Выводы по критерию манна уитни. U-критерий манна-уитни

Контрольная работа

Методика «Домик»

Методика «Домик» (Н. И. Гуткина) представляет собой задание на срисовывание картинки с изображением дома, отдельные детали которого состоят из элементов прописных букв. Методика рассчитана на детей в возрасте 5-10 лет и может использоваться для определения готовности ребёнка к школе.

Цель исследования : определить способность ребёнка к копированию сложного образца.

Задание позволяет выявить умение ребёнка ориентироваться по образцу, точно его копировать, определить особенности развития непроизвольного внимания, пространственного восприятия, сенсомоторной координации и мелкой моторики рук.

Материалы : образец рисунка, лист бумаги, карандаш.

Ход исследования

Перед выполнением задания ребёнку даётся инструкция: «Перед тобой лежит лист бумаги и карандаш. Нарисуй на этом листе точно такую же картинку, как здесь (перед малышом кладётся лист с изображением дома). Не спеши, будь внимателен, постарайся, чтобы твой рисунок был точно таким же, как на образце. Если ты что-то нарисуешь не так, не стирай резинкой (проследить, чтобы у ребёнка не было резинки). Нужно поверх неправильного рисунка или возле него нарисовать правильно. Тебе понятно задание? Тогда приступай к работе».

По ходу выполнения задания необходимо зафиксировать:

1. Какой рукой рисует ребёнок (правой или левой).

2. Как он работает с образцом: как часто смотрит на него, проводит ли над рисунком-образцом линии, повторяющие контуры картинки, сравнивает ли нарисованное с образцом или рисует по памяти.

3. Быстро или медленно проводит линии.

4. Отвлекается ли во время работы.

5. Высказывания и вопросы во время рисования.

6. Сверяет ли после окончания работы свой рисунок с образцом.

Когда ребёнок сообщает об окончании работы, ему предлагается проверить, всё ли у него правильно. Если он увидит неточности в своём рисунке, то может их исправить, но это должно быть зафиксировано экспериментатором.

Обработка и анализ результатов

Обработка экспериментального материала проводится методом подсчёта баллов, которые начисляются за ошибки. Ошибки бывают такими.

1. Отсутствие любой детали картины (4 балла). На рисунке может отсутствовать забор (одна или две половины), дым, труба, крыша, штриховка на крыше, окно, линия, изображающая основу дома.

2. Увеличение отдельных деталей рисунка более чем в два раза при относительно правильном сохранении размера всего рисунка (3 балла за каждую увеличенную деталь).

3. Неправильно изображён элемент рисунка (3 балла). Неправильно могут быть изображены кольца дыма, забор, штриховка на крыше, окно, труба. Причём если неправильно нарисованы палочки, из которых состоит правая (левая) часть забора, то 2 балла начисляется не за каждую неправильную палочку, а за всю правую (левую) часть забора в целом. То же касается и колец дыма, выходящих из трубы, и штриховки на крыше дома: 2 балла начисляется не за каждое неправильное кольцо, а за весь неправильно скопированный дым; не за каждую неправильную линию в штриховке, а за всю штриховку крыши в целом.

Правая и левая части забора оцениваются отдельно: так, если неправильно срисована правая часть, а левая скопирована без ошибок (или наоборот), то ребёнок получает за нарисованный забор 2 балла; если же допущены ошибки и в правой, и в левой части, то 4 балла (за каждую часть по 2 балла). Если часть правого (левого) бока забора скопированы правильно, а часть неправильно, то за этот бок забора начисляется 1 балл; то же касается и колец дыма, и штриховки на крыше: если только одна часть колец дыма срисована правильно, то дым оценивается в 1 балл; если только одна часть штриховки на крыше воспроизведена правильно, то вся штриховка оценивается в 1 балл. Неправильно воспроизведенное количество элементов в детали рисунка не считается ошибкой, то есть не важно, сколько будет палочек на заборе, колец дыма или линий в штриховке крыши.

