Выходные 5 и 6 августа.

В процессе верстки исправлены регистры чисел и опечатки в формулах. Приведены в читаемый вид таблицы.
Иван Александрович Корзников
Реальности межзвездных полетов

Люди уже давно мечтают о полетах через космическое пространство к другим звездам, о путешествиях по другим мирам и встречах с неземным разумом. Фантасты исписали горы бумаги, пытаясь представить, как это будет происходить, они выдумали разнообразную технику, способную осуществить эти мечты. Но пока это только фантазии. Попробуем представить, как такой полет может выглядеть в реальности.
Расстояния между звездами так велики, что свет от одной звезды до другой распространяется годами, а он движется с очень большой скоростью с =299 793 458 м/с. Для измерения этих расстояний астрономы используют специальную единицу - световой год, она равна расстоянию которое проходит свет за 1 год: 1 св. год = 9.46·10 15 метров (это примерно в 600 раз больше размеров солнечной системы). Астрономы подсчитали, что в сфере радиусом 21.2 световых лет вкруг Солнца имеется 100 звёзд, входящих в 72 звездные системы (двойные, тройные и т.д. системы близких звезд). Отсюда легко найти, что на одну звездную систему в среднем приходится объем пространства 539 кубических световых лет, а среднее расстояние между звездными системами составляет примерно 8.13 световых лет. Реальное расстояние может быть и меньше - так, до ближайшей к Солнцу звезды Проксима Центавра 4.35 св. л, но в любом случае межзвездный перелет представляет собой преодоление расстояния по крайней мере в несколько световых лет. А это значит, что скорость звездолета должна быть не меньше, чем 0.1 с - тогда перелет займет несколько десятков лет и может быть осуществлен одним поколением астронавтов.
Таким образом, скорость звездолета должна быть больше 30 000 км/с. Для земной техники это пока недостижимая величина - мы едва освоили скорости в тысячу раз меньше. Но допустим, что все технические проблемы решены, и наш звездолет имеет двигатель (фотонный или какой угодно другой), способный разогнать космический корабль до таких скоростей. Нас не интересуют детали его устройства и функционирования, для нас здесь важно только одно обстоятельство: современная наука знает только один способ разгона в космическом пространстве - реактивное движение, которое основано на выполнении закона сохранения импульса системы тел. И важно здесь то, что при таком движении звездолет (и любое другое тело) именно перемещается в пространстве, физически взаимодействуя со всем, что в нем находится.
Фантасты в своих фантазиях придумали разнообразные "гиперпространственные скачки" и "субпространственные переходы" от одной точки пространства до другой, минуя промежуточные области пространства, но все это, по представлениям современной науки, не имеет никаких шансов на осуществление в реальности. Современная наука твердо установила, что в природе выполняются определенные законы сохранения: закон сохранения импульса, энергии, заряда и т. д. А при "гиперпространственном скачке" получается, что в некоторой области пространства энергия, импульс и заряды физического тела просто исчезают, то есть эти законы не выполняются. С точки зрения современной науки это значит, что такой процесс не может быть осуществлен. Да и главное - непонятно, что это вообще такое, это "гиперпространство" или "субпространство", попав в которое, физическое тело перестает взаимодействовать с телами в реальном пространстве. В реальном мире существует лишь то, что себя проявляет во взаимодействии с другими телами (собственно, пространство и есть отношение существующих тел), и это значит, что такое тело фактически перестанет существовать - со всеми вытекающими последствиями. Так что все это - бесплодные фантазии, которые не могут быть предметом серьезного обсуждения.
Итак, допустим, что имеющийся реактивный двигатель разогнал звездолет до необходимой нам субсветовой скорости, и он с этой скоростью перемещается в космическом пространстве от одной звезды к другой. Некоторые аспекты такого полета уже давно обсуждаются учеными (, ), но они рассматривают в основном различные релятивистские эффекты такого движения, не обращая внимания на другие существенные аспекты межзвездного полета. А реальность такова, что космическое пространство - не абсолютная пустота, оно представляет собой физическую среду, которую принято называть межзвездной средой. В ней есть атомы, молекулы, пылинки и другие физические тела. И со всеми этими телами звездолету придется физически взаимодействовать, что при движении с такими скоростями превращается в проблему. Рассмотрим эту проблему подробнее.
Астрономы, наблюдая радиоизлучение из космической среды и прохождение через нее света нашли, что в космическом пространстве имеются атомы и молекулы газов: в основном это атомы водорода Н , молекулы водорода Н 2 (их по количеству примерно столько же, как и атомов Н ), атомы гелия Не (их в 6 раз меньше, чем атомов Н ), и атомы других элементов (больше всего углерода С, кислорода О и азота N ), которые в сумме составляют около 1 % всех атомов. Обнаружены даже такие сложные молекулы, как СО 2 , СН 4 , НСN , Н 2 О, NH 3 , НСООН и другие, но в мизерных количествах (их в миллиарды раз меньше, чем атомов Н ). Концентрация межзвездного газа очень мала и составляет (вдали от газопылевых облаков) в среднем 0,5-0,7 атомов на 1 см 3 .
Понятно, что при движении звездолета в такой среде этот межзвездный газ будет оказывать сопротивление, тормозя звездолет и разрушая его оболочки. Поэтому было предложено обратить вред в пользу и создать прямоточный реактивный двигатель, который, собирая межзвездный газ (а он на 94 % состоит из водорода) и аннигилируя его с запасами антивещества на борту, получал бы таким образом энергию для движения звездолета. По проекту авторов впереди звездолета должен находиться ионизирующий источник (создающий электронный или фотонный луч, ионизирующий налетающие атомы) и магнитная катушка, фокусирующая получившиеся протоны к оси звездолета, где они используются для создания фотонной реактивной струи.
К сожалению, при детальном рассмотрении оказывается, что этот проект неосуществим. Прежде всего, ионизирующий луч не может быть электронным (как настаивают авторы) по той простой причине, что звездолет, испускающий электроны, сам будет заряжаться положительным зарядом, и рано или поздно поля, создаваемые этим зарядом, нарушат работу систем звездолета. Если же использовать фотонный луч, то тогда (впрочем, как и для электронного луча) дело упирается в маленькое сечение фотоионизации атомов. Проблема в том, что вероятность ионизации атома фотоном очень мала (поэтому воздух не ионизируется мощными лучами лазеров). Количественно она выражается сечением ионизации, которое численно равно отношению числа ионизированных атомов к плотности потока фотонов (числу налетевших фотонов на 1 см 2 за секунду). Фотоионизация атомов водорода начинается при энергии фотонов 13.6 электронвольт=2.18·10 -18 Дж (длина волны 91.2 нм), и при этой энергии сечение фотоионизации максимально и равно 6.3·10 -18 см 2 (,стр.410). Это значит, что для ионизации одного атома водорода требуется в среднем 1.6·10 17 фотонов на см 2 за секунду. Поэтому мощность такого ионизирующего луча должна быть гигантской: если звездолет движется со скоростью v то за 1 секунду на 1 см 2 его поверхности налетает rv встречных атомов, где r - концентрация атомов, что в нашем случае околосветового движения составит величину порядка rv =0.7·3·10 10 =2·10 10 атомов в секунду на 1 см 2 . Значит, поток ионизирующих фотонов должен быть не меньше n= 2·10 10 / 6.3·10 -18 =3·10 27 1/см 2 ·с. Энергия, которую несет такой поток фотонов будет равна е =2.18·10 -18 ·3·10 27 =6,5·10 9 Дж/см 2 ·с.
К тому же, кроме атомов водорода, на звездолет будет налетать столько же молекул Н 2 , а их ионизация происходит при энергии фотонов 15.4 эв (длина волны 80.4 нм). Это потребует увеличения мощности потока примерно в два раза, и полная мощность потока должна быть е =1.3·10 10 Дж/см 2 . Для сравнения можно указать, что поток энергии фотонов на поверхности Солнца равен 6.2·10 3 Дж/см 2 ·с, то есть звездолет должен светить в два миллиона раз ярче Солнца.
Поскольку энергия и импульс фотона связаны соотношением Е=рс , то этот поток фотонов будет иметь импульс р=еS/с где S - площадь массозаборника (порядка 1000 м 2), что составит 1.3·10 10 ·10 7 / 3·10 8 =4.3·10 8 Кг·м/с, и этот импульс направлен против скорости и тормозит звездолет. Фактически получается, что впереди звездолета стоит фотонный двигатель и толкает его в обратном направлении - ясно, что такой тяни-толкай далеко не улетит.
Таким образом, ионизация налетающих частиц слишком накладна, а другого способа концентрации межзвездных газов современная наука не знает. Но даже если такой способ будет найден, то прямоточный двигатель все равно себя не оправдает: еще Зенгер показал (,стр.112), что величина тяги прямоточного фотонно-реактивного двигателя ничтожна и он не может быть использован для разгона ракеты с высоким ускорением. Действительно, полный приток массы набегающих частиц (в основном атомов и молекул водорода) составит dm=3m p Srv =3·1.67·10 -27 ·10 7 · 2·10 10 =10 -9 Кг/с. При аннигиляции эта масса будет выделять максимум W=mc 2 = 9·10 7 Дж/с, и если вся эта энергия уйдет на формирование фотонной реактивной струи, то прирост импульса звездолета за секунду будет составлять dр=W/c =9·10 7 /3·10 8 =0.3 Кг·м/с, что соответствует тяге в 0.3 ньютона. Примерно с такой силой давит на землю маленькая мышка, и получается, что гора родила мышь. Поэтому конструирование прямоточных двигателей для межзвездных полетов не имеет смысла.

