Терраформирование персонажи. Терраформирование

Гиперкуб и Платоновы тела

Смоделировать в системе «Вектор» усеченныйикосаэдр («футбольный мяч»)
у которого каждый пятиугольник ограниченшестиугольниками

Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32 ), а число рёбер возрастает до 30+12×5=90 .

Шаги построения усеченного икосаэдра в системе «Вектор»

Фигуры в 4-мерном пространстве.

--à

--à ?

Например, даны куб и гиперкуб. В гиперкубе 24 грани. Значит, у 4-мерного октаэдра будет 24 вершины. Хотя нет, у гиперкуба – 8 граней кубов – в каждом центр -вершина. Значит, у 4-мерного октаэдрабудет 8 вершини того легче.

4-мерный октаэдр . Он состоит из восьми равносторонних и равных между собой тэтраэдров,
соединенных по четыре у каждой вершины.

Рис. Попытка смоделировать
гипершар-гиперсферу в системе «Вектор»

Передняя – задняя грани – шары без искажения. Еще шестьшаров – можно задать черезэллипсоиды или квадратичные поверхности (через 4 линии контура как образующие) иличерез грани (сначала задаются через образующие).

Еще приемы «построить» гиперсферу
- тот же «футбольный мяч» в 4-мерном пространстве

Приложение 2

Для выпуклых многогранников имеет место свойство, связывающее число его вершин, ребер и граней, доказанное в 1752 году Леонардом Эйлером, и получившее название теоремы Эйлера.

Прежде чем его сформулировать рассмотрим известные нам многогранники и заполним следующую таб­лицу, в которой В - число вершин, Р - ребер и Г - граней данного мно­гогранника:

Название многогранника

Треугольная пирамида

Четырехугольная пирамида

Треугольная призма

Четырехугольная призма

n - угольная пирамида

n +1

2n

n +1

n - угольная призма

2n

3n

n+2

n - угольная усеченная

пирамида

2n

3n

n+2

Из этой таблицы непосредственно видно, что для всех выбранных мно­гогранников имеет место равенство В - Р + Г = 2. Оказывается, что это равенство справедливо не только для этих многогранников, но и для про­извольного выпуклого многогранника.

Теорема Эйлера. Для любого выпуклого многогранника имеет место равенство

В - Р + Г = 2,

где В - число вершин, Р - число ребер и Г - число граней данного мно­гогранника.

Доказательство. Для доказательства этого равенства представим поверхность данного многогранника сделанной из эластичного материала. Удалим (вырежем) од­ну из его граней и оставшуюся поверхность растянем на плоскости. Полу­чим многоугольник (образованный ребрами удаленной грани многогранника), разбитый на более мелкие многоугольники (образованные остальными гранями многогранника).

Заметим, что многоугольники можно деформировать, увеличивать, уменьшать или даже искривлять их стороны, лишь бы при этом не происходило разрывов сторон. Число вершин, ребер и граней при этом не изменится.

Докажем, что для полученного разбиения многоугольника на более мелкие многоугольники имеет место равенство

(*)В - Р + Г " = 1,

где В – общее число вершин, Р – общее число ребер и Г " – число многоугольников, входящих в разбиение. Ясно, что Г "= Г – 1, где Г – число граней данного мно­гогранника.

Докажем, что равенство (*) не изменится, если в каком-нибудь многоугольнике данного разбиения провести диагональ (рис. 5, а). Действитель­но,после проведения такой диагонали в новом разбиении будет В вершин, Р+1 ребер и количество многоугольников увеличится на единицу. Следовательно, имеем

В - (Р + 1) + (Г "+1) = В – Р + Г ".


Пользуясь этим свойством, проведем диагонали, разбивающие входя­щие многоугольники на треугольники, и для полученного разбиения пока­жем выполнимость равенства (*) (рис. 5, б). Для этого будем последо­вательно убирать внешние ребра, уменьшая количество треугольников. При этом возможны два случая:

а) для удаления треугольника ABC требуется снять два ребра, в на­шем случае AB и BC ;

б) для удаления треугольника MKN требуется снять одно ребро, в нашем случае MN .

