Сообщение на тему роберт льюис стивенсон. Писатель Роберт Стивенсон: биография, произведения

Рангом элемента выборки называется порядковый номер этого элемента в вариационном ряду или, другими словами, число элементов выборки меньших или равных

Следовательно, выборочному значению соответствует порядковая статистика вариационного ряда.

Ранговым вектором выборки называется перестановка чисел 1, 2, которая получается при замене элементов выборки их рангами. Ранговой статистикой называется произвольная функция от рангового вектора. Ранговый алгоритм предписывает сравнение некоторой ранговой статистики с порогом.

Исходную выборку можно восстановить, если известен вектор порядковых статистик и ранговый вектор R. Отдельно любой из этих двух векторов представляет необратимое нелинейное преобразование исходной выборки. Для однородной независимой выборки случайные векторы и R независимы.

Ранг элемента выборки размером при помощи функции единичного скачка или знаковой функции можно представить следующим образом:

(13.168 а)

Из (13.168 a и б) следует, что ранги являются знаковыми статистиками от разностей выборочных значений.

Для однородной независимой выборки функция правдоподобия инвариантна к группе перестановок аргументов. Отсюда следует, что для указанной выборки все ранговые векторы равновероятны, каково бы ни было распределение, которому принадлежит выборка. Общее число возможных ранговых векторов, соответствующих выборке размером , равно числу перестановок чисел, т. е. Следовательно, выборочное пространство ранговых векторов состоит из дискретных точек -мерного эвклидового пространства. Вероятность попадания рангового вектора R наблюдаемой выборки в любую точку этого дискретного множества равна , т. е. для любого распределения однородной независимой выборки

Таким образом, ранговый алгоритм - непараметрический по отношению гипотезе Н о том, что выборка из произвольного распределения однородная и независимая. Для альтернативы К о том, что независимая выборка неоднородная, ранги перестают быть равновероятными. Для определения функции распределения рангового вектора при альтернативе К необходимо вычислить интеграл

где область включает те точки выборочного пространства, которым при упорядочивании соответствует заданный вектор

Этот интеграл

(13.170)

Практическое использование формулы (13.170), за исключением специальных случаев, сопряжено с трудно выполнимыми вычислениями. Из-за сложности распределения (13.170) синтез оптимального по критерию Неймана - Пирсона рангового алгоритма проверки гипотез при конечном размере выборки практически нереализуем. Это также одна из причин того, что указанный синтез осуществляют на эвристической основе (см. п. 13.7.4).

Отметим, что ранговый вектор однородной независимой выборки инвариантен к безынерционному преобразованию выборки

так как такое преобразование не изменяет относительного расположения элементов выборки . Из (13.171) следует, что ранговый алгоритм сохраняет непараметрическое свойство и после указанного нелинейного преобразования.

Коэффициенты корреляции рангов – это менее точные, но более простые по расчету непараметрические показатели для измерения тесноты связи между двумя коррелируемыми признаками. К ним относятся коэффициенты Спирмэна (ρ) и Кендэла (τ), основанные на корреляции не самих значений коррелируемых признаков, а их рангов – порядковых номеров, присваиваемых каждому индивидуальному значению х и у (отдельно) в ранжированном ряду. Оба признака необходимо ранжировать (нумеровать) в одном и том же порядке: от меньших значений к большим и наоборот. Если встречается несколько значений х (или у ), то каждому из них присваивается ранг, равный частному от деления суммы рангов (мест в ряду), приходящихся на эти значения, на число равных значений. Ранги признаков х и у обозначают символами Rx и Ry (иногда Nx и Ny ). Суждение о связи между изменениями значений х и у основано на сравнении поведения рангов по двум признакам параллельно. Если у каждой пары х и у ранги совпадают, это характеризует максимально тесную связь. Если же наблюдается полная противоположность рангов, т.е. в одном ряду ранги возрастают от 1 до n , а в другом – убывают от n до 1, это максимально возможная обратная связь. Подходы для оценки тесноты связи у Спирмэна и Кендэла несколько различаются. Для расчета коэффициента Спирмэна значения признаков х и у нумеруют (отдельно) в порядке возрастания от 1 до n , т.е. им присваивают определенный ранг (Rx и Ry ) – порядковый номер в ранжированном ряду. Затем для каждой пары рангов находят их разность (обозначается как d = Rx Ry ), и квадраты этой разности суммируют.

где d – разность рангов х и у ;

n – число наблюдаемых пар значений х и у .

