Какой смысл названия комедии горе от ума. Смысл названия комедии «Горе от ума»

1. Биосфера – комплексная оболочка Земли, охватывающая всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, заселенная живыми организмами и преобразованная ими. Биосфера – глобальная экосистема с взаимосвязями, круговоротом веществ и превращением энергии.2. Отсутствие благоприятных условий для жизни организмов:1) в верхних слоях атмосферы – губительное действие космического излучения, ультрафиолетовых лучей; 2) в глубинах океана – недостаток света, пищи, кислорода, высокое давление; 3) в глубоких слоях литосферы – высокая плотность горных пород, высокая температура земных недр, недостаток света, пищи, кислорода. Отсутствие благоприятных условий – причина скудности жизни, незначительной биомассы.3.

Факторы, определяющие границы биосферы, – неблагоприятные условия для жизни организмов. Значение озонового слоя в атмосфере – защита от проникновения губительных для живого коротких ультрафиолетовых лучей. Граница соприкосновения разных сфер – зона с наиболее благоприятными условиями жизни, причина значительного скопления здесь живых организмов.

Земли и химию живого, их взаимосвязи. Вернадский о ведущей роли живого вещества в преобразовании биосферы, о ноосфере. Необходимость изучения роли и места живых организмов в целом на планете для познания присущих биосфере закономерностей.2. Живое вещество, или биомасса, – совокупность всех живых организмов на Земле, способность живого вещества к воспроизводству и распространению на планете – причины всюдности жизни, ее плотности и давления, борьбы организмов за пищу, воду, территорию, воздух.3. Постоянное взаимодействие живого вещества с окружающей средой в процессе обмена веществ: поглощение организмом различных элементов (кислорода, водорода, азота, углерода, фосфора и др.), их накопление, а затем вы деление

(частично при жизни и после смерти). 4. Устойчивость биосферы.

Биологический круговорот – основа целостности и устойчивости биосферы.

Энергия Солнца – основа биологического круговорота. Космическая роль растений – использование энергии Солнца на создание органических веществ из неорганических, распространение органических веществ и энергии по цепям питания.5. Биогеохимические функции живого вещества: 1) газовая – в процессе фотосинтеза растения выделяют кислород, в процессе дыхания все организмы выделяют углекислый газ, клубеньковые бактерии используют атмосферный азот; 2) концентрационная – организмы поглощают различные химические элементы, накапливают их (иод – водоросли, железо, сера – бактерии); 3) окислительно-восстановительная – происходит окисление и восстановление ряда веществ с участием организмов (образование бокситов, руды, известняков); 4) биохимическая – ее проявление в результате питания, дыхания, разрушения и гниения отмерших организмов.6. Влияние деятельности человека на круговорот веществ (химической промышленности, транспорта, сельского хозяйства и др.). Отсутствие в биосфере механизмов, способных восстановить равновесие, нарушаемое деятельностью человека. Проблемы: озоновые дыры и возможные последствия; производство большого количества энергии, загрязнение атмосферы и возможное потепление климата; увеличение численности населения и проблемы питания.7. Сохранение равновесия в биосфере – проблема всего человечества, необходимость ее решения.

Проведение мониторинга, рациональное природопользование, сокращение норм потребления и др.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: дать понятие о круговороте веществ, взаимосвязи веществ в биосфере, соответствие единым законам природы.

Задачи урока:

  1. Расширить знания о круговороте веществ.
  2. Показать перемещение веществ в биосфере.
  3. Показать роль круговорота веществ в биосфере.

Оборудование: таблицы “Границы биосферы и плотность жизни в ней”, схема круговорота веществ, ПК, проектор, презентация.

План урока.

I. Постановка проблемного вопроса.

II. Проверка знаний.

III. Новый материал.

3.1. Проблемный вопрос.

3.2. Определение биосферы по В.И. Вернадскому.

3.3. Характеристика биосферы.

3.4. Слайд 4. Роль живых организмов в биосфере.

3.5. Круговорот веществ в экосистеме.

IV. Слайд 8. Работа со схемой участвуют в круговороте.

V.Слайд 9. Работа со схемой круговорот воды.

VI. Слайд 10. Работа со схемой круговорот кислорода.

VII. Слайд 12. Работа со схемой круговорот углерода.

VIII. Слайд 13. Круговорот азота.

IX. Слайд 14. Круговорот серы.

Х.Слайд15. Круговорот фосфора.

XI. Запись вывода по теме урока.

Ход урока

I. Организационный момент. Настрой класса на работу.

II. Проверка знаний.

Выполнение теста по вариантам. Тесты распечатаны.

Вариант 1

1. Наиболее постоянным фактором, влияющим на атмосферу, является:

а) давление б) прозрачность в) газовый состав г) еемпература

2. К функциям биосферы, обусловленным процессами фотосинтеза, можно отнести:

а) газовую б) окислительно-восстановительную в) концентрационную

г) все перечисленные функции д) газовую и окислительно-восстановительную

3. Весь кислород атмосферы образован благодаря деятельности:

а) цианобактерий сине-зелёных водорослей б) гетеротрофных организмов в) колониальных простейших в) автотрофных организмов

4. В преобразовании биосферы главную роль играют:

а) живые организмы б) биоритмы

в) круговорот минеральных веществ в) процессы саморегуляции.

Вариант 2

1. Жизнь можно обнаружить:

а) любой точке биосферы

б) Любой точке Земли

в) любой точке биосферы

г) любой точке биосферы, кроме Антарктиды и Арктики

д) в биосфере происходит только геологическая эволюция

2. Приток энергии в биосферу извне необходим потому, что:

а) углеводы, образовавшиеся в растении, служат источником энергии для других организмов

б) в организмах происходят окислительные процессы

в) организмы разрушают остатки биомассы

г) ни один вид организмов не создаёт запасов энергии

3. Выберите основные факторы среды, от которых зависит процветание организмов в океане:

а) доступность воды б) количество осадков

в) прозрачность среды г) рH среды

д) солёность воды е) скорость испарения воды

ж) концентрация углекислого газа

4. Биосфера – глобальная экосистема, структурными компонентами которой являются:

а) классы и отделы растений б) популяции

в) биогеоценозы г) классы и типы.

III. Новый материал.

3.1. Проблемный вопрос

Вспомните из химии закон сохранения веществ. Как этот закон может быть связан с биосферой?

3.2. Определение биосферы

Биосфера, по В.И. Вернадскому, – это общепланетарная оболочка, та область Земли, где существует или существовала жизнь и которая подвергается или подвергалась ее воздействию. Биосфера охватывает всю поверхность суши, моря и океаны, а также ту часть недр Земли, где находятся породы, созданные деятельностью живых организмов.

В. И. Вернадский
(1863-1945)

Выдающийся русский ученый
Академик, основоположник науки геохимии
Создал учение о биосфере Земли.

3.3. Характеристика биосферы

Биосфера охватывает всю поверхность суши, моря и океаны, а также ту часть недр Земли, где находятся породы, созданные деятельностью живых организмов. В атмосфере верхние границы жизни определяются озоновым экраном – тонким слоем газа озона на высоте 16–20 км. Он задерживает губительные ультрафиолетовые лучи солнца. Океан насыщен жизнью целиком, до дна самых глубоких впадин в 10–11 км. В глубину твердой части Земли активная жизнь проникает местами до 3 км (бактерии в нефтяных месторождениях). Результаты жизнедеятельности организмов в виде осадочных пород прослеживаются еще глубже.

