Что за тип людей фурия. Кто такие фурии? Фурии в греческой мифологии

Ближайшая к нам звезда – это конечно Солнце. Расстояние от Земли до него по космическим параметрам совсем небольшое: от Солнца до Земли солнечный свет идет всего лишь 8 минут.

Солнце – это не обычный желтый карлик, как считали ранее. Это центральное тело солнечной системы, возле которой вертятся планеты, с большим количеством тяжелых элементов. Это звезда, образовавшаяся после нескольких взрывов сверхновых, около которой сформировалась планетная система. За счет расположения, близкого к идеальным условиям, на третьей планете Земля возникла жизнь. Возраст Солнца насчитывает уже пять миллиардов лет. Но давайте разберемся, почему же оно светит? Какое строение Солнца, и каковы его характеристики? Что ждет его в будущем? Насколько значительное влияние оно оказывает на Землю и ее обитателей? Солнце – это звезда, вокруг которой вращаются все 9 планет солнечной системы, в том числе и наша. 1 а.е. (астрономическая единица) = 150 млн. км – таким же является и среднее расстояние от Земли до Солнца. В Солнечную систему входят девять больших планет, около сотни спутников, множество комет, десятки тысяч астероидов (малых планет), метеорные тела и межпланетные газ и пыл. В центре всего этого и находится наше Солнце.

Солнце светит уже миллионы лет, что подтверждают современные биологические исследования, полученные из остатков сине-зелено-синих водорослей. Изменись температура поверхности Солнца хотя бы на 10 %, и на Земле, погибло бы все живое. Поэтому хорошо, что наша звезда равномерно излучает энергию, необходимую для процветания человечества и других существ на Земле. В религиях и мифах народов мира, Солнце постоянно занимало главное место. Почти у всех народов древности, Солнце было самым главным божеством: Гелиос – у древних греков, Ра – бог Солнца древних египтян и Ярило у славян. Солнце приносило тепло, урожай, все почитали его, потому что без него не было бы жизни на Земле. Размеры Солнца впечатляют. Например, масса Солнца в 330 000 раз больше массы Земли, а его радиус в 109 раз больше. Зато плотность нашего звездного светила небольшая – в 1,4 раза больше, чем плотность воды. Движение пятен на поверхности заметил еще сам Галилео Галилей, таким образом доказав, что Солнце не стоит на месте, а вращается.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют — феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру — грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) — фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Характеристики Солнца

Масса Солнца: 2∙1030 кг (332 946 масс Земли)
Диаметр: 1 392 000 км
Радиус: 696 000 км
Средняя плотность: 1 400 кг/м3
Наклон оси: 7,25° (относительно плоскости эклиптики)
Температура поверхности: 5 780 К
Температура в центре Солнца: 15 млн градусов
Спектральный класс: G2 V
Среднее расстояние от Земли: 150 млн. км
Возраст: 5 млрд. лет
Период вращения: 25,380 суток
Светимость: 3,86∙1026 Вт
Видимая звездная величина: 26,75m

Все звезды имеют цвет. От красных карликов и красных гигантов до белых и желтых звезд, до синих гигантов и супергигантов. Цвет звезды зависит от температуры. Когда фотоны вырываются изнутри звезды в космос, они имеют разные количества энергии. может испускать инфракрасный, красный, синий и ультрафиолетовый свет в одно и то же время. Они даже испускают рентгеновское излучение и .

Если звезда холодная, менее 3,500 Кельвин, его цвет будет красным. Это из-за того, что испускается больше красных фотонов, чем любых других в видимом свете. Если звезда очень горячая, свыше 10,000 Кельвин, ее цвет будет синим. И снова, потому что там больше синих фотонов, струящихся из звезды.

Температура Солнца приблизительно равна 6,000 Кельвин. Солнце, и звезды как наше Солнце, выглядят белыми. Это из-за того, что мы наблюдаем все различные цветные фотоны, исходящий из Солнца в одно и то же время. Когда вы складываете эти цвета, вы получаете чистый белый.

Белый цвет внутри этого черного квадрата приблизительно цвет Солнца.