Из сказанного следует, что отклонить налетающие частицы межзвездной среды не получится, и звездолету придется принимать их своим корпусом. Это приводит к некоторым требованиям к конструкции звездолета: впереди него должен находиться экран (например, в виде конической крышки), который будет защищать основной корпус от воздействия космических частиц и излучений. А за экраном должен находиться радиатор, отводящий тепло от экрана (и одновременно служащий вторичным экраном), прикрепленный к основному корпусу звездолета термоизолирующими балками. Необходимость такой конструкции объясняется тем, что налетающие атомы имеют большую кинетическую энергию, они будут глубоко внедряться в экран и, тормозясь в нем, рассеивать эту энергию в виде теплоты. Например, при скорости полета 0,75 с энергия протона водорода будет примерно 500 Мэв - в единицах ядерной физики, что соответствует 8·10 -11 Дж. Он будет внедряться в экран на глубину нескольких миллиметров и передаст эту энергию колебаниям атомов экрана. А таких частиц будет налетать около 2·10 10 атомов и столько же молекул водорода в секунду на 1 см 2 ,то есть каждую секунду на 1 см 2 поверхности экрана будет поступать 4.8 Дж энергии, переходящей в теплоту. А проблема в том, что в космосе отводить эту теплоту можно только путем излучения электромагнитных волн в окружающее пространство (воздуха и воды там нет). Это значит, что экран будет нагреваться до тех пор, пока его тепловое электромагнитное излучение не сравняется с поступающей от налетающих частиц мощностью. Тепловое излучение телом электромагнитной энергии определяется законом Стефана-Больцмана, согласно которому энергия, излучаемая за секунду с 1 см 2 поверхности равна q=sТ 4 где s =5.67·10 -12 Дж/см 2 К 4 -постоянная Стефана, а Т - температура поверхности тела. Условием установления равновесия будет sТ 4 =Q где Q - поступающая мощность, то есть температура экрана будет Т=(Q/s) 1/4 . Подставляя в эту формулу соответствующие значения, найдем, что экран будет нагреваться до температуры 959 о К = 686 о С. Понятно, что при больших скоростях эта температура будет еще выше. Это значит, например, что экран нельзя делать из алюминия (его температура плавления всего 660 о С), и его нужно термоизолировать от основного корпуса звездолета - иначе будут недопустимо греться жилые отсеки. А для облегчения теплового режима экрана к нему необходимо присоединить радиатор с большой поверхностью излучения (можно из алюминия), например в виде клеточной системы продольных и поперечных ребер, при этом поперечные ребра будут одновременно выполнять функцию вторичных экранов, защищая жилые отсеки от осколков и тормозного излучения попадающих в экран частиц и т.п.