Размножение, рост, обмен веществ и активность живых организмов за миллиарды лет полностью преобразовали эту часть нашей планеты.

Всю массу организмов всех видов В.И. Вернадский назвал живым веществом Земли.

В химический состав живого вещества входят те же самые атомы, которые составляют неживую природу, но в ином соотношении. В ходе обмена веществ живые существа постоянно перераспределяют химические элементы в природе. Таким образом, меняется химизм биосферы.

В.И. Вернадский писал, что на земной поверхности нет химической силы более постоянно действующей, а потому и более могущественной по своим последствиям, чем живые организмы, взятые в целом. За миллиарды лет фотосинтезирующие организмы (рис. 1) связали и превратили в химическую работу огромное количество солнечной энергии. Часть ее запасов в ходе геологической истории накопилась в виде залежей угля и других ископаемых органических веществ – нефти, торфа и др.

Рис. 1. Первые растения суши (400 млн. лет назад)

Слайд 4.

3.4. Роль живых организмов в биосфере

Живые организмы создают в биосфере круговороты важнейших биогенных элементов , которые попеременно переходят из живого вещества в неорганическую материю. Эти циклы делят на две основные группы: круговороты газов и осадочные круговороты. В первом случае главный поставщик элементов – атмосфера (углерод, кислород, азот), во втором – горные осадочные породы (фосфор, сера и др.).

Благодаря живым существам возникли многие горные породы на Земле. Организмы обладают способностью избирательно поглощать и накапливать в себе отдельные элементы в гораздо большем количестве, чем они есть в окружающей среде.

Совершая гигантский биологический круговорот веществ в биосфере, жизнь поддерживает стабильные условия для своего существования и существования в ней человека.

Живые организмы играют большую роль в разрушении и выветривании горных пород на суше. Они – главные разрушители мертвого органического вещества.

В. В. Докучаев
(1846 - 1903)
Основоположник современного почвоведения,
основанного на идее глубокой взаимосвязи живой и неживой природы

Таким образом, за период своего существования жизнь преобразовала атмосферу Земли, состав вод океана, создала озоновый экран, почвы, многие горные породы. Изменились условия выветривания пород, большую роль стал играть микроклимат, создаваемый растительностью, изменился и климат Земли.

3.5. Круговорот веществ в экосистеме

IV. Работа со схемой участвуют в круговороте

В каждой экосистеме происходит круговорот вещества как результат экофизиологической взаимосвязи автотрофов и гетеротрофов.

Углерод, водород, азот, сера, фосфор и ещё около 30 простых веществ, необходимых для создания жизни клетки, непрерывно превращаются в органические вещества (глициды, липиды, аминокислоты…) или поглощаются в виде неорганических ионов автотрофными организмами, впоследствии используются гетеротрофными, а затем – микроорганизмами-деструкторами. Последние разлагают выделения, животные и растительные остатки на растворимые минеральные элементы или газообразные соединения, которые возвращаются в почву, воду и атмосферу.

V. Работа со схемой круговорот воды

Рис. 6. Круговорот воды в биосфере

VI. Работа со схемой круговорот кислорода

Слайд 10

Цикл кислорода.

Цикл кислорода занимает на Земле около 2000 лет, воды – около 2 млн лет (рис. 6). Это значит, что атомы этих веществ за историю Земли многократно проходили через живое вещество, побывав в телах древних бактерий, водорослей, древовидных папоротников, динозавров и мамонтов.

Биосфера прошла длительный период развития, в течение которого жизнь меняла формы, распространилась из воды на сушу, изменила систему круговоротов. Содержание кислорода в атмосфере постепенно росло (см. рис. 2).

За последние 600 млн лет скорости и характер круговоротов приблизились к современным. Биосфера функционирует как гигантская слаженная экосистема, где организмы не только приспосабливаются к среде, но и сами создают и поддерживают на Земле условия, благоприятные для жизни

VII. Работа со схемой круговорот углерода

Вопросы учащимся:

1. Вспомните, какую роль в природе играет фотосинтез?

2. Какие условия необходимы для фотосинтеза?

Круговорот углерода (рис. 4). Источником его для фотосинтеза служит углекислый газ (диоксид углерода), находящийся в атмосфере или растворенный в воде. Углерод, связанный в горных породах, вовлекается в круговорот значительно медленнее. В составе синтезированных растением органических веществ углерод поступает, затем в цепи питания через живые или мертвые ткани растений и возвращается в атмосферу снова в форме углекислого газа в результате дыхания, брожения или сгорания топлива (древесины, нефти, угля и т.п.). Продолжительность цикла углерода равна трем-четырем столетиям.

Рис. 4. Круговорот углерода в биосфере

VIII. Работа со схемой Круговорот азота.

Вспомните, какую роль играют в накоплении азота?

Круговорот азота (рис. 5). Растения получают азот в основном из разлагающегося мертвого органического вещества посредством деятельности бактерий, которые превращают азот белков в усваиваемую растениями форму. Другой источник – свободный азот атмосферы – растениям непосредственно недоступен. Но его связывают, т.е. переводят в другие химические формы, некоторые группы бактерий и сине-зеленые водоросли, они обогащают им почву. Многие растения находятся в симбиозе с азотфиксирующими бактериями, образующими клубеньки на их корнях. Из отмерших растений или трупов животных часть азота, за счет деятельности других групп бактерий, превращается в свободную форму и вновь поступает в атмосферу.

Рис. 5. Круговорот азота в биосфере

IX. Круговорот серы

Слайд 14

Круговорот фосфора и серы. (рис. 6, 7). Фосфор и сера содержатся в горных породах. При их разрушении и эрозии они поступают в почву, оттуда используются растениями. Деятельность организмов - редуцентов снова возвращает их в почву. Часть соединений азота и фосфора смывается дождями в реки, а оттуда – в моря и океаны и используется водорослями. Но, в конце концов, в составе мертвого органического вещества они оседают на дно и снова включаются в состав горных пород.

X. Круговорот фосфора

За последние 600 млн лет скорости и характер круговоротов приблизились к современным. Биосфера функционирует как гигантская слаженная экосистема, где организмы не только приспосабливаются к среде, но и сами создают и поддерживают на Земле условия, благоприятные для жизни.

XI. Запись вывода в тетради

1. Биосфера – энергетически открытая система

2. Накопление веществ в биосфере идёт за счёт растений, способных преобразовывать энергию солнечного света.

3. Круговорот веществ - необходимое условие существования жизни на Земле.

4. В процессе эволюции в биосфере установилось равновесие между организмами.

Вопросы для повторения:

1. Какие организмы биосферы участвуют в круговороте веществ?

2. От чего зависит количество биомассы в биосфере?

3. Какова роль фотосинтеза в круговороте веществ?

4. Какова роль круговорота углерода в биосфере?

5. Какие организмы принимают участие в круговороте азота?

Домашнее задание: выучить параграф 76, 77.

Опережающее изучение: подобрать материал об основных экологических проблемах современности.