Так почему Солнце выглядит желтым здесь на Земле? Атмосфера Земли рассеивает солнечный свет, удаляя более короткие длины волн света - синий и фиолетовый. Как только вы удалите эти цвета из спектра света, исходящие от Солнца, оно выглядит желтым. Но если вы бы полетели и посмотрели Солнце из космоса, цвет Солнца был бы чистым белым.

Температура Солнца

Поверхность Солнца, часть, которую мы видим, называется фотосфера. Фотоны, струящиеся от поверхности Солнца различны по температуре от 4500 Кельвин до более 6000 Кельвин. Средняя температура Солнца около 5800 Кельвин. В других единицах измерения, Солнце - 5500°C или 9,900°F.

Фотосфера Солнца. Предоставлено: NASA/SOHO.

Но это только средняя температура. Отдельные фотоны могут быть холоднее и краснее, или горячее и синее. Цвет Солнца, который мы видим здесь на Земле, в среднем это все фотоны, струящиеся от Солнца.

Но это только поверхность. Солнце сдерживается вместе взаимной гравитацией своей массы. Если бы вы могли спуститься вниз Солнца, вы бы почувствовали, что температура и давление увеличиваются на всем пути к ядру. И вниз к ядру температуры достигают 15.7 миллионов Кельвин. При таком давлении и температуре уже может иметь место водородный ядерный синтез. Это где атомы водорода соединяются вместе в гелий, выпуская фотоны гамма радиации. Эти фотоны выпускаются и поглощаются атомами в Солнце, когда они медленно прокладывают свой путь в космос. Может занять 100,000 лет для того, чтобы фотон, образовавшийся в ядре, в конце концов, достиг фотосферы и совершил скачок в космос.

Поверхность Солнца

Возможно, наиболее знакомая особенность на поверхности Солнца - это солнечные пятна. Это относительно более холодные регионы на поверхности Солнца, где линии магнитного поля пронизывают поверхность Солнца. Солнечные пятна могут быть источником солнечных вспышек и выбросов корональной массы.


Вид поверхности Солнца с научного японского спутника Hinode.

Когда мы смотрим на Солнце, мы замечаем, что центр Солнца выглядит гораздо ярче, чем границы. Это называется "затемнением лимба" и происходит, потому что мы наблюдаем свет, который прошел через поверхность Солнца под углом, и имел больше преград - и поэтому темнее.

С хорошим телескопом (и даже лучшим солнечным фильтром), возможно увидеть, что фотосфера не гладкая. Вместо этого, она покрыта конвекционными ячейками, называемыми гранулами. Они вызваны конвекционными потоками плазмы внутри конвекционной зоны Солнца. Горячая плазма поднимается в столбах через этот конвекционный регион Солнца, выпускает свою энергию и затем охлаждается и погружается. Представьте пузыри, поднимающиеся к поверхности в кипящей воде. Эти гранулы могут быть 1000 км в ширину и существовать 8-20 минут до рассеивания.

Огромные выбросы корональной массы могут также быть видны выстреливающими с поверхности Солнца. Они создаются, когда свернувшееся магнитное поле Солнца резко обрывается и разъединяется. Это разъединение выпускает огромное количество энергии, и выбрасывает заряженную плазму в космос. Когда эта плазма достигает Земли, она создает красивые полярные сияния, лучше всего видимые на полюсах Земли.

Светимость Солнца

Астрономы измеряют яркость звезд различными инструментами, но им нужен способ для сравнения. Вот, где появляется наше Солнце. Как каждый знает, Солнце отдает примерно 3.839 x 10 33 ерг в секунду энергии. Другие звезды во Вселенной могут только отдавать долю солнечной светимости, или несколько кратных ей. Наше Солнце - это звездный критерий.


Массивный выброс корональной массы. Эта фотография показывает размер Земли для сравнения (вверху слева). Предоставлено: NASA / SDO / J. Major.

Представьте, что Солнце окружено рядами прозрачных сфер - как слои лука. Количество энергии, солнечная светимость, проходящее через каждую из этих сфер каждую секунду, - всегда одно и то же. Тем не менее, область поверхности сферы становится больше и больше. Это то, почему дальше вы получаете от звезды меньше света, который видите.

Это называется законом обратных квадратов, и позволяет астрономам вычислять солнечную светимость; фактически, это позволяет им вычислять светимость всех звезд. Ученые отправляли миссии в космос, которые измеряют общее количество энергии, падающей на их датчики. Из этой информации, астрономы могут вычислять, сколько энергии падает на всю Землю, а затем и сколько приходит от Солнца.

