч. τρόπος - «поворот», «изменение» и σφαῖρα - «шар») - нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе - 16-18 км.

При подъёме в тропосфере температура понижается в среднем на 0,65 К через каждые 100 м и достигает 180-220 K в верхней части. Этот верхний слой тропосферы, в котором снижение температуры с высотой прекращается, называюттропопаузой. Следующий, расположенный выше тропосферы, слой атмосферы называется стратосфера.

В тропосфере сосредоточено более 80 % всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются и атмосферные фронты, развиваютсяциклоны и антициклоны, а также другие процессы, определяющие погоду и климат. Происходящие в тропосфере процессы обусловлены, прежде всего, конвекцией.

Часть тропосферы, в пределах которой на земной поверхности возможно зарождение ледников, называется хионосфера .

Тропопа́уза (от греч. τροπος - поворот, изменение и παῦσις - остановка, прекращение) - слой атмосферы, в котором прекращается снижение температуры с высотой; переходный слой от тропосферы к стратосфере. В земной атмосфере тропопауза расположена на высотах от 8-12 км (над уровнем моря) в полярных районах и до 16-18 км над экватором. Высота тропопаузы зависит также от времени года (летом тропопауза расположена выше, чем зимой) и циклонической деятельности (в циклонах она ниже, а в антициклонах - выше)

Толщина тропопаузы составляет от нескольких сотен метров до 2-3 километров. В субтропиках наблюдаются разрывы тропопаузы, обусловленные мощными струйными течениями. Тропопауза над отдельными районами часто разрушается и формируется заново.

Стратосфе́ра (от лат. stratum - настил, слой) - слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузойи является границей между стратосферой и мезосферой. Плотность воздуха в стратосфере в десятки и сотни раз меньше чем на уровне моря.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере. Озон (О 3) образуется в результате фотохимических реакций наиболее интенсивно на высоте ~30 км. Общая масса О 3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Разрушение О 3 происходит при его взаимодействии со свободными радикалами, NO, галогенсодержащими соединениями (в т. ч. «фреонами»).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц и других свечений.

В стратосфере и более высоких слоях под воздействием солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - N 2). На высоте 200-500 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Полёты в стратосферу начались в 1930-годах. Широко известен полёт на первом стратостате (FNRS-1), который совершили Огюст Пикар и Пауль Кипфер 27 мая 1931 г. на высоту 16,2 км. Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на высотах в основном до 20 км (хотя динамический потолок может быть значительно выше). Высотные метеозонды поднимаются до 40 км; рекорд для беспилотного аэростата составляет 51,8 км.

В последнее время в военных кругах США большое внимание уделяют освоению слоёв стратосферы выше 20 км, часто называемых «предкосмосом» (англ. « near space » ). Предполагается, что беспилотные дирижабли и самолёты на солнечной энергии (наподобие NASA Pathfinder) смогут длительное время находиться на высоте порядка 30 км и обеспечивать наблюдением и связью очень большие территории, оставаясь при этом малоуязвимыми для средств ПВО; такие аппараты будут во много раз дешевле спутников.

Стратопа́уза - слой атмосферы, являющийся пограничным между двумя слоями, стратосферой и мезосферой. В стратосфере температура повышается с увеличением высоты, а стратопауза является слоем, где температура достигает максимума. Температура стратопаузы - около 0 °C.

Данное явление наблюдается не только на Земле, но и на других планетах, имеющих атмосферу.

На Земле стратопауза находится на высоте 50 - 55 км над уровнем моря. Атмосферное давление составляет около 1/1000 от давления на уровне моря.

Мезосфе́ра (от греч. μεσο- - «средний» и σφαῖρα - «шар», «сфера») - слой атмосферы на высотах от 40-50 до 80-90 км. Характеризуется повышением температуры с высотой; максимум (порядка +50°C) температуры расположен на высоте около 60 км, после чего температура начинает убывать до −70° или −80°C. Такое понижение температуры связано с энергичным поглощением солнечной радиации (излучения) озоном. Термин принят Географическим и геофизическим союзом в 1951 году.

Газовый состав мезосферы, как и расположенных ниже атмосферных слоев, постоянен и содержит около 80 % азота и 20 % кислорода.

Мезосфера отделяется от нижележащей стратосферы стратопаузой, а от вышележащей термосферы - мезопаузой. Мезопауза в основном совпадает с турбопаузой.

Метеоры начинают светиться и, как правило, полностью сгорают в мезосфере.