  1. Г.И. Лернер Общая биология: подготовка к ЕГЭ. Контрольные и самостоятельные работы – М.: Эксмо, 2007. – 240 с.
  2. Е.А. Резчиков Экология: Учебное пособие. 2-е изд. испр. и доп. – М.: МГИУ, 2000 – 96 с.
  3. Библиотека интернета: http://allbest.ru/nauch.htm
  4. Сайт Экологии: http://www.anriintern.com/ecology/spisok.htm
  5. Электронный журнал "Экология и жизнь".: http://www.ecolife.ru/index.shtml

Под охраной природы принято понимать систему мер, на­правленных на поддержание рационального взаимодействия между деятельностью человека и окружающей природной сре­ды. Эта система мер должна обеспечивать сохранение и восста­новление природных богатств, рациональное использование природных ресурсов, а также предупреждать прямое и косвен­ное вредное влияние промышленного производства на природу и здоровье человека. Одновременно ставится задача обеспечить сохранение равновесия между развитием производства и устой­чивостью окружающей природной среды в интересах человече­ства. Для этого необходимо комплексное изучение процессов, происходящих в окружающей природе, и организация всех ви­дов производств с учетом выявленных закономерностей. Науч­ной Основой для исследований природных объектов и комплекс­ного подхода при организации современного производства явля­ется учение о биосфере Земли.

Термин «биосфера» ввел в 1875 г. австрийский геолог Э. Зюсс; основоположник современного учения о биосфере - русский ученый В. И. Вернадский. В представлении В. И. Вер­надского биосфера охватывает то пространство, в котором жи­вое вещество действует как геологическая сила, формирующая облик Земли;

В современном представлении биосфера-это Сложная ди­намическая большая система, состоящая из многих компонен­тов живой и неживой природы, целостность которой поддержи­вается в результате постоянно действующего биологического круговорота веществ.

В основе учения В, И. Вернадского лежат представления О Планетарной геохимической роли живого вещества в образо­вании биосферы, как продукта длительного превращения веще­ства и энергии в ходе геологического развития Земли. Живое Вещество - это совокупность живых организмов, существо­вавших или существующих в определенный отрезок времени И являющихся мощным геологическим фактором. В отличие от живых существ, изучаемых биологией, живое вещество как биогеохимический фактор характеризуется элементарным соста­вом, массой и энергией. Оно аккумулирует и трансформирует солнечную энергию и вовлекает неорганическую материю в не­прерывный круговорот. Через живое вещество многократно про­шли атомы почти всех химических элементов. В конечном итоге Живое вещество определило состав атмосферы, гидросферы, почв и в значительной степени осадочных пород нашей планеты.

В.И. Вернадский указывал, что живое вещество аккумулирует энергию космоса, трансформирует ее в энергию земных процессов (химическую, механическую, тепловую, электрическую и пр.) и в непрерывном обмене веществ с косной материей пла­неты обеспечивает образование живого вещества, которое не только замещает отмирающие его массы, но и привносит новые качества, определяя тем самым процесс эволюции органическо­го мира.

В представлений В. И. Вернадского биосфера включает в се­бя четыре основных компонента:

живое вещество - совокупность всех живых организмов;

биогенное вещество, т. е. продукты, образовавшиеся в ре­зультате жизнедеятельности различных организмов (каменный уголь, битумы, торф, лесная подстилка, почвенный гумус и ip.);

биокосное вещество - преобразованное организмами неорганическое вещество (например, приземная атмосфера, некоторые осадочные породы и т.д.);

косное вещество - горные породы в основном магматическо­го, неорганического происхождения, слагающие земную кору.

Любые виды растений, животных и микроорганизмов, взаимодействуя с окружающей средой, обеспечивают свое существо­вание не как сумма особей, а как единое функциональное целое, представляющее собой популяцию (популяции сосны, кома­ра и т.д.).

По С.С.Шварцу, популяция - это элементарная группи­ровка организмов определенного вида, обладающая всеми не­обходимыми условиями для поддержания своей численности необозримо длительное время и в постоянно изменяющихся условиях среды. Иначе говоря, популяция - это форма сущест­вования вида, та надорганизменная система, которая делает вид потенциально (но не реально) бессмертным. Это свидетель­ствует о том, что приспособительные возможности популяции гораздо выше, чем у слагающих ее отдельных организмов.

Популяция как элементарная экологическая единица обла­дает определенной структурой, которая характеризуется состав­ляющими ее особями и их распределением в пространстве. Популяциям свойственны рост, развитие, и способность поддер­живать существование в постоянно меняющихся условиях.

В природе популяции растений, животных и микроорганиз­мов составляют системы более высокого ранга - сообщества живых организмов, или, как их принято называть, биоценозы. Биоценоз - это организованная группа популяций растений, животных и микроорганизмов, живущих во взаимодействии в одних и тех же условиях среды. Понятие «биоценоз» было предложено в 1877 г. немецким зоологом К- Мебиусом, который установил, что все члены одного сообщества живых организмов находятся в тесной и постоянной взаимосвязи. Биоценоз являет­ся продуктом естественного отбора, когда его устойчивое существование во времени и пространстве зависит от характера взаимодействия популяций и возможно лишь при обязатель­ном поступлении лучистой энергии Солнца и наличии постоян­ного круговорота веществ.

Иногда для упрощения изучения биоценоза его условно раз­деляют на отдельные компоненты: фитоценоз - раститель­ность, зооценоз - животный мир, микробоценоз - мик­роорганизмы. Такое деление приводит к искусственному выделе­нию отдельных группировок живых организмов, которые само­стоятельно существовать не могут. Не может быть устойчивой система, которая состояла бы только из растений или только из животных. Сообщества и их компоненты необходимо рассмат­ривать как биологическое единство разных типов живых орга­низмов.

Биоценоз не может развиваться сам по себе, вне и незави­симо от среды неорганического мира. В результате в природе складываются определенные относительно устойчивые комп­лексы, совокупности живых и неживых компонентов. Простран­ство с однородными условиями, заселенное сообществом организ­мов (биоценозом), называется биотопом, т.е. биотоп - это место существования, место обитания биоценоза. Поэтому био­ценоз можно рассматривать как исторически сложившийся ком­плекс организмов, характерный для данного конкретного био­топа.

Биоценоз образует с биотопом диалектическое единство, био­логическую макросистему еще более высокого ранга - биогео­ценоз. Термин «биогеоценоз», обозначающий совокупность биоценоза и его местообитания, предложил в 1940 г. В. Н. Су­качев. Термин практически тождествен термину «экосистема», который принадлежит А. Тенсли.

Экологическая система - это система, состоящая из живых и неживых элементов среды, между которыми имеет место обмен веществом, энергией и информацией. Экологиче­ские системы разных рангов могут включать ограниченное или очень большое число компонентов и занимать малые или очень большие площади и объемы; экологическая система Европы, экологическая система страны, экологическая система области, района, зоны действия предприятия и т.д.

Под биогеоценозом понимается элемент биосферы, где на известном протяжении биоценоз (сообщество живых организ­мов) и отвечающий ему биотоп (части атмосферы, литосферы и гидросферы) остаются однородными и тесно связанными между собой в единый комплекс. То есть, под биогеоцено­зом понимается естественный природный комплекс, через который не проходит ни одна существенная биоценотическая, геоморфологическая, гидрологическая, микроклиматическая, ночвенно-геохимическая или какая-либо другая граница. Это однородный по топографическим, микроклиматическим, гидро логическим и биотическим условиям участок биосферы. Поня­тие «экологическая система» не несет в себе этого ограничения и может объединять разные природные комплексы (лес, луг, реку и т.д.). Сам биогеоценоз является элементарной экологи­ческой системой.