4. Неправильное расположение деталей в пространстве рисунка (1 балл). К ошибкам этого вида относятся: расположение забора не на общей с основой дома линии, а выше её, дом как будто висит в воздухе или ниже линии основы дома; смещение трубы к левому краю крыши; существенное смещение окна в любую сторону от центра; расположение дыма более чем на 30° отклонения от горизонтальной линии; основа крыши по размеру соответствует основе дома, а не превышает её (на образце крыша нависает над домом).

5. Отклонение прямых линий более чем на 30° от заданного направления (1 балл): вертикальных и горизонтальных линий, из которых состоит дом и крыша; палочек забора; изменение угла наклона боковых линий крыши (расположение их под прямым или тупым углом к основе крыши вместо острого); отклонение линии основы забора более чем на 30° от горизонтальной линии.

6. Разрывы между линиями в тех местах, где они должны быть соединены (1 балл за каждый разрыв). В том случае если линии штриховки на крыше не доходят до линии крыши, 1 балл ставится за всю штриховку в целом, а не за каждую неправильную линию штриховки.

7. Линии налезают друг на друга (1 балл за каждое налезание). В случае если линии штриховки на крыше залезают за линии крыши, 1 балл ставится за всю штриховку в целом, а не за каждую неправильную линию штриховки.

Хорошее выполнение рисунка оценивается в «0» баллов. Таким образом, чем хуже выполнено задание, тем выше суммарная оценка. Однако при интерпретации результатов эксперимента необходимо учитывать возраст ребёнка. Пятилетние дети почти не получают оценки «0» из-за недостаточной зрелости мозговых структур, отвечающих за сенсомоторную координацию.

При анализе детского рисунка необходимо обратить внимание на характер линий: очень жирные или «косматые» линии могут свидетельствовать о состоянии тревожности ребёнка. Но вывод о тревожности ни в коем случае нельзя делать лишь на основании этого рисунка. Подозрения необходимо проверить специальными методиками по определению тревожности.

Дети с зпр

Результаты в баллах

Дети в норме

результаты

Представим полученные данные в виде Гистограммы 1.

Гистограмма 1. Результаты, полученные по методике «Домик»

Постройте мне пожалуйста гистограму вот такую. Дети с задержкой психического развития имеют выше среднего (около 10%) и) средний уровень развития (около 30% и ниже среднего (60%)

В среднем дети с нормальным развитием имеют высокий уровень развития (около 60%), средний уровень развития (около 20%) и выше среднего 20%. Вы и тут тоже неправильно подписали мне преподаватель перечеркнул и сказал нечитаемо. вы должны были подписать 10 % выше среднего а не низкое как в 1-м красном столбце. Во 2 красном столбце подписать средний уровень развития (около 30%) а не низкий и в третьем красном ниже среднего 60. И вот по такой гистограмме вы должны построить измененную гистограмму. Я провела коррекционную работу и количество детей изменилось якобы: с низким уровнем ниже среднего большинство из них стало приближаться к среднему 60% детей, 40 % приближаться к высокому это дети со средним значением были. Т. Е. нужно построить экспериментальную группу и зпр: со средним 60 % и 40 высокое.

И мне нужно составить таблицу по критерию мани уитни нужно изменить данные опять таки чтобы ниже среднего уровень приближался к среднему и средний к высокому. Распишите пожалуйста таблицу количество испытуемых было 10 человек норма и 10 зпр. Просто мне не очень понятно как вы ранжировали как я понимаю вы подогнали результаты (об этом я вас просила) и проставили ранги а далее действовали по формуле… если не так то объясните. Грядёт защита курсовой. Расчёты будет проверять сам доцент кафедры психологии. Пожалуйста помогите..