Коэффициент ρ может принимать значения от 0 до ±1. Следует иметь в виду, что, поскольку коэффициент Спирмэна учитывает разность только рангов, а не самих значений х и у, он менее точен по сравнению с линейным коэффициентом. Поэто-му его крайние значения (1 или 0) нельзя безоговорочно расцени-вать как свидетельство функциональной связи или полного от-сутствия зависимости между х и у. Во всех других случаях, т.е. когда ρ не принимает крайних зна-чений, он довольно близок к r.

Формула (147) применима строго теоретически только тогда, когда отдельные значения х у), а следовательно, и их ранги не повторяются. Для случая повторяющихся (связанных) рангов есть другая, более сложная формула, скорректированная на число по-вторяющихся рангов. Однако опыт показывает, что результаты расчетов по скорректированной формуле для связанных рангов мало отличаются от результатов, полученных по формуле для не-повторяющихся рангов. Поэтому на практике формула (147) ус-пешно применяется как для неповторяющихся, так и для повто-ряющихся рангов.

Коэффициент корреляции рангов Кендэла τ строится несколь-ко по-другому, хотя его расчет также начинается с ранжирования значений признаков х и у. Ранги х (Rx ) располагают строго в порядке возрастания и па-раллельно записывают соответствующее каждому Rx значение Ry . Поскольку Rx записаны строго по возрастанию, то ставится задача определить меру соответствия последовательности Ry «пра-вильному» следованию Rx. При этом для каждого Ry последо-вательно определяют число следующих за ним рангов, превыша-ющих его значение, и число рангов, меньших по значению. Первые («правильное» следование) учитываются как баллы со знаком «+», и их сумма обозначается буквой Р. Вторые («непра-вильное» следование) учитываются как баллы со знаком «–», и их сумма обозначается буквой Q. Очевидно, что максимальное значение Р достигается в том слу-чае, если ранги y (Ry) совпадают с рангами х (Rx) и в каждом ряду представляют ряд натуральных чисел от 1 до п. Тогда после первой пары значений Rx = 1 и Ry = 1 число превышения данных значений рангов составит (n – 1), после второй пары, где Rx = 2 и Ry = 2, соответственно (п – 2) и т.д. Таким образом, если ранги х и у совпадают и число пар рангов равно n , то

Если же последовательность рангов х и у имеет обратную тенденцию по отношению к последовательности рангов х , то Q будет такое же максимальное значение по модулю:

.

Если же ранги у не совпадают с рангами х , то суммируются все положительные и отрицательные баллы (S=P+Q ); отношение этой суммы S к максимальному значению одного из слагаемых и представляет собой коэффициент корреляции рангов Кендэла τ, т.е.:

. (148)

Формула коэффициента корреляции рангов Кендэла (148) применяется для случаев, когда отдельные значения признака (как х, так и у) не повторяются и, следовательно, их ранги не объе-динены. Если же встречается несколько одинаковых значений х (или у), т.е. ранги повторяются, становятся связанными , коэффици-ент корреляции рангов Кендэла определяется по формуле:

, (149)

где S – фактическая общая сумма баллов при оценке +1 каж-дой пары рангов с одинаковым порядком изменения и –1 каждой пары рангов с обратным порядком изме-нения;

– число баллов, корректирующих (уменьшающих) максимальную сумму баллов за счет повторений (объединений) t рангов в каждом ряду.

Отметим, что случаи следования одинаковых повторяющихся рангов (в любом ряду) оцениваются баллом 0, т.е. они не учиты-ваются при расчете ни со знаком «+», ни со знаком «–».

Преимущества ранговых коэффициентов корреля-ции Спирмэна и Кендэла: они легко вычисляются, с их помощью можно изучать и измерять связь не только между количественны-ми, но и между качественными (описательными) признаками, ранжированными определенным образом. Кроме того, при ис-пользовании ранговых коэффициентов корреляции не требуется знать форму связи изучаемых явлений.

Если число ранжируемых признаков (факторов) больше двух, то для измерения тесноты связи между ними можно использовать предложенный М. Кендэлом и Б. Смитом коэффициент конкордации (множественный коэффициент ранговой корреляции):

, (150)

где S - сумма квадратов отклонений суммы т рангов от их средней величины;

т - число ранжируемых признаков;

п - число ранжируемых единиц (число наблюдений).

Формула (150) применяется для случая, кода ранги по каж-дому признаку не повторяются. Если же есть связанные ран-ги, то коэффициент конкордации рассчитывается с учетом числа таких повторяющихся (связанных) рангов по каждому фактору:

, (151)

где t – число одинаковых рангов по каждому признаку.