Элементарная структурная единица биосферы - биогеоце­ноз- состоит из двух взаимосвязанных составляющих (рис. 3.1):

абиотической (биотоп), включающей абиотические элементы внешней среды, находящиеся во взаимосвязи с живы­ми организмами;

биотической (биоценоз), сообщество живых организ­мов, обитающих в пределах выделенного биотопа (выделенной экологической системы).

Абиотическая составляющая включает в себя компоненты: литосфера, гидросфера и атмосфера.

В литосфере выделяются участок массива горных пород, зем­ной поверхности, которые являются местом обитания живых организмов и входят в состав выделенного биоценоза. Важной характеристикой биотопа является участок земной поверхно­сти с особой структурой и вещественным составом почв (педосферы) в пределах выделенного участка.

К гидросфере относятся поверхностные и подземные воды, находящиеся в пределах биотопа и прямо или косвенно обеспе­чивающие жизнедеятельность живых организмов, а также вода, выпадающая на территории выделенного района в виде осад­ков.

К атмосфере (газовой составляющей) относятся: атмосфер­ный воздух; газы, растворенные в поверхностных и подземныхводах; газовая составляющая почв, а также газы, выделяю­щиеся из горного массива, которые прямо или косвенно влияют на жизнедеятельность живых организмов.

Биотическая составляющая природной среды (биоценоз) включает в себя три компонента: фитоценоз-продуценты (про­изводители) первичной продукции, аккумулирующие энергию Солнца; эоценоз- консументы, производители вторичной про­дукции, использующие для своей жизнедеятельности энергию, заключенную в органическом веществе фитоценоза; микробоце-ноз-редуценты (диструкторы), организмы, живущие за счет энергии мертвого органического вещества и обеспечивающие его разрушение (минерализацию) с получением исходных ми­неральных элементов в виде, удобном для использования расте­ниями для воспроизводства первичной органической продукции.

Все компоненты природной среды (биогеоценоза), его био­тическая и абиотическая составляющие находятся в постоян­ной взаимосвязи и обеспечивают эволюционное развитие друг друга. Состав и свойства литосферы, гидросферы и атмосферы в значительной степени определяют живые организмы. При этом сами живые организмы, обеспечивая жизнедеятельность друг друга, зависят от изменений условий внешней среды. Внешняя среда обеспечивает их энергией и необходимыми пи­тательными веществами.

Таким образом, в целом биосфера заключает в себя следующие уровни жизни: популяцию, биоценоз, биогеоце­ноз. Каждый из этих уровней обладает относительной незави­симостью, что и обеспечивает возможность эволюции макроси­стемы в целом, где эволюционирующей единицей является популяция. При этом элементарной структурной единицей био­сферы служит биогеоценоз, т. е. сообщество организмов в сово­купности с неорганической средой обитания (см. рис. 3.1).

В современных условиях деятельность человека преобразует природные богатства (леса, степи, озера). На смену им прихо­дит посев и посадки культурных растений. Так формируются новые экологические системы - агробиогеоценозы или агроценозы. Агроценозами являются не только сель­скохозяйственные поля, но и полезащитные лесные посадки, па­стбища, лесопосадки, пруды и водохранилища, каналы и осу­шенные болота. В большинстве случаев агробиоценозы по своей структуре характеризуются незначительным количеством видов живых организмов, но высокой их численностью. Хотя в струк­туре и энергетике естественных и искусственных биоценозов есть много специфических черт, принципиальных различий меж­ду ними не существует.

Значительно сложнее дело обстоит с экологическими систе­мами, возникающими в зонах влияния промышленных пред­приятий, городов, плотин и других крупных инженерных соору­жений. Здесь в результате активного воздействия людей на окружающую среду формируются качественно новые экологиче­ские системы, функционирование которых обеспечивается в ре­зультате естественных природных процессов и постоянного воз­действия промышленного предприятия иа абиотическую (нежи" вую) и биотическую (живую) составляющие природы.

5. Биотический круговорот веществ в биосфере

Существование биосферы в целом и отдельных ее Частей обеспечивает круговорот веществ и превращение энергии:

Круговорот веществ в биосфере осуществляется в цервуЮ очередь на основании жизнедеятельности большого разнбобра* зия организмов. Каждый организм извлекает из окружающей среды необходимые для своей жизнедеятельности вещества и возвращает неиспользованные. Причем некоторые виды жи« вых организмов потребляют нужные им вещества Непосредст* венно из окружающей среды, другие используют продукты, пе* реработанные и выделенные первыми, третьи - вторыми и так до тех пор, пока вещество вновь не возвращается в природную1 среду в первоначальном состоянии. Отсюда и возникает необхо* димость сосуществования различных организмов (видовое многообразие), способных использовать продукты жизне* деятельности друг друга, т. е. действует практически безотход; ное производство биологической продукции.

Общее число живых организмов и скорость их развития в биоценозе зависят от количества энергии, поступающей в эко­логическую систему, скорости ее передачи Через отдельные элементы системы и от интенсивности циркулйцИй Минеральный веществ. Особенностью этих процессов является то, что пита­тельные вещества (углерод, азот, вода, фосфор и т. Д>) Цирку­лируют между биотопом и биоценозом постоянно, т, е. используй ются бесчисленное-число раз, а энергия, поступающая в эКОло* гическую систему в виде потока солнечной радиации, расходует^ ся Полностью. Согласно закону сохранения И Превращения, энергий, поступающая в экологическую систему, мОЖет перехо* дить из одной формы в другую. Второй фундаментальный прин> цип - любое действие, связанное с преобразованием энергии, не может происходить без ее потери в виде рассеянного в" прост­ранстве Тепла. То есть часть поступающей в экологическою систему энергии терйетсй и не может совершать работу.

Любая экологическая система В Процессе СёОей эволюции стремится к своему равновесному состоянию, когда все ее фн= эические параметры принимают пОСтойНйое значение, & коэффи­циент полезного Действий достигает максимального значении»

Жизнедеятельность любого организма обесйечййаетсй в ре= зультате многосторонних биотических отношений, в которые он вступает с другими организмами. Все организмы Могут быть классифицированы по способу питания и тому трофическо­му уровню, на котором они находятся в общей цепи пита­ния. По способу питания выделяют две группы: автотрофные и гетеротрофные.

Автотрофные обладают способностью создавать органи­ческие вещества из неорганических, используя энергию Солнца или энергию, освобождающуюся при химических реакциях.

Гетеротрофные организмы используют в качестве пищи органическое вещество. При этом в качестве пищи могут ис­пользоваться живые растения или их плоды, мертвые остатки растений и животных. При этом каждый организм в природе в том или ином виде служит источником питания для ряда дру­гих организмов.

В результате последовательного перехода органического ве­щества с одного трофического уровня на другой происходят круговорот вещества и передача энергии в природе (рис. 3.2). При этом органические вещества, переходя с одного трофиче­ского уровня на другой, частично исключаются из круговорота. В результате на Земле происходит накопление органических соединений в виде залежей полезных ископаемых (ТОрф, уголь, нефть, газ, горючие сланцы и др.). Однако Существенно био масса на Земле не накапливается, а удерживается на каком-то определенном уровне, поскольку она постоянно разрушается и вновь создается из одного и того же строительного материа­ла, т.е. в ее пределах протекает беспрерывный круговорот ве­ществ. В табл. 3.1 приводятся данные о скорости воспроизвод­ства биомассы для некоторых природных экологических систем.