И это также работает и для звезд. Космический корабль обнаруживает светимость другой звезды, факторы в расстоянии и помогает вычислить первоначальную светимость звезды.

Хотя наше Солнце стабильное, оно испытывает незначительные изменения в солнечной светимости. Эти изменения вызваны солнечными пятнами, которые затемняют регионы, и яркими структурами на солнечном диске в течение 11-ти летнего солнечного цикла. Подробные измерения, проводимые в течение последних 30 лет, обнаружили, что они не достаточны, чтобы привести к ускорению глобального потепления, которое мы обнаруживаем здесь на Земле.

Солнце - это желтый карлик спектрального класса G2 V, принадлежащий главной последовательности на диаграмме Герцшпрунга-Рессела. Основные характеристики Солнца приведены в табл. 1. Заметим, что хотя Солнце газовое вплоть до самого центра, его средняя плотность (1,4 г/см3) превышает плотность воды, а в центре Солнца она значительно выше, чем даже у золота или платины, имеющих плотность ок. 20 г/см3. Поверхность Солнца при температуре 5800 К излучает 6,5 кВт/см2.

Характеристики Солнца

Таблица 3.1 Характеристики Солнца(по Школовскому И.С,1984 г.)

Внутреннее строение солнца

Солнце - это звезда, основными элементами которой являются водород (75%), гелий (около 25 %), углерод, кислород, азот и некоторые другие элементы в очень незначительных количествах. Солнце состоит из нескольких сферических слоев. Такими слоями являются ядро, область лучевого переноса энергии, конвективная зона и атмосфера. В атмосфере исследователи выделяют несколько областей: фотосферу, хромосферу и корону.

Ядро. Ученые достоверно не знают, что находится в солнечном ядре. Достоверно известно одно - в центральной части звезды протекают термоядерные реакции, в результате которых высвобождается огромное количество энергии. Энергия представляет собой излучение в виде волн сверхкороткой частоты. В ядре Солнца очень высокие температуры и огромное давление. Область лучистого переноса энергии. Эта область представляет собой оболочку из невидимого газа, температура которого огромна. Газ практически неподвижен. Он обволакивает ядро. Электромагнитная энергия из солнечного ядра поступает в область лучистого переноса энергии. При этом коротковолновое гамма-излучение превращается в рентгеновское излучение с большей длиной волны. По мере удаления от ядра температура газа понижается. Конвективная область. Это сферическая оболочка, которая наслаивается на область лучистого переноса энергии. Она состоит из газа высокой температуры. Толщина этой оболочки Солнца составляет 1/10 часть радиуса звезды. Газ конвективной области подвижен, т.к. конвективная область находится между областью лучистого переноса энергии и атмосферой Солнца и оказывается как бы зажатой между областями с разными температурами и давлением.

Когда волновая энергия солнечного ядра достигает его атмосферы, она начинает светиться. На этом участке солнца возникает солнечный свет.

Атмосфера солнца

Таблица 3.3 Строение атмосферы Солнца

Фотосфера. Выше слои Солнца, образующие солнечную атмосферу. Современная гелиофизика различает три таких отличающихся друг от друга слоя, физические условия в которых различны. Нижние, сравнительно плотные непрозрачные слои образуют фотосферу, более разреженные и протяженные - хромосферу и корону .

Излучение, приходящее к нам от Солнца, возникает в очень тонком поверхностном слое - фотосфере (слое света), толщина которого по солнечным масштабам ничтожна, всего около 400 км. Нижний уровень фотосферы соответствует резкому видимому краю солнечного диска.

Фотосфера не только испускает, но и поглощает свет, приходящий из более глубоких слоев Солнца. Их мы уже не видим потому, что свет от них полностью поглощается фотосферой. (Фотосферу составляет сильно разреженный газ с плотностью 1-3*10-8г/см3, температура в среднем оценивается в 5780 К. Температура в фотосфере по мере подъема уменьшается, а, следовательно, уменьшается и интенсивность свечения газов. Поскольку газы фотосферы непрозрачны, при косом, расположении слоев атмосферы относительно луча зрения будут видны только внешние более холодные слои. Этим объясняется любопытный факт: по мере приближения к краю диска Солнце кажется темнее.).На рисунке 3.3.1 показано строение фотосферы Солнца. (по Марленскому А.Д, 1970 г.)