В обоих случаях равенство (*) не изменится. Например, в первом случае послеудаления треугольника граф будет состоять из В – 1 вершин, Р – 2 ребер и Г " – 1 многоугольника:

(В - 1) - (Р + 2) + (Г " – 1) = В – Р + Г ".

Самостоятельно рассмотрите второй случай.

Таким образом, удаление одного треугольника не меняет равенство (*). Продолжая этот процесс удаления треугольников, в конце концов, мы придем к разбиению, состоящему из одного треугольника. Для такого раз­биения В = 3, Р = 3, Г " = 1 и, следовательно, B – Р + Г " = 1. Значит, равенство (*) имеет место и для исходного разбиения, откуда оконча­тельно получаем, что для данного разбиения многоугольника справедливо равенство (*). Таким образом, для исходного выпуклого многогранника справедливо равенство В - Р + Г = 2.

Пример многогранника, для которого не выполняется соотношение Эйлера, показан на рисунке 6. Этот многогранник имеет 16 вершин, 32 ребра и 16 граней. Таким образом, для этого многогранника выполняется равенство В – Р + Г = 0.

Приложение 3.

Фильм Куб 2: Гиперкуб» (англ. Cube 2: Hypercube) - фантастический фильм, продолжение фильма «Куб».

Восемь незнакомых людей просыпаются в комнатах, имеющих форму куба. Комнаты находятся внутри четырёхмерного гиперкуба. Комнаты постоянно перемещаются путём "квантовой телепортации", и если перелезть в соседнюю комнату, то вернуться в прежнюю уже маловероятно. В гиперкубе пересекаются параллельные миры, время в некоторых комнатах течёт по-разному, и некоторые комнаты являются смертельными ловушками.

Сюжетно картина во многом повторяет историю первой части, что также отражается и на образах некоторых персонажей. В комнатах гиперкуба погибает нобелевский лауреат Розенцвейг, рассчитавший точное время уничтожения гиперкуба .

Критика

Если в первой части люди заточенные в лабиринт пытались помочь друг-другу, в этом фильме каждый сам за себя. Очень много лишних спецэффектов (они же ловушки) которые ни как не связывают логически данную часть фильма с предыдущей. То есть получается фильм Куб 2 - это этакий лабиринт будущего 2020-2030 годов, но никак не 2000. В первой части все виды ловушек может теоретически создать человек. Во второй части эти ловушки - программа какого-то компьютера, так называемая "Виртуальная реальность".

Начнём с объяснения, что же такое четырёхмерное пространство.

Это - одномерное пространство, то есть просто ось OX. Любая точка на ней характеризуется одной координатой.


Теперь проведём ось OY перпендикулярно оси OX. Вот и получилось двумерное пространство, то есть плоскость XOY. Любая точка на ней характеризуется двумя координатами - абсциссой и ординатой.


Проведём ось OZ перпендикулярно осям OX и OY. Получится трёхмерное пространство, в котором у любой точки есть абсцисса, ордината и аппликата.


Логично, что четвёртая ось, OQ, должна быть перпендикулярной осям OX, OY и OZ одновременно. Но мы не можем точно построить такую ось, и потому остаётся только попытаться представить её себе. У каждой точки в четырёхмерном пространстве есть четыре координаты: x, y, z и q.

Теперь посмотрим, как появился четырёхмерный куб.


На картинке изображена фигура одномерного пространства - линия.


Если сделать параллельный перенос этой линии вдоль оси OY, а потом соединить соответствующие концы двух получившихся линий, получится квадрат.


Аналогично, если сделать параллельный перенос квадрата вдоль оси OZ и соединить соответствующие вершины, то получится куб.


А если сделать параллельный перенос куба вдоль оси OQ и соединить вершины двух этих кубов, то мы получим четырёхмерный куб. Кстати, он называется тессеракт .