В процессе жизнедеятельности организмов в корне преобразо­валась и неживая часть биосферы. В атмосфере появился-сво­бодный кислород, а в ее верхних слоях - озоновый экран; угле­кислота, извлеченная организмами из воздуха и воды, законсер­вировалась в отложениях угля и карбоната кальция.

В результате геологических процессов происходят деформа­ции и разрушение верхней части литосферы. Ранее погребен­ные осадочные породы оказываются вновь на поверхности. В дальнейшем происходит их выветривание, в котором живые организмы также принимают активное участие.

Выделяя углекислоту, органические и минеральные кислоты, они способствуют разрушению горных пород и тем самым уча­ствуют в обеспечении процесса миграции химических элемен­тов.

Общее количество солнечной энергии, ежегодно получаемой Землей, составляет примерно 2-1024 Дж. В процессе фотосинте­за в год образуется около 100 млрд. т органических веществ и аккумулируется 1,9-1021 Дж энергии Солнца. Для процессов фотосинтеза ежегодно вовлекается из атмосферы 170 млрд.т углекислого газа, разлагается фотохимическим путем около 130 млрд. т воды и выделяется в окружающую среду 115 млрд.т кислорода. Кроме этого, в круговорот веществ вовлекается 2 млрд. т азота, кремния, аммония, железа, кальция и многих других веществ. Всего в биологическом круговороте участвуют более 60 элементов.

Фаза синтеза органического вещества сменяется на после­дующем этапе биологического круговорота фазой его разруше­ния с одновременным рассеиванием в пространстве потенциаль­ной химической энергии (в виде тепловой энергии) В результа­те осуществляется переход органического вещества в газовую, жидкую и твердую формы (минеральные и другие соединения). В процессе этих трех фаз происходит возобновление биологиче­ского круговорота, который поддерживается солнечной энергией и в который вовлекаются практически одни и те же массы ве­ществ и химических элементов.

В процессе геологического круговорота веществ осуществля­ется перенос минеральных соединений с одного места в другое в масштабах всей планеты, а также происходит перенос и изме­нение агрегатного состояния воды (жидкая, твердая - снег, лед; газообразная - лары). Наиболее интенсивно вода циркулирует В парообразном состоянии.

Круговорот воды в биосфере основан на том, что суммарное испарение компенсируется выпадением осадков. При этом из океана испаряется воды больше, чем возвращается с осадками. На суше, наоборот, больше выпадает осадков, но излишек стекает в озера И реки, а оттуда снова в океан.

С появлением живого вещества на основе круговорота воды и растворенных в ней минеральных соединений, т.е. на базе абиотического, геологического возник круговорот органического вещества, или малый биологический круговорот.

В биологическом круговороте наиболее важен процесс транспирации. При поглощении почвенной влаги корнями растения с водой в него поступают растворенные в воде мине­ральные и органические вещества. Процесс транспирации важен также и для регулирования температуры растения, предохра­няя его от перегрева. Благодаря потерям тепла, которые проис­ходят при испарении воды, температура растения понижается. Одновременно этот процесс регулируется самим растением - в жаркую погоду устьица, расположенные на листьях, раскры­ваются шире и этим способствуют усилению испарения и пони­жению температуры, а при более низкой температуре устьица прикрываются, интенсивность испарения уменьшается. Таким образом, транспирации одновременно является и физиологиче­ским и физическим процессом, так как от обычного испарения с неживого вещества она отличается возможностями регулиро­вания самим растением.

Транспирационную способность растения часто оценивают по коэффициенту транспирации, характеризующему объем воды, который необходимо затратить для образования единицы массы сухого вещества растения. Например, для обра­зования 1 т наземной растительной массы пшеницы, т.е. зерна и соломы, расходуется 300-500 м3 воды Расход воды на травепирацию зависит от большого числа факторов: от характера самого растения, условий погоды, на­личия влаги в почве. В сухую жаркую погоду растение нужда­ется в расходовании большого количества воды на транспира-цию.

Корни растений всасывают почвенную влагу с разных глу­бин. Корневая система пшеницы распространяется на глубину до 2,0-2,5 м, корни дуба иногда проникают на глубину до 20 м. Благодаря этому растения способны использовать влагу, зале­гающую на больших глубинах, и меньше зависят от колебаний увлажненности поверхностного слоя почвы.

Испарение с почвы нельзя рассматривать изолированно от транспирации Так, например, под пологом леса с поверхности почвы испаряется мало воды, независимо от ее наличия. Это происходит потому, что солнечная радиация слабо проникает через кроны деревьев. Кроме того, под пологом леса скорость движения воздуха замедляется, и он больше насыщен влагой. В этих условиях основная часть влаги испаряется за счет транспирации.

В круговороте воды наиболее важны те фазы, которые про­исходят в пределах отдельных бассейнов рек и озер. Раститель­ность выполняет важную экранирующую функцию, задерживая часть выпадающей в осадках воды. Этот перехват, который, естественно, бывает максимальным при слабых дождях, может в умеренных широтах достигать до 25% общей суммы осадков.

Часть воды задерживается в почве,-причем тем сильнее, чем значительнее почвенный коллоидальный комплекс (гумус и глина). Та часть воды, которая проникает в почву на глубину 20-30 см, может вновь подняться на ее поверхность по капиллярам и испариться. Таким образом, переход воды с поверхности в атмосферу осуществляется в результате физи­ческого испарения и процесса транспирации. При этом количество воды, транспирируемой рас гениями, увеличивается с улучшением их водоснабжения. Так, одна береза испаряет за день 0,075 м3 воды; бук -0,1 м\ липа - 0,2, а I га леса - 20- 50 м3. 1 га березняка, масса листвы которого составляет 4940 кг, испаряет 47 м-" воды в день, а I га ельника, масса хвои которого 31 тыс. кг. транспирирует 43 м:< воды в день. 1 га пше­ницы за период развития использует 375 мм осадков, а проду­цирует 12,5 т (сухая масса) растительного вещества.

Биологический круговорот в противоположность геологиче­скому требует меньших затрат энергии. На создание органиче­ского вещества затрачивается всего 0,!-0,2% падающей на Землю солнечной энергии (на геологический круговорот - до 50%)- Несмотря на это. энергия, вовлеченная в биологический круговорот, производит огромную работу по созданию на плане­те первичной продукции.

Циркуляцию веществ принято называть биогеохимичес-кими циклами. Основные биогеохимические циклы - кру­говорот кислорода, углерода, воды, азота, фосфора и ряда дру­гих элементов.

В целом каждый круговорот любого химического элемента является частью общего грандиозного круговорота веществ на Земле, т. е. все они тесно связаны между собой различными формами взаимодействия. Основными звеньями биогеохимиче­ских циклов выступают живые организмы, которые и обуслов­ливают интенсивность всех круговоротов и вовлечение в них практически всех элементов земной коры.

Практически весь молекулярный кислород земной атмосфе­ры возник и поддерживается на известном уровне благодаря деятельности зеленых растений. В большом количестве он рас­ходуется организмами в процессе дыхания. Но, кроме того, об­ладая высокой химической активностью, кислород непременно вступает в соединения почти со всеми элементами земной коры. Подсчитано, что весь кислород, содержащийся в атмосфере, проходит через живые организмы (связываясь при дыхании и высвобождаясь при фотосинтезе) за 200 лет, углекислота со­вершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 млн. лет.