Но защита от атомов и молекул - не главная проблема межзвездного полета. Астрономы, наблюдая поглощение света от звезд, установили, что в межзвездном пространстве имеется значительное количество пыли. Такие частицы, сильно рассеивающие и поглощающие свет, имеют размеры 0.1-1 микрон и массу порядка 10 -13 г, а их концентрация много меньше концентрации атомов и равна примерно r =10 -12 1/см 3 Судя по их плотности (1 г/см 3) и показателю преломления (n =1.3 ) они представляют собой в основном снежные комочки, состоящие из смерзшихся космических газов (водорода, воды, метана, аммиака) с примесью твердых углеродных и металлических частичек. Видимо, именно из них образуются ядра комет, имеющие такой же состав. И хотя это должны быть довольно рыхлые образования, при околосветовых скоростях они могут нанести большой вред.
При таких скоростях начинают сильно проявляться релятивистские эффекты, и кинетическая энергия тела в релятивистской области определяется выражением

Как видно, энергия тела резко растет с приближением v к скорости света c: Так, при скорости 0.7 с пылинка с m=10 -13 г имеет кинетическую энергию 3.59 Дж (см. Таблицу 1) и попадание ее в экран эквивалентно взрыву в нем примерно 1 мг тротила. При скорости 0.99 с эта пылинка будет иметь энергию 54.7 Дж, что сравнимо с энергией пули, выпущенной из пистолета Макарова (80 Дж). При таких скоростях получится, что каждый квадратный сантиметр поверхности экрана непрерывно обстреливается пулями (причем разрывными) с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета.

Таблица 1 Энергетические соотношения

0.1 4.73 4.53·10 14 1,09·10 5 0.2 19.35 1.85·10 15 4,45·10 5 0.3 45.31 4.34·10 15 1,04·10 6 0.4 85.47 8.19·10 15 1,97·10 6 0.5 145.2 1.39·10 16 3,34·10 6 0.6 234.6 2.25·10 16 5,40·10 6 0.7 375.6 3.59·10 16 8,65·10 6 0.8 625.6 5.99·10 16 1,44·10 7 0.9 1214 1.16·10 17 2,79·10 7 0.99 5713 5.47·10 17 1,31·10 8 0.999 20049 1.92·10 18 4,62·10 8
v/c 1/(1-v 2 /c 2) 1/2 E p K T
1.005
1.020
1.048
1.091
1.155
1.25
1.40
1.667
2.294
7.089
22.37

Обозначения: Е р - кинетическая энергия протона в Мэв К - кинетическая энергия 1 Кг вещества в Дж Т - тротиловый эквивалент килограмма в тоннах тротила.

Для оценки последствий удара частицы в поверхность можно использовать формулу, предложенную специалистом по этим вопросам Ф.Уипплом (,стр.134), согласно которой размеры образовавшегося кратера равны

где d - плотность вещества экрана, Q - его удельная теплота плавления.