В фотосфере образуются наблюдаемые в спектре Солнца многочисленные темные линии. Появление этих линий, называемых по имени впервые описавшего их ученого фраунгоферовыми, вызывается особым процессом рассеяния.

Рисунок 3.3.1 Фотосфера Солнца

Хромосфера - это слой атмосферы Солнца, который находится над фотосферой. Этот слой имеет красновато-фиолетовый цвет. Хромосферу можно наблюдать во время солнечных затмений. Огненные языки, которые видны вокруг лунного диска, закрывающего Солнце, и есть хромосфера.

Хромосфера состоит из разряженных газов. Толщина хромосферы 10 - 15 тысяч километров, а температура огненных языков в десятки раз больше температуры в фотосфере. На рисунке 3.3.2 изображена хромосфера Солнца (по Марленскому А.Д, 1970 г.)

Характеристика небесных тел может быть очень запутанной. Только у звезд есть видимая, абсолютная величина, светимость и другие параметры. С последним мы и попробуем разобраться. Что такое светимость звезд? Имеет ли она что-то общее с их видимостью на ночном небосклоне? Какая светимость у Солнца?

Природа звезд

Звезды - очень массивные космические тела, излучающие свет. Они образуются из газов и пыли, в результате гравитационного сжатия. Внутри звезд находится плотное ядро, в котором происходят ядерные реакции. Они и способствуют свечению звезд. Основными характеристиками светил являются спектр, размер, блеск, светимость, внутренняя структура. Все эти параметры зависят от массы конкретной звезды и её химического состава.

Главными «конструкторами» этих небесных тел являются гелий и водород. В меньшем количестве относительно них, может содержаться углерод, кислород и металлы (марганец, кремний, железо). Наибольшее количество водорода и гелия у молодых звезд, со временем их пропорции уменьшаются, уступая место другим элементам.

Во внутренних областях звезды обстановка очень «горячая». Температура в них доходит до нескольких миллионов кельвинов. Здесь идут непрерывные реакции, в которых водород превращается в гелий. На поверхности температура намного ниже и доходит только до нескольких тысяч кельвинов.

Что такое светимость звезд?

Термоядерные реакции внутри звезд сопровождаются выбросами энергии. Светимостью же называют физическую величину, которая отражает, сколько именно энергии производит небесное тело за определенное время.

Её часто путают с другими параметрами, например, с яркостью звезд на ночном небе. Однако яркость или же видимая величина - это примерная характеристика, которая никак не измеряется. Она во многом связана с удаленностью светила от Земли и описывает только то, насколько хорошо звезда видна на небосклоне. Чем меньше цифра этой величины, тем больше её видимая яркость.

В отличие от неё, светимость звезд - это объективный параметр. Он не зависит от того, где находится наблюдатель. Это характеристика звезды, определяющая её энергетическую мощность. Она может изменяться в разные периоды эволюции небесного тела.

Приближенной к светимости, но не тождественной, является абсолютная Она обозначает яркость светила, видимую наблюдателю на расстоянии 10 парсек или 32,62 световых лет. Обычно она используется для вычисления светимости звезд.

Определение светимости

Количество энергии, которое выделяет небесное тело, определяется в ваттах (Вт), джоулях на секунду (Дж/с) или в эргах на секунду (эрг/с). Существует несколько способов найти необходимый параметр.

Его легко вычислить по формуле L = 0,4(Ma -M),если знать абсолютную величину нужной звезды. Так, латинской буквой L обозначается светимость, буква М - это абсолютная звездная величина, а Ма - абсолютная величина Солнца (4,83 Ма).

Другой способ предполагает больших знаний о светиле. Если нам известны радиус (R) и температура (T ef)его поверхности, то светимость можно определить по формуле L=4pR 2 sT 4 ef . Латинская s в данном случае означает стабильную физическую величину - постоянную Стефана-Больцмана.

Светимость нашего Солнца равна 3.839 х 10 26 Ваттам. Для простоты и наглядности, ученые обычно сравнивают светимость космического тела именно с этой величиной. Так, существуют объекты в тысячи или миллионы раз слабее или мощнее Солнца.