Круговорот и миграцию веществ в биохимических циклах можно рассмотреть на примере круговорота углерода (рис. 3.3). На суше он начинается с фиксации углекислого газа растения ми в процессе фотосинтеза. Диоксид углерода, содержащийся в атмосфере, поглощается растениями и в результате фотосин­теза образуются углеводороды и выделяется кислород

В свою очередь, углеводы являются исходным материалом для формирования растений.

Фиксированный в растении углерод в значительной мере по­требляется животными. Животные при дыхании также выделя­ют углекислый газ. Отжившие растения и животные разлагаются микроорганизмами, в результате чего углерод мертвого органи­ческого вещества окисляется до углекислого газа и снова попа­дает в атмосферу. Подобный круговорот углерода совершается и в океане.

Часть углекислого газа из атмосферы поступает в океан, где он находится в растворенном виде. То есть океан обеспечивает поддержание углекислого газа в атмосфере в определенных пределах. В свою очередь, содержание углерода в океане на определенном уровне обеспечивается за счет накопленных запа­сов карбоната кальция в донных осадках. Наличие этого посто­янно действующего природного процесса в определенной сте­пени регулирует содержание углекислого газа в атмосфере и в водах океана.

Круговорот азота, как и другие биогеохимические цик­лы, охватывает все области биосферы (рис. 3.4). Азот, которого очень много в атмосфере, усваивается растениями лишь после соединения его с водородом или кислородом. В современных ус­ловиях в круговорот азота вмешался человек. Он выращивает на обширных площадях азотофиксирующие бобовые растения или искусственно связывает природный азот. Считается, что сельское хозяйство и промышленность дают почти на 60% боль­ше фиксированного азота, чем его образуется в естественных условиях.

Круговорот фосфора, который является одним из ос­новных элементов, необходимых живым организмам, относи­тельно прост. Основные источники фосфора - изверженные (апатиты) и осадочные (фосфориты) породы. Неорганический фосфор вовлекается в круговорот в результате естественных процессов выщелачивания. Фосфор усваивается живыми орга­низмами, которые при его участии синтезируют ряд органиче­ских соединений и передают его на разные трофические уровни. Закончив свой путь по трофическим цепям, органические фос­фаты разлагаются микробами и превращаются в минеральные ортофосфаты, доступные для зеленых растений. В водоемы фосфаты попадают в результате стока рек, что способствует развитию фитопланктона и живых организмов, расположенных на разных уровнях трофической цепи пресно­водных или морских водоемов. Возвращение минеральных фос­фатов в воду также осуществляется в результате деятельности микроорганизмов. Следует, однако, отметить, что фосфаты, от­ложившиеся на больших глубинах, выключаются из круговоро­та, что необходимо учитывать при составлении баланса данного биогеохимического цикла. Таким образом, происходит только частичное возвращение фосфора, попавшего в океан, обратно на сушу. Этот процесс происходит в результате жизнедеятельности птиц, питающихся рыбой.

Частично фосфор поступает на континент в результате выло­ва рыбы, который ведет человек. Однако количество фосфора, ежегодно поступающего с рыбной продукцией,значительно ни­же его выноса в гидросферу, которое достигает многих миллио­нов гонн в год. Кроме того, человек, внося фосфатные удобре­ния па поля, значительно ускоряет процесс выноса фосфора в водотоки и океан. При этом водоемам наносится экологи­ческий ущерб, так как нарушаются естественные процессы жиз­недеятельности организмов, обитающих в воде.

Поскольку запасы фосфора весьма ограничены, то бесконт­рольное его расходование может привести к ряду отрицатель­ных последствий. Он является основным лимитирующим (рак-тором для автотрофных организмов как водной, так и наземной сред, главным регулятором ряда других биогеохимических кру­говоротов. Так, например, содержание нитратов в воде или кислорода в атмосфере в значительной степени зависит от ин­тенсивности круговорота фосфора в биосфере.

6. Природные экологические системы

Структура и динамика популяций. Изучение структуры и ди­намики популяций имеет большое практическое значение.

Не зная закономерностей жизнедеятельности популяции. Нельзя обеспечить разработку научно обоснованных экологических, ин­женерных и организационных мероприятий по рациональному использованию и охране природных ресурсов.

Популяционный подход к изучению жизнедеятельности орга­низмов основан на их способности регулировать свою числен* ность и плотность при воздействии разнообразных абиотических и биотических факторов внешней среды.

Основные параметры популяции - ее численность и плотность. Численность популяции-это общее количество особей на данной территории или в данном объеме. Она никогда не бывает постоянной и, как правило, зависит от соотношения интенсивности размножения и смертности.

Плотность популяции определяется количеством осо­бей или биомассой на единицу площади или объема. Напри» мер, 106 растений березы на 1 га. или 1.5 окуня в I м3 воды характеризуют плотность популяций этих видов. При возраста нии численности плотность Не увеличивается лишь в том слу­чае, если возможно расселение популяции на большую пло­щадь или в большем объеме.

Размеры ареала распространения, численность И плотность популяций непостоянны и могут изменяться в значительных пределах. Нередко эти изменения связаны с деятельностью че­ловека. Но основными причинами такой динамики являются изменения условий существования, наличия кормов (т.е. энерге­тических ресурсов) и других причин.

Установлено, что численность популяций может кОлебаТьСй Небеспредельно. Удержание численности популяции в опреде­ленных пределах обеспечивается ее способностью к саморегу­лированию. Любая популяция всегда имеет нижние И верхние пределы плотности, за границы которых Она выходить не мбжет (рис. 3.5). При благоприятном сочетании факторов плотность популяции удерживается на каком-то оптимальном уровне, Не­значительно отклоняясь от него. Такие колебания плотности Обычно носят правильный, регулярный характер и Четко ОТра жают реакцию Популяции на конкретные изменения условий среды. В природе могут иметь место сезонные колебания ^ие* ленности, особенно у мелких животных (мышевидные грызуны. Насекомые, некоторые птицы). Так, численность мышевидны* грызунов в течение одного сезона иногда увеличивается в 300- Б00 раз, а некоторых насекомых в 1300--1500 раЗ.

Падение плотности ниже оптимальной обусловливает ухуд­шение защитных свойств популяции, уменьшение ее Плодови­тости и ряд Других отрицательных явлений. Популяций С мИ> нимальной численностью особей длительно существовать не могут, Известны случаи вымирания животных с низкой числен­ностью даже в заповедниках с весьма благоприятными условия ми жизни. Повышение плотности сверх оптимальной также не­благоприятно сказывается на популяции, поскольку при этом уничтожается кормовая база и сокращается жизненное прост­ранство.

Популяции регулируют свою численность и приспособлива-ются к изменяющимся условиям среды путем обновления осо­бей. Особи появляются в популяции благодаря рождению и иммиграции, а исчезают в результате смерти и эмиграции. При сбалансированной интенсивности рождаемости и смертно­сти формируется стабильная популяция. В такой популяции смертность компенсируется приростом, т.е. численность популя­ции к ее ареал удерживается на определенном уровне.

Однако равновесия популяций в природе не существует. Каждая популяция наделена как статическими, так и динами­ческими свойствами, поэтому плотность их постоянно колеблет­ся. Но при стабильных внешних условиях колебания эти проис­ходят около какой-то средней величины. В результате популя­ции не сокращаются и не увеличиваются, не расширяют и не сужают своего ареала.