Но здесь то нужно иметь в виду, что на самом деле мы не знаем, как пылинки будут воздействовать на материал экрана при таких скоростях. Эта формула справедлива для небольших скоростей удара (порядка 50 км/с и менее), а при оклосветовых скоростях воздействия физические процессы удара и взрыва должны протекать совсем иначе и гораздо интенсивнее. Можно только предполагать, что в силу релятивистских эффектов и большой инерции материала пылинки взрыв будет направлен вглубь экрана, по типу кумулятивного взрыва, и приведет к образованию гораздо более глубокого кратера. Приведенная формула отражает общие энергетические соотношения, и мы допустим, что она годится для оценки результатов удара и для околосветовых скоростей.
По видимому, лучшим материалом для экрана является титан (в силу его небольшой плотности и физических характеристик), для него d =4.5 г/см 3 , а Q =315 КДж/Кг, что дает

d =0.00126·Е 1/3 метров

При v =0.1 c получим Е =0.045 Дж и d =0,00126·0.356=0.000448 м=0.45 мм. Легко найти, что пройдя путь в 1 световой год, экран звездолета встретит n=rs =10 -12 ·9.46·10 17 =10 6 пылинок на каждый см 2 ,и каждые 500 пылинок сроют слой 0.448 мм экрана. Значит, после 1 светового года пути экран будет стерт на толщину 90 см. Отсюда следует, что для полета на таких скоростях скажем, к Проксиме Центавра (только туда) экран должен иметь толщину примерно 5 метров и массу около 2.25 тысячи тонн. При больших скоростях дело будет обстоять еще хуже:

Таблица 2 Толщина Х титана, стираемого за 1 световой год пути

0.1 0.448 0.9 0.2 0.718 3.66 0.3 0.955 9.01 0.4 1.178 16.4 0.5 1.41 27.6
v/c E d мм X м
0.045
0.185
0.434
0.818
1.39
. . .

Как видно, при v/c >0.1 экран должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн). Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны.

Рассмотренное абразивное действие космической пыли на самом деле не исчерпывает всего спектра воздействий, которым подвергнется звездолет во время межзвездного полета. Очевидно, что в межзвездном пространстве есть не только пылинки, но и тела других размеров и масс, однако астрономы не могут непосредственно наблюдать их из-за того, что хотя их размеры больше, но самих их меньше, так что они не дают ощутимого вклада в поглощение света звезд (рассмотренные ранее пылинки имеют размер порядка длины волны видимого света и поэтому сильно его поглощают и рассеивают, и их достаточно много, поэтому астрономы в основном их и наблюдают).
Но о телах в далеком космосе можно получить представление по тем телам, которые мы наблюдаем в солнечной системе, в том числе вблизи Земли. Ведь, как показывают измерения, солнечная система движется относительно соседних звезд примерно в направлении Веги со скоростью 15.5 км/с, а значит, она каждую секунду заметает все новые и новые объемы космического пространства вместе с его содержимым. Конечно, не все вблизи Солнца пришло извне, многие тела изначально являются элементами солнечной системы (планеты, астероиды, многие метеорные потоки). Но астрономы не раз наблюдали например, полет некоторых комет, которые прилетели из межзвездного пространства и туда же улетели. Значит, там имеются и очень крупные тела (массой в миллионы и миллиарды тонн), но они встречаются очень редко. Понятно, что там могут встретиться тела практически любых масс, но с разной вероятностью. И чтобы оценить вероятность встречи с различными телами в межзвездном пространстве нам нужно найти распределение таких тел по массам.
Прежде всего нужно знать, что происходит с телами когда они находятся в солнечной системе. Это вопрос хорошо изучен астрофизиками , и они нашли, что время жизни не слишком крупных тел в солнечной системе очень ограничено. Так, мелкие частички и пылинки с массами менее 10 -12 г просто выталкиваются за пределы солнечной системы потоками света и протонов от Солнца (что видно по хвостам комет). Для более крупных частичек результат оказывается обратным: в результате так называемого эффекта Пойнтинга-Робертсона они падают на Солнце, постепенно опускаясь к нему по спирали за время порядка нескольких десятков тысяч лет.
Это значит, что наблюдаемые в солнечной системе спорадические частицы и микрометеориты (не относящиеся к ее собственным метеорным потокам) попали в нее из окружающего космоса, так как ее собственные частицы такого типа давно исчезли. Поэтому искомую зависимость можно найти по наблюдениям спорадических частиц в самой солнечной системе. Такие наблюдения давно ведутся, и исследователи пришли к выводу (,), что закон распределения космических тел по массам имеет вид N(M)=N 0 /M i Непосредственные измерения для спорадических метеоров в интервале масс от 10 -3 до 10 2 г (,стр.127) дают для плотности потока метеоров с массой более М грамм зависимость

Ф(М )=Ф(1)/M 1.1

Наиболее достоверные результаты по этому вопросу получены по измерениям микрократеров, образовавшихся на поверхностях космических аппаратов (,стр.195), они тоже дают k =1.1 в интервале масс от 10 -6 до 10 5 г. Для меньших масс остается предполагать, что это распределение выполняется и для них. Для величины потока частиц массивнее 1 г различные измерения дают значения 10 -15 1) 2·10 -14 1/м 2 с, и поскольку величина потока связана с пространственной плотностью тел соотношением Ф=rv , то отсюда можно найти, что концентрация в космосе тел с массой более М дается формулой