В мезосфере могут появляться серебристые облака.

Для полётов мезосфера представляет собой своего рода «мёртвую зону» - воздух здесь слишком разрежен, чтобы поддерживать самолёты или аэростаты (на высоте 50 км плотность воздуха в 1000 раз меньше, чем на уровне моря), и в то же время слишком плотен для полётов искусственных спутников на такой низкой орбите. Прямые исследования мезосферы проводятся в основном с помощью суборбитальных метеорологических ракет; в целом мезосфера изучена хуже других слоёв атмосферы, в связи с чем учёные прозвали её «игноросферой».

Мезопа́уза

Мезопа́уза - слой атмосферы, разделяющий мезосферу и термосферу. На Земле располагается на высоте 80-90 км над уровнем моря. В мезопаузе находится температурный минимум, который составляет около −100 °C. Ниже (начиная от высоты около 50 км) температура падает с высотой, выше (до высоты около 400 км) - снова растёт. Мезопауза совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца. На этой высоте наблюдаются серебристые облака.

Мезопауза есть не только на Земле, но и на других планетах, имеющих атмосферу.

Линия Ка́рмана - высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

В соответствии с определением Международной авиационной федерации (ФАИ), линия Кармана находится на высоте 100 км над уровнем моря.

Название высота получила по имени Теодора фон Кармана, американского учёного венгерского происхождения. Он первый определил, что примерно на этой высоте атмосфера становится настолько разрежённой, что аэронавтика становится невозможной, так как скорость летательного аппарата, необходимая для создания достаточной подъёмной силы, становится больше первой космической скорости, и поэтому для достижения бо́льших высот необходимо пользоваться средствамикосмонавтики.

Атмосфера Земли продолжается и за линией Кармана. Внешняя часть земной атмосферы, экзосфера, простирается до высоты 10 тыс. км и более, на такой высоте атмосфера состоит в основном из атомов водорода, способных покидать атмосферу.

Достижение Линии Кармана являлось первым условием для получения приза Ansari X Prize, так как это является основанием для признания полёта космическим.

Атмосфера Земли представляет собой газовую оболочку нашей планеты. Ее нижняя граница проходит на уровне земной коры и гидросферы, а верхняя переходит в околоземную область космического пространства. Атмосфера содержит около 78% азота, 20% кислорода, до 1% аргона, углекислого газа, водорода, гелия, неона и некоторых других газов.

Данная земная оболочка характеризуется четко выраженной слоистостью. Слои атмосферы определяются вертикальным распределением температуры и различной плотностью газов на разных ее уровнях. Различают такие слои атмосферы Земли: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Отдельно выделяют ионосферу.

До 80% всей массы атмосферы составляет тропосфера – нижний приземный слой атмосферы. Тропосфера в полярных поясах расположена на уровне до 8-10 км над земной поверхностью, в тропическом поясе - максимально до 16-18 км. Между тропосферой и вышележащим слоем стратосферой находится тропопауза – переходный слой. В тропосфере температура снижается по мере увеличения высоты, аналогично с высотой уменьшается атмосферное давление. Средний градиент температуры в тропосфере составляет 0,6°С на 100 м. Температура на разных уровнях данной оболочки определяется особенностями поглощения солнечного излучения и эффективностью конвекции. Почти вся деятельность человека осуществляется в тропосфере. Самые высокие горы не выходят за пределы тропосферы, только воздушный транспорт может пересекать на небольшую высоту верхнюю границу данной оболочки и находиться в стратосфере. Большая доля водяного пара содержится в тропосфере, что обусловливает формирование почти всех облаков. Также в тропосфере сконцентрированы практически все аэрозоли (пыль, дым, т.д.), образующиеся на земной поверхности. В пограничном нижнем слое тропосферы выражены суточные колебания температуры, влажности воздуха, скорость ветра обычно снижена (она возрастает с повышением высоты). В тропосфере наблюдается изменчивое расчленение толщи воздуха на воздушные массы в горизонтальном направлении, отличающиеся по ряду характеристик в зависимости от пояса и местности их формирования. На атмосферных фронтах – границах между воздушными массами – образуются циклоны и антициклоны, определяющие погоду на определенной территории в течение конкретного промежутка времени.