Классы светимости звезд

Для сравнения звезд между собой, астрофизики использую различные классификации. Их делят по спектрам, размерам, температурам и т.д. Но чаще всего, для более полной картины используют сразу несколько характеристик.

Существует центральная гарвардская классификация, основанная на спектрах, которые излучают светила. В ней используют латинские буквы, каждая из которых соответствует конкретному цвету излучения (О-голубой, В - бело-голубой, А - белый и т.д.).

Звезды одного спектра могут иметь различную светимость. Поэтому ученые разработали йеркскую классификацию, которая учитывает и этот параметр. Она разделяет их по светимости, основываясь на абсолютной величине. При этом каждому виду звезд приписывают не только буквы спектра, но и цифры, отвечающие за светимость. Так, выделяют:

  • гипергигантов (0);
  • ярчайших сверхгигантов (Ia+);
  • ярких сверхгигантов (Ia);
  • нормальных сверхгигантов (Ib);
  • ярких гигантов (II);
  • нормальных гигантов (III);
  • субгигантов (IV);
  • карликов главной последовательности (V);
  • субкарликов (VI);
  • белых карликов (VII);

Чем больше светимость, тем меньше значение абсолютной величины. У гигантов и сверхгигантов оно обозначается со знаком минус.

Связь между абсолютной величиной, температурой, спектром, светимостью звезд показывает диаграмма Герцшпрунга — Рессела. Она была принята ещё в 1910 году. Диаграмма объединяет гарвардскую и йеркскую классификации и позволяет рассматривать и классифицировать светила более целостно.

Разница в светимости

Параметры звезд сильно взаимосвязаны друг с другом. На светимость влияние оказывает температура звезды и её масса. А они во много зависят от химического состава светила. Масса звезды становится тем больше, чем меньше в ней тяжелых элементов (тяжелее водорода и гелия).

Самой большой массой обладают гипергиганты и различные сверхгиганты. Они наиболее мощные и яркие звезды во Вселенной, но вместе с тем, и редчайшие. Карлики, наоборот, обладают небольшой массой и светимостью, но составляют около 90% всех звезд.

Самой массивной звездой, которая известна сейчас, является голубой гипергигант R136a1. Её светимость превышает солнечную в 8,7 миллионов раз. Переменная звезда в созвездии Лебедя (Р Лебедя) превосходит по светимости Солнце в 630 000 раз, а S Золотой Рыбы превышает этот его параметр в 500 000 раз. Одна из самых маленьких известных звезд 2MASS J0523-1403 обладает светимостью 0,00126 от солнечной.

Изменяется ли светимость Солнца?


ДРЕВНЕЙШИЕ ОЛЕДЕНЕНИЯ

Историческая геология свидетельствует, что в прежние геологические эпохи временами наступали похолодания. Самое раннее из установленных оледенений отстояло от наших дней на 2500 млн лет. О существовании ледниковых эпох в далеком прошлом геологи судят на основании находок так называемых тиллитов - неотсортированных пород, включающих валуны и глину, образовавшихся под действием ледника. Если рассмотреть проявление всех крупных оледенений, известных за геологическую историю, нельзя не обратить внимание на неравномерность их распределения во времени. После нескольких фаз, происшедших примерно 2500-2200 млн лет назад, наступил длительный перерыв, измеряемый в 1500 млн лет, когда оледенений не было. Примерно 900 млн лет назад оледенения возобновились и стали происходить с интервалом 50-100 млн лет. Помимо сильных похолоданий, вызывавших мощные оледенения на Земле, существовали и более слабые температурные минимумы, когда похолодание было недостаточным для широкого распространения льда на планете.

Особенностью оледенений было то, что наступали они в неблагоприятных условиях для их проявления (климат на Земле был жарким, отсутствовало четкое разделение на климатические зоны). Тем не менее, резкое похолодание охватывало всю планету независимо от широты. Например, следы верхнепротерозойского оледенения, случившегося 900 млн лет назад, обнаружены в различных местах планеты независимо от географической широты. Ледниковые образования (тиллиты) часто подстилаются и (или) перекрываются осадками, образовавшимися в условиях жаркого климата. Эти факты указывают на то, что похолодание наступало относительно быстро и затем столь же резко заканчивалось. Небольшая мощность ледниковых образований свидетельствует о кратковременности холодных периодов.