Саморегулирование плотности популяции осуществляется действующими в Природе двумя взаимно урав­новешивающимися силами. Это, с одной стороны, свойственная организмам способность к размножению, с другой -- зависящие от плотности популяции процессы, ограничивающие воспроиз­водство. Авторегуляция плотности популяции - необходимое приспособление для поддерживания жизни в постоянно меняю­щихся условиях.

Популяция - это наименьшая эволюционирующая едини­ца. Она существует не изолированно, а в связи с популяциями других видов. Поэтому в природе одновременно широко распро странены и внепопуляционные механизмы автоматической регу­ляции, точнее межпопуляционные. При этом популяция являет­ся регулируемым объектом, а в качестве регулятора выступает природная система, слагающаяся из множества популяций раз­ных видов. Эта система в целом и входящие в ее состав попу­ляции других видов влияют на данную, конкретную популяцию, а каждая в отдельности со своей стороны воздействует на всю систему, в состав которой она входит.

Функционирование и структура биогеоценозов. В биоценозах между различными видами живых организмов возникают опре­деленные связи. Основной формой этих связей служат пищевые взаимоотношения, на базе которых формируются сложные цепи и циклы питания и пространственные связи. Именно иа пище­вых и пространственных отношениях (трофических и топических) строятся разнообразные биотические ком­плексы, объединяющие виды живых организмов в единое целое, т.е. в биологическую макросистему - биогеоценоз.

Естественные биогеоценозы обычно представляют собой мно­говидовые сообщества. И чем разнообразнее по видовому соста­ву биоценоз, тем у него больше возможностей для более пол­ного и экономичного освоения материальных и энергетических ресурсов.

Все звенья цепи питания взаимосвязаны и зависимы друг от друга. Между ними, от первого к последнему звену, осуще­ствляется передача вещества и энергии (рис. 3.6,а). При пере­даче энергии с одного трофического уровня на другой происхо­дит ее потеря. Вследствие этого цепь питания не может быть длинной. Чаще всего она состоит из 4-6 звеньев на суше и 5-8 в океане. В любой цепи питания не вся пища используется на рост особи, т.е. на накопление биомассы. Часть ее расходуется на удовлетворение энергетических затрат организма: на дыхание, движение, размножение, поддержание температуры тела и др. При этом биомасса одного звена не может быть перерабо­тана последующим звеном полностью. В каждом последующем звене пищевой цепи происходит уменьшение биомассы по срав­нению с предыдущим. Это касается не только биомассы, но и численности особей и потока энергии.

Это явление было изучено Ч. Элтоном и названо пирамидой чисел, или пирамидой Элтона (рис. 3.6.6). Основание пирами­ды образуют растения - продуценты, Над ними располагаются фитофаги. Следующее звено представлено консументами второго порядка. И так далее до вершины пирамиды, которую состав­ляют наиболее крупные хищники. Число этажей пирамиды обыч­но соответствует числу звеньев пищевой цепи.

Экологические пирамиды выражают трофическую структуру экологической системы в геометрической форме. Они могут быть построены из отдельных прямоугольников одинаковой высоты, длина которых в определенном масштабе отражает значение измеряемого Параметра. Таким образом можно по­строить пирамиды чисел, биомассы и энергии.

Источником энергии для биологического круговорота ве­ществ является солнечная радиация, аккумулируемая зелеными растениями - автотрофами. Из всей достигающей Земли сол­нечной радиации только около 0,1-0,2% энергии улавливается Зелеными растениями и обеспечивает весь биологический круго­ворот веществ в биосфере. При этом более половины энергии, связанной с фотосинтезом, расходуется самими растениями, а остальная аккумулируется в теле растения и в дальнейшем Служит источником энергии для всего многообразия организмов последующих трофических уровней.

Смысл названия комедии «Горе от ума»

Я не случайно выбрал эту тему. Проблема, которую она затрагивает, интересует меня не только как читателя, но и как человека, живущего интересами своего времени и своего поколения. В наше время счастье тоже не всегда выпадает на долю людей умных, мыслящих, а зачастую “везет дуракам”. Замечательный философ Гельвеции писал: “Здравым смыслом почти все называют согласие с тем, что признается глупцами, а человек, который ищет лишь истину и поэтому обычно отклоняется от принятых истин, считается дураком”. В комедии происходит столкновение ума как нравственно-философской категории, ума прагматичного, бытового. Это утверждение можно раскрыть на примере противоборства Чацкого и фамусовского общества, и эту же мысль хорошо проиллюстрирует высказывание Софьи:

Конечно, нет в нем этого ума,

Что гений для иных, а для иных чума,

Который скор, блестящ и скоро опротивит,

Который свет ругает наповал,

Чтоб свет о нем хоть что-нибудь сказал,

Да этакий ли ум семейство осчастливит?

Вот в чем суть противопоставления: ум - “гений”, который “скор, блестящ”, ум критический, острый, пытливый, “который свет ругает наповал”, - ум “для себя”, ум эгоистичный, способный “семейство осчастливить”. Софья приняла мораль фамусовского общества, согласно которой ценен, почетен второй тип ума: ум Молчалива, Фамусова, Кузьмы Петровича и Максима Петровича, а не ум Чацкого и князя Федора. С точки зрения фамусовского мира критический, скорый, блестящий гений - “чума”. Ум “для семейства” приносит высокие дивиденды: его обладатель умеет “и награжденья брать, и весело пожить”. Удобный, выгодный ум. И по служебной лестнице вверх за чинами - пожалуйста, и выгодные знакомства завести. А что гений? “Ум, алчущий познаний”, стремящийся к вечному совершенствованию и горько страдающий от несовершенства мира, ищущий новые пути и не находящий их, подобно Чацкому, с его высоким умом, стремящимся к высоким нравственным идеалам. Все фамусовское общество, обладающее “умом житейским, бытовым”, стремится к своим идеалам: Максиму Петровичу и Кузьме Петровичу. Фамусов стремится к их стилю жизни, а следовательно, иметь и достаточно высокий чин, и деньги, и материальные блага. Вот что дает “ум житейский”, а что ум “гения”? Горе от такого ума, он странен и страшен обществу. Приехавший после долгой отлучки главный герой Александр Андреевич Чацкий не может понять, почему так изменилась Софья, с которой он рос, которую полюбил и к которой так стремился. Он не видит, что Софья полюбила другого. Такая “слепота” может быть неправильно истолкована, между тем Чацкий не слеп и не глуп. Он “не только умнее всех прочих лиц, но и положительно умен. Речь его кипит умом, остроумием. У него есть и сердце, и притом он безукоризненно честен... Только личное его горе произошло не от одного ума, а более от других причин, где ум играл страдательную роль...” Судьба такого человека, как Чацкий, не может быть не трагичной в фамусовском мире. Общество отвергает такого гения, ощущая его чуждым. Софья не случайно пускает слух о “безумстве Чацкого”: человек, обладающий умом “гения”, опасен в обществе. Чацкого ославили безумцем. Но много ли в этом клеветы с точки зрения фамусовского общества? По каким законам оно живет? По законам “Табели о рангах”, “Максима Петровича и Кузьмы Петровича”, по законам “Фамусова и Марьи Алексевны”, жизнь фамусовского общества - это жизнь, в которой все происходит по законам, установленным раз и навсегда еще дедами и прадедами:

Спросили бы, как делали отцы,

Учились бы, на старших глядя.