Назначение U-критерия Манна-Уитни

Настоящий статистический метод был предложен Фрэнком Вилкоксоном (см. фото) в 1945 году. Однако в 1947 году метод был улучшен и расширен Х. Б. Манном и Д. Р. Уитни, посему U-критерий чаще называют их именами.

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 ,n 2 ≥3 или n 1 =2, n 2 ≥5, и является более мощным, чем критерий Розенбаума.

Описание U-критерия Манна-Уитни

Существует несколько способов использования критерия и несколько вариантов таблиц критических значений, соответствующих этим способам (Гублер Е. В., 1978; Рунион Р., 1982; Захаров В. П., 1985; McCall R., 1970; Krauth J., 1988).

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок (Welkowitz J. et al., 1982).

Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп, тем более вероятно, что различия достоверны.

Гипотезы U - критерия Манна-Уитни

U -критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n 1 , n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака.

Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза - H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}.

Рассмотрим алгоритм применения U-критерия Манна-Уитни:

1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й - другим.

2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке.

3. Вновь разложить карточки по цвету на две группы.

5. Определить большую из двух ранговых сумм .

6. Вычислить эмпирическое значение U :

, где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов.

7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается.

Рассмотрим использование U критерия Манна-Уитни для нашего примера.

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких испытуемых ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу).

Проведение исследования по методике дало следующие результаты:

Результаты расчета U-критерия Манна-Уитни по результатам исследования представлены в таблице 1 (ранжирование), на рисунке 1 (ось значимос ти):

Дети в норме

Ранг 1

Дети с ЗПР

Ранг 2

Суммы:

72.5

137.5

17,5 19

Сумма для первой выборки равна 72,5, для второй - 137,5. Обозначим наибольшую из этих сумм через T x (T x =137.5). Среди объёмов n 1 =10 и n 2 =10 выборок наибольший обозначим n x 17,5

Полученное эмпирическое значение U эмп (17,5) находится в зоне значимости, а, следовательно, наша гипотеза подтвердилась.

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H0 о незначительности различий между баллами двух выборок принимается, если < . В противном случае H0 отвергается и различие определяется как существенное.

Следовательно, различия в уровне можно считать существенными.

Схема использования критерия Манна-Уитни выглядит следующим образом


В этой статье Вы узнаете, почему кроме t-теста существуют другие методы сравнения двух выборок. Начнем мы с того, что вспомним о нормальности данных и связанной с ней делением статистических тестов на две категории: параметрические и непараметрические. О последних мы поговорим более подробно: разберем три наиболее популярных теста, а также научимся их запускать в среде R.

Параметрический или непараметрический критерий различия?

Статистические методы, использующие параметры нормального распределения данных (среднее, стандартное отклонение и прочее) называются параметрическими . Так например, рассмотренный в предыдущей статье является типичным параметрическим методом. Почему? Потому, что главным условием для его проведения является нормальное распределение количественных данных. Непараметрические методы, напротив, не зависят от распределения данных и позволяют работать как с количественными, так и с порядковыми данными (например: размер обуви, шкала силы землетрясений).

При нормальном распределении данных параметрические критерии имеют большую мощность по сравнению с непараметрическими. Однако, когда данные выборок не проходят тесты нормальности (такие, как qqplot и Шапиро тест), непараметрические методы дают более точные предсказания. Особенно они эффективны с выборками небольшого размера (<100 наблюдений), на распределение которых могут влиять неизвестные факторы. Сегодня мы познакомимся с непараметрическими аналогами t-теста, использующимися также, для сравнения двух выборок. При выборе критерия следует обратить внимание на две вещи: зависимость данных выборок друг от друга и объем выборок.

На приведенном выше рисунке Вы видите упрощенную классификацию методов сравнения средних (или медиан) двух выборок. Мы кратко поговорим о каждом из непараметрических критериев, и научимся применять их в среде R. Чтож, приступим!