r(М )=r 1 /М 1.1

где параметр r 1 можно найти приняв среднюю скорость спорадических метеорных частиц равной v =15 км/с (как это видно из измерений П.Миллмана), тогда r 1 =Ф(1)/v получается равной в среднем 5·10 -25 1/см 3.
Из полученного распределения можно найти, что концентрация частиц, массы которых больше 0.1 г в среднем равна r (0.1)=r 1 · (10) · 1.1=6.29·10 -24 1/см 3 , а это значит, что на пути в 1 световой год звездолет встретит на 1 см 2 поверхности n=rs =5.9·10 -6 таких частиц, что при общей площади S =100 м 2 =10 6 см 2 составит не менее 5 частиц массивнее 0.1 г на все поперечное сечение звездолета. А каждая такая частица при v =0.1 c имеет энергию более 4.53·10 10 Дж, что эквивалентно кумулятивному взрыву 11 тонн тротила. Даже если экран такое выдержит, то дальше произойдет вот что: поскольку вряд ли частица ударит точно в центр экрана, то в момент взрыва появится сила, поворачивающая звездолет вокруг его центра масс. Она, во-первых, слегка изменит направление полета, а, во-вторых, повернет звездолет, подставив его бок встречному потоку частиц. И звездолет будет быстро искромсан ими, а если на его борту имеются запасы антивещества, то все завершится серией аннигиляционных взрывов (или одним большим взрывом).
Некоторые авторы высказывают надежду , что от опасного метеорита можно уклониться. Посмотрим, как это будет выглядеть на субсветовой скорости v =0.1 c. Метеорит весом 0.1 г имеет размер около 2 мм и энергию, эквивалентную 10.9 тонн тротила. Попадание его в звездолет приведет к фатальному взрыву, и придется от него уклоняться. Допустим, что радар звездолета способен обнаружить такой метеорит на расстоянии х =1000 км - хотя непонятно, как это будет осуществляться, так как с одной стороны, радар должен находиться перед экраном, чтобы выполнять свою функцию, а с другой стороны - за экраном, чтобы не быть уничтоженным потоком набегающих частиц.
Но допустим, тогда за время t = x/v = 0.03 секунды звездолет должен среагировать и отклониться на расстояние у = 5 м (считая диаметр звездолета 10 метров). Это значит, что он должен приобрести в поперечном направлении скорость u=y/t - опять же за время t , то есть его ускорение должно быть не меньше a=y/t 2 = 150 м/с 2 . Это ускорение в 15 раз больше нормального, и его не выдержит никто из экипажа, да и многие приборы звездолета. И если масса звездолета составляет около 50 000 тонн, то для этого потребуется сила F= am = 7.5·10 9 ньютон. Такую силу на время в тысячные доли секунды можно получить только произведя на звездолете мощный взрыв: при химическом взрыве получается давление порядка 10 5 атмосфер=10 10 Ньютон/м 2 и оно будет способно свернуть звездолет в сторону. То есть, чтобы уклониться от взрыва нужно звездолет взорвать...
Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями, порядка 0.01 с и менее. Это значит, что колонизация иных миров может происходить медленными темпами, так как каждый перелет будет занимать сотни и тысячи лет, и для этого нужно будет посылать к другим звездам большие колонии людей, способные существовать и развиваться самостоятельно. Для такой цели может подойти небольшой астероид из смерзшегося водорода: внутри него можно устроить город подходящих размеров, где будут жить астронавты, а сам материал астероида будет использоваться в качестве топлива для термоядерной энергетической установки и двигателя. Других путей освоения дальнего космоса современная наука предложить не может.
Во всем этом есть только один положительный аспект: вторжение полчищ агрессивных инопланетян Земле не грозит - это слишком сложное дело. Но обратная сторона медали заключается в том, что и добраться до миров, где есть "братья по разуму" не удастся в течении ближайших нескольких десятков тысяч лет. Поэтому наиболее быстрым способом обнаружения инопланетян является установление связей с помощью радиосигналов или каких-либо других сигналов.

Библиография

    1. Новиков И.Д. Теория относительности и межзвездные перелеты - М.:Знание,1960
    2. Перельман Р.Г. Цели и пути освоения космоса - М.:Наука,1967
    3. Перельман Р.Г. Двигатели галактических кораблей - М.: изд. АН СССР,1962
    4. Бурдаков В.П., Данилов Ю.И. Внешние ресурсы и космонавтика - М.:Атомиздат,1976
    5. Зенгер Е., К механике фотонных ракет - М.: изд. Иностранной литературы,1958
    6. Закиров У.Н. Механика релятивистских космических полетов - М.:Наука,1984
    7. Аллен К.У. Астрофизические величины - М.:Мир,1977
    8. Мартынов Д.Я. Курс общей астрофизики - М.:Наука,1971
    9. Физические величины (Справочник) - М.:Энергоатомиздат,1991
    10. Бурдаков В.П., Зигель Ф.Ю. Физические основы космонавтики (физика космоса) - М.:Атомиздат,1974
    11. Спитцер Л. Пространство между звездами - М.:Мир,1986.
    12. Лебединец В.М. Аэрозоль в верхней атмосфере и космическая пыль - Л.: Гидрометеоиздат,1981
    13. Бабаджанов П.Б. Метеоры и их наблюдение - М.:Наука,1987
    14. Акишин А.И.,Новиков Л.С. Воздействие окружающей среды на материалы космических аппаратов - М.:Знание,1983

__________________________________________________ [ оглавление ]

Оптимизирован под Internet Explorer 1024X768
средний размер шрифта
Дизайн A Semenov

Ответ потребует большой статьи, хотя на него можно ответить и единственным символом: c .