Вот основная заповедь существования высшего света. Это общество, где морально то, что выгодно. Вот идеалы “московских всех мужей”. Идеалы их грубо материальные, прагматические - все для себя, все ради себя: “сто человек к услугам, весь в орденах, век при дворе”. Не человек важен, а степень его нужности, способности услужить. Вот почему с легкостью был принят в фамусовское общество Молчалин - “тверской парень”. Тот самый Молчалин, который уразумел все правила фамусовского круга и не стал “врагом исканий”. Он не стал затуманивать себе голову “науками и искусствами творческими, высокими и прекрасными”. По этой же причине картежник, вор, доносчик Загорецкий хоть и обруган, но везде принят: ведь “мастер услужить”. Здесь царят отношения не между людьми, а между чинами и титулами. Свет просто не может считать Чацкого здравомыслящим человеком, ведь это значило бы, что его убеждения разумны и вполне нормальны. Чацкий для московского общества - либо преступник, либо сумасшедший. И самому свету много удобнее видеть в нем безумца: ведь тогда все обличения Чацкого - лишь плод больного воображения. “Умный человек, - замечал Гельвеции, - часто слывет сумасшедшим у того, кто его слушает, ибо тот, кто слушает, имеет перед собой альтернативу считать или себя глупцом, или умного человека сумасшедшим, гораздо проще решиться на последнее”. В комедии используется прием “кривого зеркала”: тем, кто смотрит не прямо на собеседника, а на его отражение в кривом зеркале, друг друга не понять. Чацкий-сумасшедший обществу не страшен - вот что главное, вот почему клевета Софьи попала в цель, ей так быстро, так искренне и легко поверил свет. Два мира столкнулись. Чацкий противостоит целой толпе врагов. Конечно, где-то есть подобные ему, он и говорит от имени “молодых людей”, да и противники Чацкого вспоминают то о двоюродном брате Скалозуба, который “набрался каких-то новых правил”, то о племяннике Тугоуховской, который “чинов не хочет знать”. Но в настоящий момент он одинок, ранен холодностью любимой девушки. И с того момента звуконепроницаемая стена встает между Чацким и окружающими.

Образованность Чацкого, его высокий интеллект задевают другие персонажи комедии. Эти люди считают себя далеко не глупыми, принимая хитрость и ловкость за подлинный ум.

Скалозуб, например, с его убогим умом знает “многие каналы”, чтобы добыть чины. “Об них (о чинах) как истинный философ я сужу”, - с гордостью заявляет он. Фамусов, хотя и “черпает свои суждения из забытых газет”, все же дал дочери образование, брал учителей, чтобы не прослыть недалеким ретроградом. Но делал он все это для того, чтобы удачно выдать Софью замуж, хотя на словах он уже готов признать ум за реальную ценность. Наталья Дмитриевна Горич радуется удачному замужеству, ее муж подходит ей “по нраву, по уму”, но хитрее и ловчее всех тихий и кроткий Молчалин, который выработал для себя целую систему взглядов на жизнь. У него своя философия, но мысли его мелки, ум меркантилен.

Человек, обладающий глубоким умом, как правило, бесхитростный, прямодушный. Чацкому немного хитрости не повредило бы. Но в наших глазах он бы при этом проигрывал. Нам импонирует Чацкий с его дерзким умом, его веселостью и остротами.

Таким образом, в самом названии комедии Грибоедова “Горе от ума” заложена многозначительность толкования. Драматург ставит перед современниками и будущим поколением загадку. Многие умные люди “ломали голову” над смыслом названия пьесы. В самом деле, разве возможно горе от ума? Чем больше ума, тем лучше. Тем счастливее должен быть носитель ума и общество, в котором он живет. В нашем случае герой испытывает горечь разочарования и “мильон терзаний”, а общество радуется скорому отъезду Чацкого из Москвы. Чацкому горе от его ума потому, что общество его не поняло, не признало и сочло опасным его ум, порождающий новые идеи, неприемлемые светом, как ненужные, неудобные, непрактичные и даже опасные для данного общества. Большому уму нужно большое понимание и признание. И тогда будет счастье от ума и спокойствие, а не страдания или, словами Гончарова, терзания. Чацкий несчастлив, потому что не понят.

Смысл названия комедии «Горе от ума». В моей комедии двадцать пять глупцов на одного здравомыслящего человека, и этот человек, разумеется, в противоречии с обществом, его окружающим. А. С. Грибоедов

Есть в русской литературе великие произведения уже в названиях которых заключен их основной идейный смысл. Смысл названия комедии «Горе от ума»,«Мертвые души» Н. В. Гоголя, «Доходное место», «Гроза» А. Н. Островского, «Накануне» и «Отцы и дети» И. С. Тургенева, «Война и мир», «Воскресение» Л. Н. Толстого. Достойное место в этом ряду занимает комедия А. С. Грибоедова «Горе о ума».

Создав образ Чацкого, передового человека своего времени, писатель показал, что ум - могучая сила в борьбе против старых порядков, деспотизма, рабской психологии. Ум Чацкого - причина его непримиримого конфликта с фамусовским обществом, обществом глупцов, как он справедливо полагал. Эта проблема уже в грибоедовское время была очень актуальна, и понятия «умный», «умник» часто употреблялись как синонимы понятий «вольнодумный», «независимый». Именно в таком смысле употребляли эти слова декабристы и близкие к ним люди.

Грибоедов в своей комедии поднял голос в защиту разума, просвещения, культуры, национальной и социальной независимости: против «века минувшего» с его отжившими взглядами и рабской психологией. Ум Чацкого - это передовые убеждения человека, враждебного косному и отсталому фамусовскому обществу, «житья прошедшего подлейшие черты» которого ненавистны тем, кто воплощает «век нынешний». Именно потому, что Чацкий живет «с веком наравне», у него нет и не может быть ничего общего с Фамусовыми, молчалиными, скалозубами; его конфликт с ними и такими, как они (а у Грибоедова все герои - «знакомые незнакомцы»), неизбежен.

В комедии Чацкий одинок, но «за сценой» присутствуют его единомышленники, такие же «умники», которых не только опасаются, но и боятся Фамусов и его гости. Это и двоюродный брат Скалозуба, набравшийся «каких-то новых правил», несмотря на то, что «чин следовал ему», «он службу вдруг оставил, в деревне книги стал читать». Это и ученый племянник княгини Тугоуховской, который тоже «чинов не хочет знать», и профессора Педагогического института: они упражняются «в расколах и безверье». От имени этих молодых людей, детей 1812 года, и выступает Чацкий. Поэтому мы» в его монологе не случайно: «теперь пускай из нас один, из молодых людей, найдется враг исканий…»

Ум Чацкого следует понимать и буквально, ведь стремление к просвещению - характерная черта передовой молодежи (вспомним, как Софья упрекает его: «Зачем ума искать и ездить так далеко?»), и как враждебные дворянской Москве передовые взгляды. «Мы были дети 1812 года»,- сказал декабрист М. И. Му-равьев-Апостол. И мы, читатели, за одинокой в комедии фигурой Чацкого угадываем всю молодую Россию грибоедовского времени, Россию будущих декабристов и их единомышленников.

В столкновении Чацкого с фамусовским миром, как солнечный луч в капле воды, отразилась та борьба между старым и новым, которая наиболее полно характеризует эпоху. Мысль о невозможности согласия, примирения двух противоборствующих лагерей блестяще подчеркнута названием комедии.




Top