Критерий Уилкоксона

Начнем знакомство с непараметрических тестов для зависимых выборок. Прежде всего стоит отметить, что выборки называются зависимыми, когда испытуемые одной и той же группы были протестированы в разные моменты времени с меняющимися (1) или неменяющимися (2) условиями эксперимента. В первом случае проверяется эффект какого либо действия в сравнении с контрольным измерением ("до и после"), во втором - повторяемость результатов эксперимента ("контроль-повтор").

Тест Уилкоксона (от английского "Wilcoxon signed-rank test") является широко используемым и эффективным методом выявления различий между медианами двух зависимых выборок с распределением данных отличным от нормального. Он идеально подходит для сравнения маленьких выборок, где количество испытуемых/исследований больше 5, но меньше 50. Как и для всех критериев, рассмотренных в этой статье, данные могут быть как количественными, так и порядковыми. Метод был разработан в 1945 году американским статистиком и химиком Фрэнком Уилкоксоном (фото справа).

Чтобы запустить тест Уилкоксона в среде R следует загрузить данные выборок и ввести следующую команду:

wilcox.test("выборка_1", "выборка_2" , paired = T)

Как и в t-тесте, в непараметрических статистических тестах внутри скобок можно добавить дополнительные параметры, такие как alternative , conf.int , conf.level . Чтобы посмотреть все аргументы функции, поставьте перед ней знак вопроса, в нашем случае: ?wilcox.test

G-критерий знаков

Если же количество исследований в выборке больше 50, то следует использовать G-критерий знаков. Критерий знаков по статистической мощности уступает Уилкоксону, но превосходит большинство других непараметрических аналогов. Данные выборок должны быть зависимыми, количество исследований в выборке от 5, но не более 300 (про механизм расчетов и ограничения метода можно почитать ).

Провести тест в R не сложно, но потребуется сделать несколько манипуляций с данными. Сначала мы загрузим данные двух зависимых выборок, например систолическое (верхнее) давление до и после применения лекарства у 60 пациентов-гипертоников. Загрузим данные "before" и "after" в среду R. Затем визуализируем их.

before <- c(171.2, 169.8, 154.6, 130.9, 158.5, 145.5, 143.5, 144.7, 147.7, 160.7, 154.7, 181.8, 167.2, 137.4, 180.2, 138.7, 159.9, 141.8, 172.2, 167.0, 137.2, 170.9, 168.4, 163.7, 160.1, 163.5, 146.7, 173.9, 180.1, 136.0, 159.0, 145.6, 186.5, 177.7, 167.7, 167.4, 165.9, 147.2, 165.2, 133.3, 175.0, 174.7, 163.0, 154.1, 189.4, 166.5, 153.0, 134.3, 177.1, 150.4, 152.4, 176.2, 160.3, 135.3, 131.2, 172.1, 137.0, 156.6, 178.5, 168.1) after <- c(179.5, 141.9, 124.7, 103.2, 143.1, 146.0, 132.2, 104.9, 145.3, 123.5, 135.2, 176.2, 142.7, 114.1, 171.9, 115.0, 126.4, 108.0, 171.7, 148.8, 103.5, 178.5, 138.9, 150.0, 131.8, 169.2, 131.4, 138.8, 146.2, 116.1, 148.8, 109.2, 186.3, 164.1, 147.3, 165.3, 140.0, 122.6, 174.4, 104.6, 156.6, 175.3, 126.8, 122.6, 184.0, 139.6, 149.4, 105.3, 181.9, 134.6, 129.4, 148.0, 170.2, 144.2, 133.3, 171.8, 118.4, 131.2, 150.0, 131.0) boxplot(before, after, col = c(6,5), main = "The effect of treatment", outer = TRUE) axis(1, at=1:2, labels=c("before","after"))

Затем найдем разность между векторами "before" и "after" и назовем новый вектор "difference", после чего при помощи команды length узнаем его длину. Так как нас интересует, снижает ли лекарство давление у пациентов, мы узнаем какое количество элементов в векторе "difference" больше нуля. Это количество принято называть числом "успехов".