Коэффициент конкордации W может принимать значения от 0 до 1. Однако, необходимо проверить его на существенность (значимость) с помощью критерия χ2 при отсутствии связанных рангов по формуле (152), а при их наличии – по формуле (153):

, (152) . (153)

Фактическое значение χ2 сравнивается с табличным, соответ-ствующим принятому уровню значимости α (0,05 или 0,01) и числу степеней свободы v = п – 1. Если χ2факт > χ2табл, то W – существенен (значим).

Коэффициент конкордации особенно часто используется в экспертных оценках, например, для того, чтобы определить сте-пень согласованности мнений экспертов о важности того или иного оцениваемого показателя или составить рейтинг отдельных единиц по какому-либо признаку. В формуле (150) в этих случаях т означает число экспертов, а n - число ранжируемых единиц (или признаков).

Использование порядковой шкалы позволяет присваивать ранги объектам по какому-либо признаку. Таким образом, метрические значения переводятся в ранговые. При этом фиксируются различия в степени выраженности свойств. В процессе ранжирования следует придерживаться 2 правил.

Правило порядка ранжирования. Надо решить, кто получает первый ранг: объект с самой большей степенью выраженности какого-либо качества или наоборот. Чаще всего это абсолютно безразлично и не отражается на конечном результате. Традиционно принято первый ранг приписывать объектам с большей степенью выраженности качества (большему значению – меньший ранг). Например, чемпиону присуждают первое место, а не наоборот. Хотя, и здесь если бы был принят обратный порядок, то результаты от этого не изменились бы. Так что порядок ранжирования каждый исследователь вправе определять сам. Например, Е. В. Сидоренко рекомендует меньшему значению приписывать меньший ранг. В некоторых случаях это удобнее, но непривычнее.

Например: имеется неупорядоченная выборка, данные которой необходимо проранжировать. {2, 7, 6, 8, 11, 15, 9}. После упорядочивания выборки ранжируем ее.

Метрические данные

Альтернативный вариант:

Метрические данные

Отдельно следует сказать следующее. Существует группа редко используемых непараметрических критериев (Т-критерий Вилкоксона, U-критерий Манна-Уитни,Q-критерий Розенбаума и др.), при работе с которыми всегда надо меньшему значению приписывать меньший ранг.

Правило связанных рангов. Объектам с одинаковой выраженностью свойств приписывается один и тот же ранг. Этот ранг представляет собой среднее значение тех рангов, которые они получили бы, если бы не были равны. Например, надо проранжировать выборку, содержащую ряд одинаковых метрических данных: {4, 5, 9, 2, 6, 5, 9, 7, 5, 12}. После упорядочивания выборки следует вычислить среднее арифметическое значение связанных рангов.

Метрические данные

Предварительное ранжирование

Окончательное ранжирование

Задания для самостоятельной работы.

    Проранжировать выборку по правилу «большему значению – меньший ранг»: {111, 104, 115, 107, 95, 104, 104}.

    Проранжировать выборку по правилу «меньшему значению – меньший ранг» {20, 25, 8, 7, 20, 14, 27}.

    Объединить две предыдущие выборки и провести ранжирование по правилу «большему значению – меньший ранг»

    Показатели каких признаков из Таблицы Iявляются номинативными, каких – метрическими?

    Перевести показатели осведомленности из Таблицы IПриложения в ранговую шкалу. Выделить уровни выраженности показателей посредством их перевода в номинативную шкалу.

      Таблица I Данные для обработки

учащиеся

профиль ВУЗа

осведомленность

скрытые фигуры

пропущенные

арифметика

понятливость

исключение

изображений

аналогии

числовые ряды

умозаключения

геометрическое сложение

заучивание слов

средний IQ

экстраверсия-

интроверсия

нейротизм

средняя отметка

Профиль ВУЗа: 0 - выбор учеником гуманитарного профиля;

1 - выбор учеником математического или естественно-научного профиля

Коэффициент тесноты связи между признаками, рассмотренный в предыдущем разделе, можно применять, если изучаемые признаки являются количественными. При этом используется вычисление основных параметров распределения (средних величин, дисперсий), т.е. параметрический метод.

В статистической практике изучения общественно-экономических явлений и процессов приходится сталкиваться с задачами измерения связи между качественными признаками, к которым параметрические методы анализа в их обычном виде неприменимы. В этом случае используют так называемые непараметрические методы.

В анализе социально-экономических явлений широко используются ранговые коэффициенты корреляции (коэффициенты корреляции рангов), когда коррелируют не непосредственные значения х и у, а их ранги, т.е. номера их мест, занимаемых в каждом ряду значений по возрастанию или убыванию. К таким непараметрическим коэффициентам относятся коэффициенты рангов Спирмена и Кендалла.