Чтобы нарисовать куб на плоскости, нужно его спроецировать . Наглядно это выглядит так:

Представим, что в воздухе над поверхностью висит каркасная модель куба, то есть как бы «сделанная из проволоки», а над ней - лампочка. Если включить лампочку, обвести карандашом тень от куба, а потом выключить лампочку, то на поверхности будет изображена проекция куба.

Перейдём к немного более сложному. Ещё раз посмотрите на рисунок с лампочкой: как видите, все лучи сошлись в одной точке. Она называется точкой схода и используется для построения перспективной проекции (а бывает и параллельная, когда все лучи параллельны друг другу. Результат - не создаётся ощущения объёма, но она легче, и при том если точка схода достаточно сильно удалена от проецируемого объекта, то разница между этими двумя проекциями мало заметна). Чтобы спроецировать данную точку на данную плоскость, используя точку схода, нужно провести прямую через точку схода и данную точку, а потом найти точку пересечения получившейся прямой и плоскости. А для того, чтобы спроецировать более сложную фигуру, скажем, куб, нужно спроецировать каждую его вершину, а потом соответствующие точки соединить. Следует заметить, что алгоритм проекции пространства на подпространство можно обобщить для случая 4D->3D, а не только 3D->2D.

Как я уже говорил, мы не можем себе точно представить, как выглядит ось OQ, равно как и тессеракт. Зато мы можем получить ограниченное представление о нём, если мы спроецируем его на объём, а потом нарисуем это на экране компьютера!

Теперь поговорим о проекции тессеракта.


Слева находится проекция куба на плоскость, а справа - тессеракта на объём. Они довольно схожи: проекция куба выглядит как два квадрата, маленький и большой, один внутри другого, и у которых соответствующие вершины соединены линиями. А проекция тессеракта выглядит как два куба, маленький и большой, один внутри другого, и у которых соответствующие вершины соединены. Но мы все видели куб, и можем с уверенностью сказать, что и маленький квадрат, и большой, и четыре трапеции сверху, снизу, справа и слева от маленького квадрата, на самом деле являются квадратами, при чём равными. И у тессеракта тоже самое. И большой куб, и маленький куб, и шесть усечённых пирамид по бокам от маленького куба - это всё кубы, при чём равные.

Моя программа умеет не только рисовать проекцию тессеракта на объём, а ещё и вращать его. Рассмотрим, как делается это.

Для начала я вам расскажу, что такое вращение параллельно плоскости .

Представьте себе, что куб вращается вокруг оси OZ. Тогда каждая из его вершин описывает окружность вокруг оси OZ.

А окружность - фигура плоская. И плоскости каждой из этих окружностей параллельны между собой, и в данном случае параллельны плоскости XOY. То есть мы можем говорить не только о вращении вокруг оси OZ, а ещё и о вращении параллельно плоскости XOY.Как видим, у точек, которые вращаются параллельно оси XOY меняются только абсцисса и ордината, аппликата же остаётся неизменной И, вообще-то, мы можем говорить о вращении вокруг прямой только тогда, когда имеем дело с трёхмерным пространством. В двумерном всё вращается вокруг точки, в четырёхмерном - вокруг плоскости, в пятимерном пространстве мы говорим о вращении вокруг объёма. И если вращение вокруг точки мы можем себе представить, то вращение вокруг плоскости и объёма - что-то немыслимое. А если будем говорить о вращении параллельно плоскости, то тогда в любом n-мерном пространстве точка может вращаться параллельно плоскости.