Эти особенности древних ледниковых эпох не позволяют связывать их с какими-либо "земными причинами", например, горообразовательными процессами или изменением конфигурации суши и моря. Ведь в те далекие" времена не существовало высоких гор, а колебания уровня океана изменялись очень медленно. Нет оснований объяснять древние оледенения и вспышками вулканической деятельности, поскольку корреляции эпох усиления вулканизма и оледенений отсутствуют: интенсивные вулканические процессы происходили на Земле очень часто, а оледенения - всего лишь несколько раз за всю ее историю. Возможно, в некоторых случаях вулканические извержения способствовали более интенсивному развитию оледенения, но они не могли быть его первопричиной. Не могут вызвать глобальные понижения температуры на десятки градусов такие явления, как изменения наклона земной оси или засорение земной атмосферы пылью (земной или космической). Л.И. Салоп и ряд других ученых склоняются в пользу внеземной причины древних оледенений. Наиболее естественно объяснить оледенения изменениями светимости Солнца. По-видимому, существуют определенные ритмы: приблизительно раз в 80-100 млн лет светимость падает и на протяжении нескольких миллионов лет оказывается ниже средних значений.

Стадиальность оледенений, их периодичность позволяют предположить существование и более крупных ритмов солнечной светимости. Последние 900 млн лет характеризуются эпизодическими фазами оледенений. Далее, в глубине веков, обнаруживается период отсутствия оледенений, длившийся 1500 млн лет. Еще дальше от нашего времени оледенения вновь появляются, но не на столь продолжительное время. Нельзя исключать, что колебания светимости Солнца были и ранее, но они не проявили себя в форме оледенений, поскольку температура на Земле тогда была высокой и не опускалась ниже 0°С в течение фазы похолодания. Если наше пред положение верно, то можно говорить о периодичности колебаний солнечной светимости. Какой-то интервал времени Солнце ведет себя как стационарная звезда, а затем, примерно в течение такого же периода, пульсирует с периодом 80-100 млн лет. Оледенения указывают интервалы времени, когда светимость Солнца падала и температура на поверхности планеты понижалась. А есть ли свидетельства противоположного явления - эпизодического возрастания светимости Солнца? История Земли не дает определенного ответа на этот вопрос. Увеличение светимости Солнца должно было привести к разогреву поверхности Земли и, следовательно, подъему температуры воды, а это вызвало бы изменения в экологической обстановке. Такие изменения геологи фиксировали неоднократно, однако связаны ли они с ростом температуры, пока сказать трудно.

ОБ ИСТОРИИ ЗЕМЛИ РАССКАЖЕТ МАРС?

В исследовании колебаний светимости Солнца может помочь изучение истории Марса. Как известно, температура на его поверхности колеблется от -120°С ночью до +20°С днем. Однако в истории Марса были периоды, когда температура поднималась еще выше и по Марсу текли реки. Такие потепления происходили на Марсе неоднократно, но точно определить время этих теплых эпох ученые еще не могут, так как нет абсолютных датировок возраста горных пород планеты. Считается, что жидкая вода на поверхности Марса оказалась не в результате дождей, а за счет таяния подземных льдов. Вода, выйдя из растаявшего грунта, устремилась в разработанные ею речные долины, чтобы затем вновь уйти в грунт в пределах обширных бессточных впадин. Относительно причин потеплений на Марсе нет единого мнения. Многие считают, что таяние подземных льдов вызвано активизацией глубинных процессов и прежде всего вулканической деятельностью. С таким выводом трудно согласиться, поскольку эндогенная деятельность на Марсе интенсивно проявила себя в ранний период его истории (ранее 2,5 млрд лет назад), а водно-эрозионная деятельность, наоборот, характерна для последних 2,5 млрд лет. Речные долины на Марсе, как правило, расположены на большом удалении от вулканических массивов. Да и энергетически трудно представить механизм эпизодического разогрева всей планеты вулканическими извержениями.