difference <- before - after difference length(difference) length(difference)

Теперь все готово для того, чтобы запустить G-критерий знаков в R. Для этого воспользуемся командой binom.test , где в параметрах функции укажем сначала число "успехов", затем число исследований в выборке.

binom.test(50, 60)

Нулевая гипотеза говорит о том, что медианы выборок статистически не отличаются, альтернативная - что статистические различия есть. В нашем случае p-value значительно меньше 0.05, поэтому мы можем с уверенностью отвергнуть нулевую гипотезу и принять альтернативую: две выборки статистически отличаются друг от друга. Также мы видим, что у 83% пациентов давление снизилось. Для демонстрации статистической значимости результатов эксперимента, просто добавьте к графику надпись p-value < 0.001.

Критерий Манна-Уитни

Этот тест также был изначально разработан и опубликован Уилкоксоном в 1945 году. Однако спустя два года его существенно усовершенствовали два математика, в честь которых и был назван критерий. В отличие от двух предыдущих критериев, тест Манна-Уитни используется при сравнении двух независимых выборок , также имеющих отклонения от нормального распределения. Подробнее об алгоритме расчета данного критерия можете почитать в этой статье .

Запустить тест Манна-Уитни в R крайне просто, используем уже известную нам функцию "wilcox.test" и убираем из скобок "paired = T":

wilcox.test("выборка_1", "выборка_2" )

Однако при проведении этого метода необходимо соблюдать два условия. Во-первых, одинаковые значения в выборке должны быть сведены к минимуму (все числа должны быть разными). Во-вторых, в каждой выборке должно быть не менее трех исследований (минимум 3 и 3, также допускается 5 и 2).

Заключение

Непараметрических методов существует великое множество, сегодня мы познакомились лишь с тремя наиболее используемыми критериями для сравнения двух выборок. В среде R эти тесты запустить довольно просто, поэтому главный акцент в выборе метода следует делать на его пригодность к решению конкретно Вашей задачи.

U-критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n1,n2≥3 или n1=2, n2≥5) по уровню колич

U -критерий Манна-Уитни используется для оценки различий между двумя малыми выборками(n 1 , n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака. При этом первой выборкой принято считать ту, где значение признака больше.

Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза – H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}.

Рассмотрим алгоритм применения U-критерия Манна-Уитни:

1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й – другим.

2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке.

3. Вновь разложить карточки по цвету на две группы.

5. Определить большую из двух ранговых сумм .

6. Вычислить эмпирическое значение U :

, где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов.

7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается.

Рассмотрим использование U критерия Манна-Уитни на примере.

Проведение срезовой контрольной работы по математике (алгебра и геометрия) в средней общеобразовательной школе дало следующие результаты по 10-балльной шкале для класса, обучающегося по программе «Развивающего обучения» (7 «Б»), и класса, обучающегося по традиционной системе (7 «А»):

Ученик \ Класс

7 «А» (баллы)

7 «Б» (баллы)

Определите, превосходят ли учащиеся 7 «Б» учащихся 7 «А» по уровню знаний по математике.

Сравнение результатов показывает, что баллы, полученный за контрольную работу, в 7 «Б» классе несколько выше, поэтому первой считаем выборку результатов 7 «Б» класса. Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной. Если можно, то это будет означать, что класс, обучающийся по системе «развивающего обучения» имеет более качественные знания по математике. В противном случае, на выбранном уровне значимости различие окажется несущественным.