Многие из вас, вероятно, слышали о матрице поворота. Умножив точку на неё, получим точку, повёрнутую параллельно плоскости на угол фи. Для двумерного пространства она выглядит так:

Как умножать: икс точки, повёрнутой на угол фи = косинус угла фи*икс первоначальной точки минус синус угла фи*игрек первоначальной точки;
игрек точки, повёрнутой на угол фи=синус угла фи*икс первоначальной точки плюс косинус угла фи*игрек первоначальной точки.
Xa`=cosф*Xa - sinф*Ya
Ya`=sinф*Xa + cosф*Ya
, где Xa и Ya - абсцисса и ордината точки, которую нужно повернуть, Xa` и Ya` - абсцисса и ордината уже повёрнутой точки

Для трёхмерного пространства это матрица обобщается следующим образом:

Вращение параллельно плоскости XOY. Как видим, координата Z не меняется, а меняются только X и Y
Xa`=cosф*Xa - sinф*Ya + Za*0
Ya`=sinф*Xa +cosф*Ya + Za*0
Za`=Xa*0 + Ya*0 + Za*1 (по сути, Za`=Za)


Вращение параллельно плоскости XOZ. Ничего нового,
Xa`=cosф*Xa + Ya*0 - sinф*Za
Ya`=Xa*0 + Ya*1 + Za*0 (по сути, Ya`=Ya)
Za`=sinф*Xa + Ya*0 + cosф*Za


И третья матрица.
Xa`=Xa*1 + Ya*0 + Za*0 (по сути, Xa`=Xa)
Ya`=Xa*0 + cosф*Ya - sinф*Za
Za`=Xa*0 + sinф*Ya + cosф*Za

А для четвёртого измерения они выглядят вот так:


Думаю, вы уже поняли, что на что множить, потому лишний раз расписывать не буду. Зато замечу, что она делает то же самое, что и матрица для поворота параллельно плоскости в трёхмерном пространстве! И та, и эта изменяют только ординату и аппликату, а остальные координаты не трогают, потому её можно использовать и в трёхмерном случае, просто не обращая внимания на четвёртую координату.

А вот с формулой проекции не всё так просто. Сколько я ни читал форумов, мне не подошёл ни один из способов проекции. Параллельная мне не подходила, так как проекция не будет выглядеть объёмной. В одних формулах проекции для нахождения точки нужно решить систему уравнений(а я не знаю, как научить компьютер их решать), другие я просто-напросто не понял… В общем, я решил придумать свой способ. Рассмотрим для этого проекцию 2D->1D.


pov значит «Point of view» (точка зрения), ptp значит «Point to project» (точка, которую нужно спроецировать), а ptp` - это искомая точка на оси OX.

Углы povptpB и ptpptp`A равны как соответствующие(пунктирная линия параллельна оси OX, прямая povptp - секущая).
Икс точки ptp` равен иксу точки ptp минус длина отрезка ptp`A. Этот отрезок можно найти из треугольника ptpptp`A: ptp`A = ptpA/тангенс угла ptpptp`A. Мы можем найти этот тангенс из треугольника povptpB: тангенс угла ptpptp`A = (Ypov-Yptp)(Xpov-Xptp).
Ответ: Xptp`=Xptp-Yptp/тангенс угла ptpptp`A.

Я не стал подробно расписывать этот алгоритм тут, так как там куча частных случаев, когда формула несколько меняется. Кому это интересно - посмотрите в исходниках программы, там всё расписано в комментариях.

Для того, чтобы спроецировать точку трёхмерного пространства на плоскость, просто рассмотрим две плоскости - XOZ и YOZ, и для каждой из них решим эту задачу. В случае четырёхмерного пространства нужно рассмотреть уже три плоскости: XOQ, YOQ и ZOQ.

И наконец, про программу. Она действует так: инициализировать шестнадцать вершин тессеракта -> в зависимости от введённых пользователем команд повернуть его -> спроецировать на объём -> в зависимости от введённых пользователем команд повернуть его проекцию -> спроецировать на плоскость -> нарисовать.