Скорость света в вакууме, c , равна примерно тремстам тысячам километров в секунду и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли экипажу автономно жить в космосе столько времени - космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик катриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом прочитали целую лекцию для всех желающих . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении с скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенного в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Могут ли межзвездные перелеты превратиться из несбыточной мечты в реальную перспективу?

Ученые всего мира говорят, что человечество все дальше продвигается в освоении космоса, появляются все новые открытия и технологии. Однако о межзвездных перелетах людям приходится пока еще только мечтать. Но так ли недостижима и нереальна эта мечта? Чем располагает человечество сегодня и каковы перспективы на будущее?

По оценкам специалистов, если прогресс не застопорится на месте, то на протяжении одного или двух веков, человечество сможет исполнить свою мечту. Сверхмощный телескоп «Кеплер» в свое время позволил астрономам обнаружить 54 экзопланеты, где не исключено развитие жизни, а сегодня уже подтверждено существование 1028 таких планет. Эти планеты, обращающиеся вокруг звезды за пределами Солнечной системы, находятся на таком отдалении от центральной звезды, что на их поверхности возможно поддержание воды в жидком состоянии.

Однако получить ответ на главный вопрос — одиноко ли человечество во Вселенной — пока невозможно из-за гигантских расстояний до ближайших планетных систем. Множество экзопланет, на расстояние ста и менее световых лет от Земли, а также громадный научный интерес, который они вызывают, заставляют взглянуть на идею межзвездных перелетов совершенно по-иному.

Полет к другим планетам будет зависеть от разработки новых технологий и выбора способа, который необходим для достижения такой далекой цели. А пока выбор еще не сделан.

Для того чтобы земляне смогли преодолевать невероятно огромные космические расстояния, причем за сравнительно короткий срок, инженерам и космологам придется создать принципиально новый двигатель. Говорить о межгалактических перелетах пока рано, но человечество могло бы исследовать – Млечный путь, галактику, в которой находится Земля и Солнечная система.

Галактика Млечный путь насчитывает около 200 – 400 миллиардов звезд, вокруг которых по своим орбитам движутся планеты. Ближе всех к Солнцу находится звезда под названием Альфа Центавра. Расстояние до нее примерно сорок триллионов километров или 4,3 световых года.

Ракете с обычным двигателем придется лететь до нее примерно 40 тысяч лет! Пользуясь формулой Циолковского легко подсчитать, что для того, чтобы разогнать космический аппарат с реактивным двигателем на ракетном топливе до скорости в 10% от скорости света, нужно больше горючего, чем его имеется на всей Земле. Поэтому говорить о космической миссии при современных технологиях, это полный абсурд.

Как считают ученые, будущие космические звездолеты смогут летать с использованием термоядерного ракетного двигателя. Реакция термоядерного синтеза позволяет производить энергию на единицу массы в среднем почти в миллион раз больше, чем при химическом процессе сгорания.

Как раз поэтому в 1970 годах группа инженеров совместно с учеными разработали проект гигантского межзвездного корабля с термоядерной двигательной установкой. Беспилотный космический корабль Дедал предполагалось оборудовать импульсным термоядерным двигателем. Небольшие гранулы должны были вбрасываться в камеру сгорания и воспламеняться пучками мощных электронных лучей. Плазма, как продукт термоядерной реакции, вылетающая из сопла двигателя, придает тяговое усилие кораблю.

Предполагалось, что Дедал должен был лететь к звезде Барнарда, путь до которой составляет шесть световых лет. Громаднейший космический корабль добрался бы до нее за 50 лет. И хотя проект не был осуществлен, до сегодняшнего дня нет более реального технического проекта.

Другим направлением в технологии создания межзвездных кораблей является солнечный парус. Использование солнечного паруса рассматривается сегодня как самый перспективный и реалистичный вариант звездолёта. Превосходство солнечного парусника в том, что на борту не нужно топливо, а это значит, что намного возрастет полезная нагрузка по сравнению с другими космическими кораблями. Уже сегодня существует возможность постройки межзвездного зонда, где давление солнечного ветра будет основным источником энергии корабля.

О серьезности намерений освоения межпланетных полетов говорит проект, который разрабатывается с 2010 года в одной из основных научных лабораторий НАСА. Ученые работают над проектом по подготовке в течение ближайших ста лет пилотируемого полета к другим звездным системам.

Выражение - «Слетать на Луну», у большинства из нас вызывает ассоциации на грани фантастики, сравнимые разве что с проектами наподобие Аполлон-11 (Apollo 11) по доставке человека на поверхность Луны. Проект Breakthrough Starshot Initiative (Прорыв к Звездам) уносит нас гораздо дальше пределов Луны, так как его целью является путешествие к ближайшим солнечным системам.

Межзвездные путешествия:

Детище Юрия Мильнера: миллиардера, техно-новатора, урожденца России, проект Breakthrough Starshot был анонсирован на пресс-конференции в апреле 2016 года с участием таких известных учёных как Стивен Хокинг (Stephen Hawking) и Фримен Дайсон (Freeman Dyson). Суть технологии заключается в следующем, - тысячи пластино-образных чипов, прикрепленных к большому световому парусу из серебра, разместят на орбите Земли. Затем этот парус будет, в буквальном смысле, вытолкнут в глубокий космос пучком лазерных лучей направленных с земли.