Для оценки различий между двумя малыми выборками (в данном примере их объёмы равны: n 1 =12, n 2 =11) используем критерий Манна-Уитни. Проранжируем представленную таблицу:

7 «Б» (баллы)

ранг

7 «А» (баллы)

ранг

22,5

22,5

20.5

20.5

16.5

16.5

16.5

16.5

11.5

16.5

11.5

16.5

11.5

11.5

Сумма:

1 68 .5

Сумма:

107.5

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания. Например, 4 балла получили 3 ученика (см. таблицу). Значит, первые 3 позиции в расположении займёт балл, равный 4. Поэтому ранг для 4 баллов – это среднее арифметическое для позиций 1, 2 и 3, или: . Аналогично рассуждаем при вычислении ранга для балла, равного 5. Такой балл получили двое учащихся. Значит, при распределении по возрастанию первые три позиции занимает балл, равный 4, а четвёртую и пятую позиции займёт балл, равный 5. Поэтому его ранг будет равен среднему арифметическому между числами 4 и 5, т.е. 4.5.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании, в том числе необходимого и для вычисления других критериев достоверности или же коэффициента корреляции Спирмена.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу). Сумма для первой выборки равна 168,5, для второй – 107,5. Обозначим наибольшую из этих сумм через T x (T x =168.5). Среди объёмов n 1 и n 2 выборок наибольший обозначим n x . Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

T x =168,5, n x =12>11= n 2 . Тогда:

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H 0 о незначительности различий между баллами двух классов принимается, если u кр < u эмп . В противном случае H 0 отвергается и различие определяется как существенное.

Следовательно, различия в уровне знаний по математике среди учащихся можно считать несущественными.

Схема использования критерия Манна-Уитни выглядит следующим образом


Критерий U Манна - Уитни

Назначение критерия. Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда п 1, п 2 > 3 или п Л = 2, п 2 > 5, и является более мощным, чем критерий Q Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок. Эмпирическое значение критерия и отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше t/ 3Mn , тем более вероятно, что различия достоверны.

Гипотезы.

Уровень невербального интеллекта в группе студентов физиков выше, чем в группе студентов-психологов.

Графическое представление критерия U. Па рис. 7.25 представлены три из множества возможных вариантов соотношения двух рядов значений.

В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область наложения (S j) слишком мала, чтобы скрадывать различия между рядами. Есть шанс, что различия между ними достоверны. Точно определить это мы сможем с помощью критерия U.

В варианте (б) второй ряд тоже ниже первого, но и область перекрещивающихся значений у двух рядов достаточно обширна (5 2). Она может еще не достигать критической величины, когда различия придется признать несущественными. Но так ли это, можно определить только путем точного подсчета критерия U.

В варианте (в) второй ряд ниже первого, но область наложения настолько обширна (5 3), что различия между рядами скрадываются.

Рис. 7.25.

в двух выборках

Примечание. Перекрытием (5 t , S 2 , *$з) обозначены зоны возможного наложения. Ограничения критерия U.

  • 1. В каждой выборке должно быть не менее трех наблюдений: n v п 2 > 3; допускается, чтобы в одной выборке было два наблюдения, но тогда во второй их должно быть не менее 5.
  • 2. В каждой выборке должно быть не более 60 наблюдений; п л, п 2 щ, п 2 > 20 ранжирование становится достаточно трудоемким.

Вернемся к результатам обследования студентов физического и психологического факультетов Ленинградского университета с помощью методики Д. Векслера для измерения вербального и невербального интеллекта. С помощью критерия Q Розенбаума было с высоким уровнем значимости определено, что уровень вербального интеллекта в выборке студентов физического факультета выше. Попытаемся установить теперь, воспроизводится ли этот результат при сопоставлении выборок по уровню невербального интеллекта. Данные приведены в таблице.

2 ниже уровня признака в выборке 1 на достоверно значимом уровне. Чем меньше значения U, тем достоверность различий выше.

Теперь проделаем всю эту работу на материале нашего примера. В результате работы по 1-6 шагам алгоритма построим таблицу (табл. 7.4).