Проекции и повороты я написал сам. Они работают по формулам, которые я только что описал. Библиотека OpenGL рисует линии, а так же занимается смешиванием цветов. А координаты вершин тессеракта вычисляются таким образом:

Координаты вершин линии с центром в начале координат и длинной 2 - (1) и (-1);
- " - " - квадрата - " - " - и ребром длинной 2:
(1; 1), (-1; 1), (1; -1) и (-1; -1);
- " - " - куба - " - " -:
(1; 1; 1), (-1; 1; 1), (1; -1; 1), (-1; -1; 1), (1; 1; -1), (-1; 1; -1), (1; -1; -1), (-1; -1; -1);
Как можно было заметить, квадрат - это одна линия над осью OY и одна линия под осью OY; куб - это один квадрат спереди от плоскости XOY, и один за ней; тессеракт - это один куб по ту сторону объёма XOYZ, и один - по эту. Но куда легче воспринять это чередование единиц и минус единиц, если их записать в столбик

1; 1; 1
-1; 1; 1
1; -1; 1
-1; -1; 1
1; 1; -1
-1; 1; -1
1; -1; -1
-1; -1; -1

В первом столбце один и минус один чередуются. Во втором столбце сначала идёт два плюса, потом два минуса. В третьем - четыре плюс единицы, а потом четыре минус единицы. Это были вершины куба. У тессеракта их в два раза больше, и потому нужно было написать цикл для их объявления, иначе очень легко запутаться.

Моя программа так же умеет рисовать анаглиф. Счастливые обладатели 3D-очков могут наблюдать стереоскопическую картинку. В рисовании картинки нет ничего хитрого, просто рисуется две проекции на плоскость, для правого и левого глаз. Зато программа становится намного более наглядной и интересной, а главное - даёт лучшее представление о четырёхмерном мире.

Менее значительные функции - подсветка одной из граней красным, чтобы лучше можно было разглядеть повороты, а так же мелкие удобства - регуляция координат точек-«глаз», увеличение и уменьшение скорости поворота.

Архив с программой, исходником и инструкцией пользования.

Эволюция человеческого мозга проходила в трехмерном пространстве. Поэтому нам сложно представить себе пространства с размерностью больше трех. Фактически человеческий мозг не может себе представить геометрические объекты с размерностью более трех. И в то же время мы без труда представляем себе геометрические объекты с размерностью не только три, но и с размерностью два и один.

Различие и аналогия между одномерным и двумерным пространствами, а также различие и аналогия между двумерным и трехмерным пространствами позволяют нам чуть-чуть приоткрыть ширму таинственности, которая отгораживает нас от пространств большей размерности. Чтобы понять, как используется эта аналогия, рассмотрим очень простой четырехмерный объект - гиперкуб, то есть четырехмерный куб. Пусть для определенности, допустим, мы хотим решить конкретную задачу, а именно, посчитать количество квадратных граней четырехмерного куба. Всё рассмотрение далее будет очень нестрогим, без всяких доказательств, чисто по аналогии.

Чтобы понять, как строится гиперкуб из обычного куба, надо сначала посмотреть, как строится обычный куб из обычного квадрата. Для оригинальности изложения этого материала, будем здесь обычный квадрат называть СубКубом (и не будем путать его с суккубом).

Чтобы построить куб из субкуба, надо протянуть субкуб в направлении перпендикулярном плоскости субкуба по направлению третьего измерения. При этом из каждой стороны первоначального субкуба вырастет субкуб, который является боковой двумерной гранью куба, которые ограничат с четырех сторон трехмерный объем куба, по две перпендикулярно каждому направлению в плоскости субкуба. И вдоль новой третьей оси тоже имеются два субкуба, ограничивающие трехмерный объем куба. Это та двумерная грань, где первоначально находился наш субкуб и та двумерная грань куба, куда субкуб пришел под конец строительства куба.

То, что Вы сейчас прочитали, изложено чрезмерно подробно и с массой уточнений. И не спроста. Сейчас мы сделаем такой фокус, заменим в предыдущем тексте некоторые слова формально таким образом:
куб -> гиперкуб
субкуб -> куб
плоскость -> объем
третьего -> четвертого
двумерной -> трехмерной
четырех -> шести
трехмерный -> четырехмерный
две -> три
плоскости -> пространстве

В результате получаем следующий осмысленный текст, который уже не кажется излишне подробным.