Стратосфера является слоем атмосферы между тропосферой и мезосферой. Пределы данного слоя составляют от 8-16 км до 50-55 км над поверхностью Земли. В стратосфере газовый состав воздуха приблизительно таков же, как и в тропосфере. Отличительная особенность – уменьшение концентрации водяного пара и повышение содержания озона. Озоновый слой атмосферы, защищающий биосферу от агрессивного воздействия ультрафиолетового света, находится на уровне от 20 до 30 км. В стратосфере температура повышается с высотой, причем температурные значение определяются солнечным излучением, а не конвекцией (передвижениями воздушных масс), как в тропосфере. Нагревание воздуха стратосферы обусловлено поглощением ультрафиолетового излучения озоном.

Над стратосферой простирается мезосфера до уровня 80 км. Этот слой атмосферы характеризуется тем, что температура по мере увеличения высоты понижается от 0° С до - 90° С. Это наиболее холодная область атмосферы.

Выше мезосферы находится термосфера до уровня 500 км. От границы с мезосферой до экзосферы температура меняется примерно от 200 К до 2000 К. До уровня 500 км плотность воздуха убывает в несколько сот тысяч раз. Относительный состав атмосферных составляющих термосферы аналогичен приземному слою тропосферы, но с увеличением высоты большее количество кислорода переходит в атомарное состояние. Определенная доля молекул и атомов термосферы находится в ионизированном состоянии и распределены в нескольких слоях, они объединяются понятием ионосфера. Характеристики термосферы варьируют в большом диапазоне в зависимости от географической широты, величины солнечной радиации, времени года и суток.

Верхний слой атмосферы – экзосфера. Это самый разреженный слой атмосферы. В экзосфере длины свободного пробега частиц настолько огромны, что частицы могут свободно удаляться в межпланетное пространство. Масса экзосферы составляет одну десятимиллионную от общей массы атмосферы. Нижняя граница экзосферы – уровень 450-800 км, а верхней границей считается область, где концентрация частиц такая же, как в космическом пространстве, - несколько тысяч километров от поверхности Земли. Экзосфера состоит из плазмы – ионизированного газа. Также в экзосфере находятся радиационные пояса нашей планеты.

Видео презентация - слои атмосферы Земли:

Похожие материалы:

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Атмосферные слои до высоты 120 км

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

10,045×10 3 Дж/(кг*К)(в интервале температур от 0-100°С), C v 8,3710*10 3 Дж/(кг*К) (0-1500°С). Растворимость воздуха в воде при 0°С 0,036%, при 25°С - 0,22%.

Состав атмосферы

История образования атмосферы

Ранняя история

В настоящее время наука не может со стопроцентной точностью проследить все этапы образования Земли. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • постоянная утечка водорода в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Появление жизни и кислорода

С появлением на Земле живых организмов в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Существуют, однако, данные (анализ изотопного состава кислорода атмосферы и выделяющегося при фотосинтезе), свидетельствующие в пользу геологического происхождения атмосферного кислорода.

Первоначально кислород расходовался на окисление восстановленых соединений - углеводородов , закисной формы железа , содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти.

В 1990-x годах были проведены эксперименты по созданию замкнутой экологической системы («Биосфера 2»), в ходе которых не удалось создать стабильную систему, обладающую единым составом воздуха. Влияние микроорганизмов привело к снижению уровня кислорода и увеличению количества углекислого газа.

Азот

Образование большого количества N 2 обусловлено окислением первичной аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, как предполагается, около 3 млрд. лет назад (по другой версии, кислород атмосферы имеет геологическое происхождение). Азот окисляется до NO в верхних слоях атмосферы, используется в промышленности и связывается азотфиксирующими бактериями, в то же время N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений.

Азот N 2 инертный газ и вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окислять его и переводить в биологическую форму могут цианобактерии, некоторые бактерии (например клубеньковые, формирующие ризобиальный симбиоз с бобовыми растениями).

Окисление молекулярного азота электрическиими разрядами используется при промышленном изготовлении азотных удобрений, он же привёл к образованию уникальных месторождений селитры в чилийской пустыне Атакама .

Благородные газы

Сжигание топлива - основной источник загрязняющих газов (CО , NO, SO 2). Диоксид серы окисляется О 2 воздуха до SO 3 в высших слоях атмосферы, который взаимодействует с парами Н 2 О и NH 3 , а образующиеся при этом Н 2 SO 4 и (NН 4) 2 SO 4 возвращаются на поверхность Земли вместе с атмосферными осадками. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями Рb .

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капел морской воды и частиц пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Строение атмосферы и характеристика отдельных оболочек

Физическое состояние атмосферы определяется погодой и климатом . Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.

Тропосфера

Стратосфера

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний , зарниц, и др. свечений.