Таблица 7.4

Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов

Студенты-физики (п = 14)

Студенты-психологи (п= 12)

Показатель невербального интеллекта

Средние 107,2

Общая сумма рангов: 165 + 186 = 351. Расчетная сумма по формуле (5.1) такова:

Равенство реальной и расчетной сумм соблюдено. Мы видим, что по уровню невербального интеллекта более «высоким» рядом окалывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186. Теперь мы готовы сформулировать статистические гипотезы:

Я 0: группа студентов-психологов не превосходит группу студентов- физиков по уровню невербального интеллекта;

Я,: группа студентов-психологов превосходит группу студентов-физи- ков по уровню невербального интеллекта.

В соответствии со следующим шагом алгоритма определяем эмпирическую величину U :

Поскольку в нашем случае п л * п 2 , подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу (7.4) соответствующее ей п х.:

По приложению 8 определяем критические значения для п л = 14, п 2 = 12:

Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если {/ эмп U Kp 0 05 (при ^эмп = 60, и шп > U Kf) о,05).

Следовательно, Н 0 принимается следующей: группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта.

Обратим внимание на то, что для данного случая Q-критерий Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значения невербального интеллекта приходятся на группу физиков (см. табл. 7.4).

По уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками.

Другие названия: критерий Манна - Уитни - Уилкоксона (англ. Mann - Whitney - Wilcoxon, MWW ), критерий суммы рангов Уилкоксона (англ. Wilcoxon rank-sum test ) или критерий Уилкоксона - Манна - Уитни (англ. Wilcoxon - Mann - Whitney test ).

История

Данный метод выявления различий между выборками был предложен в 1945 году Френком Уилкоксоном (F. Wilcoxon ). В 1947 году он был существенно переработан и расширен Х. Б. Манном (H. B. Mann ) и Д. Р. Уитни (D. R. Whitney ), по именам которых сегодня обычно и называется.

Описание критерия

Простой непараметрический критерий. Мощность критерия выше, чем у Q-критерия Розенбаума .

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

Ограничения применимости критерия

  1. В каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было два значения, но во второй тогда не менее пяти.
  2. В выборочных данных не должно быть совпадающих значений (все числа - разные) или таких совпадений должно быть очень мало.

Использование критерия

Для применения U-критерия Манна - Уитни нужно произвести следующие операции.

Автоматический расчет U-критерия Манна - Уитни

Таблица критических значений

См. также

  • Критерий Краскела - Уоллиса - многомерное обобщение U-критерия Манна - Уитни.

Литература

  • Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. - 1947. - № 18. - P. 50-60.
  • Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. - 1945. - P. 80-83.
  • Гублер Е. В., Генкин А. А. Применение непараметрических критериев статистики в медико-биологических исследованиях. - Л., 1973.
  • Сидоренко Е. В. Методы математической обработки в психологии. - С-Пб., 2002.

Wikimedia Foundation . 2010 .

Смотреть что такое "U-критерий Манна - Уитни" в других словарях:

    критерий Манна Уитни - — Тематики электросвязь, основные понятия EN Mann Whitney U test … Справочник технического переводчика

    U критерий Манна Уитни (англ. Mann Whitney U test) непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять различия в значении … Википедия

    U критерий Манна Уитни (англ. Mann Whitney U test) непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять различия в значении … Википедия

    U критерий Манна Уитни (англ. Mann Whitney U test) статистический критерий, используемый для оценки различий между двумя независимыми выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять… … Википедия

    - (англ. Mann Whitney U test) непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми … Википедия

    Или Критерий согласия Колмогорова Смирнова статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели.… … Википедия

    Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия

    Критерий Кохрена используют при сравнении трёх и более выборок одинакового объёма. Расхождение между дисперсиями считается случайным при выбранном уровне значимости, если: где квантиль случайной величины при числе суммируемых… … Википедия

    - (максиминный критерий) один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма. История Критерий Вальда был предложен Абрахамом Вальдом в 1955 году для выборок равного объема, а затем распространен на … Википедия




Top