Чтобы построить гиперкуб из куба, надо протянуть куб в направлении перпендикулярном объему куба по направлению четвертого измерения. При этом из каждой стороны первоначального куба вырастет куб, который является боковой трехмерной гранью гиперкуба, которые ограничат с шести сторон четырехмерный объем гиперкуба, по три перпендикулярно каждому направлению в пространстве куба. И вдоль новой четвертой оси тоже имеются два куба, ограничивающие четырехмерный объем гиперкуба. Это та трехмерная грань, где первоначально находился наш куб и та трехмерная грань гиперкуба, куда куб пришел под конец строительства гиперкуба.

Почему у нас такая уверенность, что мы получили правильное описание построения гиперкуба? Да потому что точно такой же формальной заменой слов мы получаем описание построения куба из описания построения квадрата. (Проверьте это сами.)

Вот теперь понятно, что если из каждой стороны куба должен вырасти еще один трехмерный куб, то значит, из каждого ребра начального куба должна вырасти грань. Всего у куба ребер 12, значит, появится дополнительно 12 новых граней (субкубов) у тех 6 кубов, которые ограничивают четырехмерный объем по трем осям трехмерного пространства. И остались еще два куба, которые ограничивают этот четырехмерный объем снизу и сверху вдоль четвертой оси. В каждом из этих кубов есть по 6 граней.

Итого получаем, что гиперкуб имеет 12+6+6=24 квадратных граней.

На следующей картинке показано логическое строение гиперкуба. Это как бы проекция гиперкуба на трехмерное пространство. При этом получается трехмерный каркас из ребер. На рисунке, естественно, Вы видите проекцию этого каркаса еще и на плоскость.



На этом каркасе внутренний куб это как бы начальный куб, с которого началось построение и который ограничивает четырехмерный объем гиперкуба по четвертой оси снизу. Мы этот начальный куб протягиваем вверх вдоль четвертой оси измерения и он переходит во внешний куб. Итак внешний и внутренний кубы из этого рисунка ограничивают гиперкуб по четвертой оси измерения.

А между этими двумя кубами видно еще 6 новых кубов, которые соприкасаются общими гранями с первыми двумя. Эти шесть кубов ограничивают наш гиперкуб по трем осям трехмерного пространства. Как видите, они соприкасаются не только с первыми двумя кубами, которые на этом трехмерном каркасе внутренний и внешний, но они еще соприкасаются друг с другом.

Можно прямо на рисунке посчитать и убедиться, что у гиперкуба действительно 24 грани. Но вот возникает такой вопрос. Этот каркас гиперкуба в трехмерном пространстве заполнен восемью трехмерными кубами без всяких просветов. Чтобы из этой трехмерной проекции гиперкуба сделать настоящий гиперкуб, надо вывернуть этот каркас наизнанку так, чтобы все 8 кубов ограничивали 4-мерный объем.

Делается это так. Приглашаем в гости жителя четырехмерного пространства и просим его помочь нам. Он хватает внутренний куб этого каркаса и сдвигает его в направлении четвертого измерения, которое перпендикулярно нашему трехмерному пространству. Мы в нашем трехмерном пространстве воспринимаем это так, как будто бы весь внутренний каркас исчез и остался только каркас внешнего куба.

Далее наш четырехмерный помощник предлагает свою помощь в роддомах по безболезненным родам, но наших беременных женщин пугает перспектива того, что младенец просто исчезнет из живота и окажется в параллельном трехмерном пространстве. Поэтому четырехмерцу вежливо отказывают.

А мы озадачиваемся вопросом, не расклеились ли некоторые из наших кубов при выворачивании каркаса гиперкуба наизнанку. Ведь если какие-то трехмерные кубы, окружающие гиперкуб, соприкасаются своими гранями с соседями на каркасе, то будут ли они также соприкасаться этими же гранями, если четырехмерец вывернет каркас наизнанку.

Опять обратимся к аналогии с пространствами меньшей размерности. Сравните изображение каркаса гиперкуба с проекцией трехмерного куба на плоскость, показанную на следующей картинке.