В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - Н 2). На высоте 100-400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Мезосфера

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы - около 20%; масса мезосферы - не более 0,3%, термосферы - менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

Воздушная оболочка, которая окружает нашу планету и вращается вместе с ней, называется атмосферой. Половина всей массы атмосферы сосредоточена в нижних 5 км, а три четверти массы - в нижних 10 км. Выше воздух значительно разрежен, хотя его частицы обнаруживаются на высоте 2000-3000 км над земной поверхностью.

Воздух, которым мы дышим, это смесь газов. Больше всего в нём азота - 78% и кислорода - 21 %. Аргон составляет менее 1 % и 0,03% - углекислый газ. Другие многочисленные газы, например криптон, ксенон, неон, гелий, водород, озон и прочие, составляют тысячные и миллионные доли процента. Воздух содержит также водяной пар, частички различных веществ, бактерии, пыльцу и космическую пыль.

Атмосфера состоит из нескольких слоев. Нижний слой до высоты 10-15 км над поверхностью Земли называется тропосфера. Она нагревается от Земли, поэтому температура воздуха здесь с высотой падает на 6 °С на 1 километр подъёма. В тропосфере находится почти весь водяной пар и образуются практически все облака - прим.. Высота тропосферы над разными широтами планеты неодинакова. Над полюсами она поднимается до 9 км, над умеренными широтами - до 10-12 км, а над экватором - до 15 км. Процессы, происходящие в тропосфере - формирование и перемещение воздушных масс, образование циклонов и антициклонов, появление облаков и выпадение осадков, - определяют погоду и климат у земной поверхности.


Выше тропосферы располагается стратосфера, которая простирается до 50-55 км. Тропосферу и стратосферу разделяет переходный слой тропопауза, толщиной 1-2 км. В стратосфере на высоте около 25 км температура воздуха постепенно начинает расти и на 50 км достигает + 10 +30 °С. Такое повышение температуры связано с тем, что в стратосфере на высотах 25-30 км находится слой озона. У поверхности Земли его содержание в воздухе ничтожно мало, а на больших высотах двухатомные молекулы кислорода поглощают ультрафиолетовую солнечную радиацию, образуя трёхатомные молекулы озона.

Если бы озон располагался в нижних слоях атмосферы, на высоте с нормальным давлением, толщина его слоя была бы всего 3 мм. Но и в таком небольшом количестве он играет очень важную роль: поглощает вредную для живых организмов часть солнечного излучения.

Выше стратосферы примерно до высоты 80 км простирается мезосфера, в которой температура воздуха с высотой падает до нескольких десятков градусов ниже нуля.

Верхняя часть атмосферы характеризуется очень высокими температурами и называется термосферой - прим.. Её разделяют на две части - ионосферу - до высоты около 1000 км, где воздух сильно ионизован, и экзосферу - свыше 1000 км. В ионосфере молекулы атмосферных газов поглощают ультрафиолетовую радиацию Солнца, при этом образуются заряженные атомы и свободные электроны. В ионосфере наблюдаются полярные сияния.

Атмосфера играет очень важную роль в жизни нашей планеты. Она предохраняет Землю от сильного нагрева солнечными лучами днём и от переохлаждения ночью. Большая часть метеоритов сгорает в атмосферных слоях, не долетая до поверхности планеты. Атмосфера содержит кислород, необходимый всем организмам, озоновый экран, защищающий жизнь на Земле от губительной части ультрафиолетовой радиации Солнца.


АТМОСФЕРЫ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

Атмосфера Меркурия так сильно разрежена, что, можно сказать, её практически нет. Воздушная оболочка Венеры состоит из углекислого газа (96%) и азота (около 4%), она очень плотная - атмосферное давление у поверхности планеты почти в 100 раз больше, чем на Земле. Марсианская атмосфера тоже состоит преимущественно из углекислого газа (95%) и азота (2,7%), но её плотность меньше земной примерно в 300 раз, а давление - почти в 100 раз. Видимая поверхность Юпитера на самом деле представляет собой верхний слой водородно-гелиевой атмосферы. Такие же по составу воздушные оболочки Сатурна и Урана. Красивый голубой цвет Урана обусловлен высокой концентрацией метана в верхней части его атмосферы - прим.. У Нептуна, окутанного углеводородной дымкой, выделяют два основных слоя облаков: один состоит из кристаллов замёрзшего метана, а второй, расположенный ниже, содержит аммиак и сероводород.




Top