Больше оснований связать потепление на Марсе с ростом светимости Солнца. Увеличение поступающего от него тепла привело к значительному повышению температуры на поверхности Марса, в результате чего промерзший грунт начинал таять. Излишки воды из одних мест стали перетекать в другие, где уровень подземных вод был ниже. Современная изученность Марса позволяет выделять по меньшей мере два этапа флювиаль-ной (водноэрозионной) деятельности на его поверхности. Самый ранний из них, когда заложились древние долины - Узбой, Ладон, Маадим, Бахрам -приблизительно датируется в 2500 лет назад. Более молодой флювиаль-ный этап, когда сформировались долины Касэй, Тиу, Симуд, Ведра, Маджа и др., приходится на последний миллиард лет марсианской истории.

ДВА СОСТОЯНИЯ СОЛНЦА?

Если сопоставить эпохи оледенений Земли и эпохи флювиальных процессов на Марсе, то они примерно совпадают по времени. Возможно, это не случайно.В эти периоды солнечная светимость изменялась как в сторону ее резкого увеличения, так и уменьшения. Увеличение проявилось на Марсе в виде флювиальных этапов, а уменьшение на Земле - в виде ледниковых эпох. Если эти предположения верны, то у дневного светила существуют два периодически сменяющих друг друга типа состояния. Первое - относительно спокойное, характерное для эпохи от 2250 млн лет до 900 млн лет, когда не было значительных изменений интенсивности свечения. Второе - контрастное, когда возникали как фазы усиления, так и фазы сокращения светимости. Мы живем в продолжающуюся уже 900 млн лет контрастную эпоху.

В чем причина столь резких колебаний светимости Солнца? Ведь оно считается стационарной звездой, а колебания солнечной постоянной не превышают 0,3% (что совершенно недостаточно для глобального оледенения). Однако в последнее время некоторые астрофизики допускают возможность более значительных колебаний солнечной светимости. Известно, что количество солнечного нейтрино, зарегистрированное наземными приборами, оказалось значительно меньше, чем должно быть согласно теоретическим расчетам. Так, по модели, предложенной У. Фаулером (1972 г.), высокие температуры, необходимые для возбуждения ядерных процессов, устанавливаются во внутренних частях Солнца периодически через определенные интервалы времени - порядка 200-300 млн лет. Когда эти температуры достигнуты, раскаленная плазма вследствие конвективной неустойчивости поднимается и перемешивается с относительно холодным веществом у поверхности. В результате светимость Солнца падает примерно на 35%, а температура на Земле на 30°С и более. Такое состояние длится около 10 млн лет. Высказанная гипотеза, естественно, встречает определенные возражения. Например, получены данные, указывающие на возможность существования у нейтрино массы покоя, а это может привести к тому, что излучаемые Солнцем нейтрино трансформируются так, что их невозможно регистрировать принятыми методами. Рассматриваемая проблема обсуждается лишь на качественном уровне. Для решения вопроса о том, насколько должна понизиться светимость Солнца, чтобы вызвать оледенение, нужны специальные расчеты. По-видимому, речь идет о снижении светимости на 10% и более.

Стоит лишь подчеркнуть, что анализ геологических данных, свидетельствующих об изменении во времени температуры земной поверхности, -единственная возможность обнаружить и оценить колебания солнечной светимости, имевшие место миллионы и миллиарды лет назад. Прямого пути установления столь протяженных циклов колебаний светимости Солнца у ученых пока нет. Поэтому остается лишь косвенный путь - искать следы пульсаций Солнца в истории обращающихся вокруг него планет. Обратим внимание еще на одно обстоятельство. Среди астрономов и геофизиков распространена точка зрения, что в период образования Земли, т.е. 4,6 млрд лет назад, уровень солнечной радиации был на 40% ниже, чем сейчас, и с тех пор вплоть до наших дней он увеличивался. Следовательно, температура на Земле должна постепенно возрастать. Данные же "каменной летописи" Земли свидетельствуют об обратном - температура на поверхности планеты постепенно понижалась. Так, 3,8 млрд лет назад, на основании определения отношения изотопов кислорода в кремнистых отложениях серии Исуа (Гренландия), температура находилась в интервале 90-150°С. Три миллиарда лет назад она колебалась в пределах от 90 до 65°С и дальше постепенно снижалась до современной. Лишь будущие исследования покажут, как выйти из этого противоречия.


  • Автор статьи И.А. Резанов , доктор геолого-минералогических наук, Институт истории естествознания и техники РАН им. С.И. Вавилова
  • Подготовка и выпуск проект "Астрогалактика" 15.09.2007



Top