Жители двумерного пространства построили на плоскости каркас проекции куба на плоскость и пригласили нас, трехмерных жителей, выворачивать этот каркас наизнанку. Мы берем четыре вершины внутреннего квадрата и сдвигаем их перпендикулярно плоскости. Двумерные жители при этом видят полное исчезновение всего внутреннего каркаса, и у них остается только каркас внешнего квадрата. При такой операции все квадраты, которые соприкасались своими ребрами, продолжают по-прежнему соприкасаться теми же самыми ребрами.

Поэтому мы надеемся, что и логическая схема гиперкуба также не будет нарушена при выворачивании каркаса гиперкуба наизнанку, а число квадратных граней гиперкуба при этом не увеличится и будет по-прежнему равно 24. Это, конечно же, никакое не доказательство, а чисто догадка по аналогии.

После всего прочитанного здесь, Вы уже без труда сможете нарисовать логические каркасы пятимерного куба и подсчитать, какое у него число вершин, ребер, граней, кубов и гиперкубов. Это совсем не трудно.

τέσσαρες ἀκτίνες - четыре луча) - 4-мерный Гиперкуб - аналог в 4-мерном пространстве.

Изображение является проекцией () четырехмерного куба на трехмерное пространство.

Обобщение куба на случаи с числом измерений, большим, чем 3, называется гиперкубом или (en:measure polytopes). Формально гиперкуб определяется как четырёх равных отрезков.

Данная статья в основном описывает 4-мерный гиперкуб , называемый тессеракт .

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из нашего трёхмерного .

В одномерном «пространстве» - на линии - выделим АВ длиной L. На двумерной на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трем!) на расстояние L, мы получим гиперкуб.

Одномерный отрезок АВ служит гранью двумерного квадрата ABCD, квадрат - стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и еще 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и еще четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб . Воспользуемся для этого уже знакомым методом аналогий.

Возьмем проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Ее часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав восемь граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс еще один - грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в 4-мерное пространство, представленных в нижеследующей таблице.

В геометрии гиперкуб - это n -мерная аналогия квадрата (n = 2) и куба (n = 3). Это замкнутая выпуклая фигура, состоящая из групп параллельных линий, расположенных на противоположных краях фигуры, и соединенных друг с другом под прямым углом.

Эта фигура также известная под названием тессеракт (tesseract). Тессеракт относится к кубу, как куб относится к квадрату. Более формально, тессеракт может быть описан как правильный выпуклый четырехмерный политоп (многогранник), чья граница состоит из восьми кубических ячеек.

Согласно Окфордскому словарю английского языка, слово "tesseract" было придумано в 1888 Чарльзом Говардом Хинтоном (Charles Howard Hinton) и использовано в его книге "Новая эра мысли" ("A New Era of Thought"). Слово было образовано от греческого "τεσσερες ακτινες" ("четыре луча"), имеется в виде четыре оси координат. Кроме этого, в некоторых источниках, эту же фигуру называли тетракубом (tetracube).

n -мерный гиперкуб также называется n-кубом .

Точка - это гиперкуб размерности 0. Если сдвинуть точку на единицу длины, получится отрезок единичной длины - гиперкуб размерности 1. Далее, если сдвинуть отрезок на единицу длины в направлении перпендикулярном направлению отрезка получится куб - гиперкуб размерности 2. Сдвигая квадрат на единицу длины в направлении перпендикулярном плоскости квадрата, получается куб - гиперкуб размерности 3. Этот процесс может быть обобщен на любое количество измерений. Например, если сдвинуть куб на единицу длины в четвертом измерении, получится тессеракт.

Семейство гиперкубов является одним из немногих правильных многогранников, которые могут быть представлены в любом измерении.

Элементы гиперкуба

Гиперкуб размерности n имеет 2n "сторон" (одномерная линия имеет 2 точки; двухмерный квадрат - 4 стороны; трехмерный куб - 6 граней; четырехмерный тессеракт - 8 ячеек). Количество вершин (точек) гиперкуба равно 2 n (например, для куба - 2 3 вершин).