Уже через две минуты направленного действия лазеров, космический парус достигнет 1/5 скорости света, – это в 1000 раз быстрее скоростей когда-либо развитых макроскопическими объектами.

В течении двадцатилетнего полёта корабль будет собирать данные о межзвездном пространстве. По достижении созвездия Альфа Центавра бортовая камера сделает ряд высокоточных снимков и отправит их на Землю. Это даст нам возможность заглянуть к ближайшим планетарным соседям и понять насколько они могут быть пригодны для колонизации.

Команда проекта Breakthrough Starshot впечатляет не меньше самой идеи. В число совета директоров вошли Мильнер, Хокинг и Марк Цукерберг. Исполнительным директором назначен бывший руководитель Исследователького Центра Амес НАСА (NASA Ames Research Center) - Пит Ворден (S. Pete Worden). Среди остальных участников имеются Нобелевские лауреаты и другие советники проекта Breakthrough. Мильнер обещает вложить свои собственные 100 миллионов долларов для старта проекта и в течении ближайших лет собрать ещё 10 миллиардов с помощью своих коллег.

На первый взгляд это может показаться научной фантастикой, хотя по-факту нет никаких научных препятствий для реализации данного проекта. Это не значит что всё случится завтра. Для успешного Прорыва к Звёздам необходимо совершить ряд научных открытий . Участники и консультанты проекта рассчитывают на экспоненциальный рост технологий который позволит воплотить Breakthrough Starshot в течении следующих 20-ти лет.

Обнаружение экзопланет

К экзопланетам относят все планеты за пределами нашей солнечной системы. В то время как первые открытия датируются 1988 годом, по состоянию на 1 мая 2017 года было обнаружено 3,608 экзопланет в 2,702 солнечных системах. Некоторые из планет очень подобны нашим, другие имеют ряд уникальностей вроде колец в 200 раз шире чем у нашего Сатурна.

Причиной такого взрыва находок является мощный рывок в усовершенствовании телескопических технологий.

Всего лишь 100 лет назад самым большим телескопом в мире был Телескоп Хукера (Hooker Telescope) с линзой диаметром 2,5 метра. Сегодня, Европейская Южная Обсерватория (European Southern Observatory) имеет комплекс из четырех телескопов, диаметр каждого 8,2 метра. Она считается самой масштабной наземной структурой по изучению астрономии, в среднем публикующей по одному отрецензированному научному документу в день.

Ученые так же используют ОБТ () и специальный инструментарий для поиска скалистых планет в «жилых» (допускающих жидкую воду) зонах других солнечных систем. В мае 2016 года при помощи ТРАПИСТа (TRAPPIST – Малый Телескоп для Наблюдения за Транзитными Планетами и Планетезималями) исследователи в Чили обнаружили семь экзопланет размером с Землю, находящихся в пригодной для обитания зоне.

Тем временем, космический аппарат Кеплер (NASA Kepler), созданный специально для этих целей, уже идентифицировал более 2000 экзопланет. Космический телескоп имени Джеймса Вебба (JWST – James Webb Space Telescope) который планируют запустить в октябре 2018 года, откроет доселе невиданные возможности для проверки экзопланет на наличие жизни. «Если у этих планет есть атмосфера, телескоп Вебба станет ключом к раскрытию их секретов», – говорит Дуг Хадгинс (Doug Hudgins), ученый программы НАСА по изучению экзопланет в штаб-квартире в Вашингтоне.

Стоимость запуска

Материнский корабль Starshot будет поднят с земли ракетой носителем и затем выпустит тысячу маленьких пластинок в космос. Стоимость выведения полезного груза одноразовыми ракетами слишком велика, но такие компании как SpaceX и Blue Origin подают реальные надежды на использование многоразовых ракет которые позволят значительно сократить стоимость запуска. SpaceX уже смогла снизить затраты при запуске Falcon 9 на 60 миллионов долларов. С увеличением доли частных космических компаний на мировом рынке запуск многоразовых ракет станет более доступным и дешёвым.

Звёздная пластинка

Каждая 15-ти миллиметровая пластинка должна будет вместить множество сложных электронных приборов, таких как навигатор, камеру, лазер для связи, радиоизотопную батарею, мультиплексовую камеру и камеру для интерфейса. Возможность комплектации целого космического корабля на крохотную пластину, объясняется экспоненциальным уменьшением размеров датчиков и чипов.

В 1960-х годах первые компьютерные чипы состояли из целой горсти транзисторов. Сегодня, благодаря закону Мура, мы можем вмещать миллиарды транзисторов на один чип. Первая цифровая камера весила 8 фунтов и снимала 0,01 мегапикселя. Теперь цифровые камеры, делают высококачественные 12-мегапиксельные цветные изображения, помещаются в смартфон с кучей других датчиков, таких как GPS, акселерометр и гироскоп. С появлением более мелких спутников, обеспечивающих лучшие данные мы наблюдаем как все эти усовершенствования применяются в освоении космоса.

Для успеха Starshot нам понадобится чтобы масса чипа составляла около 0,22 грамма к 2030 году. Если темпы совершенствования продолжатся, прогнозы предполагают, что это вполне возможно.

Световой парус

Парус должен быть изготовлен из материала, с высокой отражательной способностью (чтобы получить максимальное ускорение от лазера), минимально поглощающий (чтобы он не горел от тепла), а также очень легкий по весу (позволяющий быстрое ускорение). Это чрезвычайно сложное сочетание и в настоящее время подходящего материала ещё не найдено.


Применение автоматизации искусственного интеллекта позволит ускорить открытие подобных материалов. Суть автоматизации заключается в том что машина сможет генерировать библиотеку из десяток тысяч материалов для тестирования. Это существенно облегчит инженерам задачу отбора лучших вариантов для исследований и разработок.

Аккумулятор

Хоть Starchip и будет использовать крошечную ядерную радиоизотопную батарею для 24-летнего путешествия, нам все равно понадобятся обычные химические батареи для лазеров. Лазеры будут расходовать огромную энергию за короткий промежуток времени, а это значит, что мощность должна храниться максимально близко.

Емкость батарей растёт в среднем на 5-8% в год; мы часто этого не замечаем, потому что потребление энергии гаджетами растёт пропорционально, оставляя в целом срок службы прежним. Если динамика улучшения батарей сохраниться, через 20 лет они должны иметь прирост в 3-5 раз от их нынешней емкости. Эти ожидания полагаются на инновации Tesla-Solar City (Город Тесла-Солар) от инвестиций в аккумуляторные технологии . Компании в Кауаи уже установили около 55 000 батарей для питания значительной части своей инфраструктуры.

Лазеры

Тысячи мощнейших лазеров будут использоваться для разгона паруса до световых скоростей.

Лазерные технологии подчинялись закону Мура с такой же скоростью как и интегральные схемы, снижая соотношение затрат к мощностям в два раза каждые 18 месяцев. В особенности, в последнее десятилетие произошел резкий скачок масштабирования мощности диодных и волоконных лазеров, первые смогли выжать 10 киловатт из одномодового волокна в 2010 году и 100-киловатт месяцами позже. Наряду с обычной мощностью, нам также нужно совершенствовать технологии объединения фазированных матричных лазеров.

Скорость

Наша способность двигаться быстро, двигалась быстро… В 1804 году был изобретен первый паровоз, развив невиданную на то время скорость в 110 км/ч. Космический корабль «Гелиос 2» побил этот рекорд в 1976 году, удаляясь от Земли со скоростью 356 040 км/ч. Спустя 40 лет, космический аппарат Новые Горизонты (New Horizons) достиг гелиоцентрической скорости почти 45 км/с или 160 000 км/ч. Но даже с этими скоростями, понадобится очень много времени чтобы добраться до Альфы Центавра, находящейся на расстоянии более чем четырех световых лет.

В то время как разгон субатомных частиц до скорости света является привычным делом для ускорителей частиц, никогда ранее это не достигалось макроскопическими объектами. Достижение всего 20% скорости света для Starshot, означало бы 1000-кратный прирост скорости для объекта когда-либо построенного человеком.

Хранение данных

Основой для вычислительной техники является способность хранить информацию. Starshot полагается на продолжение снижения стоимости и размеров цифровой памяти, чтобы обеспечить достаточный объём для хранения своих программ и изображений, отснятых в системе Альфы Центавра и ее планет.

Стоимость памяти снижалась экспоненциально в течение десятилетий: в 1970 году мегабайт стоил около миллиона долларов; Сейчас около 0.1 цента. Размер хранилищ также уменьшился: от 5-мегабайтного жесткого диска, загружаемого вилочным погрузчиком в 1956 году, до ныне доступных 512-гигабайтных USB-накопителей весом в несколько граммов.

Связь

Как только будут получены первые изображения, Starchip отправит их на Землю для обработки.

С тех пор как Александр Белл (Alexander Graham Bell) изобрел телефон в 1876 году телекоммуникации шагнули далеко вперед. Средняя скорость интернета в США на сегодняшний день составляет около 11 мегабит в секунду. Ширина канала и скорость, необходимые Starshot для отправки цифровых изображений на расстоянии четырёх световых лет (или 20 триллионов миль), потребуют использования новейших разработок в сфере коммуникаций.

Одной из перспективных технологий является Li-Fi, беспроводная связь в 100 раз быстрее Wi-Fi . Второй - оптические волокна, которые теперь позволяют пропускать 1.125 терабит в секунду. Помимо этих есть наработки в области квантовых коммуникаций, которые не только сверхбыстры, но и абсолютно безопасны.

Обработка данных

Последним шагом в проекте Starshot является анализ данных, полученных с космического корабля. Ставка делается на экспоненциальное увеличение вычислительных мощностей с приростом в триллион раз в последующие 60 лет.

Стремительное удешевление этого момента в значительной степени связывают с развитием облачных вычислений. Заглядывая в будущее, квантовые методы обработки информации обещают тысячекратный прирост мощностей к моменту получения первых данных от Starshot. Такие продвинутые процессоры дадут возможность выполнять сложные научные моделирования и анализ ближайших звездных систем.

Подписывайся на новости космического туризма и узнай все о том, как полететь в космос уже сейчас! Илон Маск одобряет.




Top