Количество m -мерных гиперкубов на границе n -куба равно

Например, на границе гиперкуба находятся 8 кубов, 24 квадрата, 32 ребра и 16 вершин.

Элементы гиперкубов
n-куб Название Вершина
(0-грань)
Ребро
(1-грань)
Грань
(2-грань)
Ячейка
(3-грань)
(4-грань) (5-грань) (6-грань) (7-грань) (8-грань)
0-куб Точка 1
1-куб Отрезок 2 1
2-куб Квадрат 4 4 1
3-куб Куб 8 12 6 1
4-куб Тессеракт 16 32 24 8 1
5-куб Пентеракт 32 80 80 40 10 1
6-куб Хексеракт 64 192 240 160 60 12 1
7-куб Хептеракт 128 448 672 560 280 84 14 1
8-куб Октеракт 256 1024 1792 1792 1120 448 112 16 1
9-куб Эненеракт 512 2304 4608 5376 4032 2016 672 144 18

Проекция на плоскость

Формирование гиперкуба может быть представлено следующим способом:

  • Две точки A и B могут быть соединены, образуя отрезок AB.
  • Два параллельных отрезка AB и CD могут быть соединены, образуя квадрат ABCD.
  • Два параллельных квадрата ABCD и EFGH могут быть соединены, образуя куб ABCDEFGH.
  • Два параллельных куба ABCDEFGH и IJKLMNOP могут быть соединены, образуя гиперкуб ABCDEFGHIJKLMNOP.

Последнюю структуру нелегко представить, но возможно изобразить ее проекцию на двухмерное или трехмерное пространство. Более того, проекции на двухмерную плоскость могут быть более полезны возможностью перестановки позиций спроецированных вершин. В этом случае можно получить изображения, которые больше не отражают пространственные отношения элементов внутри тессеракта, но иллюстрируют структуру соединений вершин, как на примерах ниже.

На первой иллюстрации показано, как в принципе образуется тессеракт путем соединения двух кубов. Эта схема похожа на схему создания куба из двух квадратов. На второй схеме показано, что все ребра тессеракта имеют одинаковую длину. Эта схема также заставляют искать соединенные друг с другом кубы. На третьей схеме вершины тессеракта расположены в соответствии с расстояниями вдоль граней относительно нижней точки. Эта схема интересна тем, что она используется как базовая схема для сетевой топологии соединения процессоров при организации параллельных вычислений: расстояние между любыми двумя узлами не превышает 4 длин ребер, и существует много различных путей для уравновешивания нагрузки.

Гиперкуб в искусстве

Гиперкуб появился в научно-фантастической литературе с 1940 года, когда Роберт Хайнлайн в рассказе "Дом, который построил Тил" ("And He Built a Crooked House") описал дом, построенный по форме развертки тессеракта. В рассказе этот Далее этот дом сворачивается, превращаясь в четырехмерный тессеракт. После этого гиперкуб появляется во многих книгах и новеллах.

В фильме "Куб 2: Гиперкуб" рассказывается о восьми людях, запертых в сети гиперкубов.

На картине Сальвадора Дали "Распятие" ("Crucifixion (Corpus Hypercubus)", 1954) изображен Иисус распятый на развертке тессеракта. Эту картину можно увидеть в Музее Искусств (Metropolitan Museum of Art) в Нью-Йорке.

Заключение

Гиперкуб - одна из простейших четырехмерных объектов, на примере которого можно увидеть всю сложность и необычность четвертого измерения. И то, что выглядит невозможным в трех измерениях, возможно в четырех, например, невозможные фигур. Так, например, бруски невозможного треугольника в четырех измерениях будут соединены под прямыми углами. И эта фигура будет выглядеть так со всех точек обзора, и не будет искажаться в отличие от реализаций невозможного треугольника в трехмерном пространстве (см.




Top