Если п вариантов ряда расположены в соответствии с возрастанием или убыванием признака х, то говорят, что объекты ранжированы по этому признаку. Ранг для х,- указывает место, которое занимает i-e значение признака среди других п значений признака х (/ = 1,2,___, п).

Например, при исследовании рынка можно задаться целью выяснения предпочтений потребителей при выборе товара (при покупке акций, мороженого, автомобиля и т.п.) таким образом, чтобы они распределили товар в порядке возрастания (или убывания) своих потребительских предпочтений. Если имеется два набора ранжированных данных, то можно установить степень линейной зависимости между ними.

Пример 6.7. Предположим, имеется 5 продуктов (табл. 6.7), которые ранжированы по порядку предпочтений от 1 до 5 в соответствии с двумя характеристиками Aw В.

Исходные ранжировки

Таблица 6 .7

Необходимо исследовать тесноту статистической связи между характеристиками.

Решение. Использование для определения интенсивности связи между признаками коэффициента Пирсона будет неверным, так как этот коэффициент применяется для признаков, измеряемых количественно. Так, например, при определении взаимосвязи между ростом и весом мы измеряем рост в сантиметрах, а вес в килограммах, при этом есть возможность точно определить на шкале измерений разность значений этих признаков для любого человека (иначе - расстояние между ними на шкале измерений). Возьмем признак, измеренный в ранговой шкале, - экзаменационная оценка. Значит ли, что у получившего двойку студента знаний в два раза меньше, чем у того, кто получил четверку? Или двое студентов, получивших тройки, имеют абсолютно одинаковый уровень знаний? Ответ - нет, преподаватель упорядочивает их уровень знаний в определенной последовательности, в соответствии с критериями оценки знаний по конкретному предмету, но расстояние между значениями признаков на такой шкале не является строго фиксированным.

Для определения наличия взаимосвязи между ранговыми оценками используется коэффициент ранговой корреляции Спирмена. Его расчет основан на различиях между рангами.

Обозначим разность рангов d = ранг А ~ ранг В.

Коэффициент Спирмена

где п - число пар ранжированных наблюдений.

В примере имеем пять пар рангов, следовательно, п- 5. Сумма ct равна

Тогда коэффициент Спирмена

Коэффициент Спирмена изменяется в интервале [-1; 1] и интерпретируется так же, как и коэффициент Пирсона. Отличие в том, что он вычисляется для ранжированных данных.

Значение 0,6 позволяет сделать вывод о заметной линейной связи между двумя характеристиками товаров.

Значимость коэффициента Спирмена проверяется на основе t критерия Стьюдента по формуле

Значение коэффициента считается существенным, если t paсч > > 6фит;а (и - 2) для заданного уровня значимости а.

Коэффициент корреляции рангов (при условии, что ранги не повторяются) может быть рассчитан и по формуле, предложенной английским статистиком М. Кендаллом:


где S - фактическая разность рангов; ~ п (п - l) - максимальная сумма рангов.

Этот коэффициент изменяется в интервале от [-1; 1] и интерпретируется так же, как и коэффициент Пирсона, но дает более строгую

оценку связи, чем коэффициент Спирмена, причем р = - т. Это соотношение выполняется при большом числе наблюдений (п > 30), и слабых либо умеренно тесных связях.

При расчете коэффициента Кендалла соблюдается следующая последовательность действий:

  • 1. Значения х ранжируются в порядке возрастания.
  • 2. Значения у располагаются в порядке, соответствующем значениям х.
  • 3. Для каждого ранга у определяется число следующих за ним значений рангов, превышающих его величину. Результат записывается в столбец «+».
  • 4. Для каждого ранга у определяется число следующих за ним меньших значений рангов. Результат записывается в столбец «-».
  • 5. Находится сумма в столбце «+» и обозначается Р, в столбце «-» и обозначается Q. Определяется S = P- Q.

Значимость коэффициента корреляции рангов Кендалла проверяется по формуле


где щ_ а/2 (п - 2) - квантиль, определяемый по таблице нормального распределения для выбранного уровня значимости а и заданного п.

Пример 6.8. Рассчитаем коэффициент Кендалла на основании данных примера 6.7.

Решение. Проведем необходимые расчеты в табл. 6.8.

Действительно, если полученное значение т умножить на 1,5, то получим 0,6 - значение коэффициента Спирмена, рассчитанное в примере 6.7.

Расчетная таблица

Рассмотрим корреляцию альтернативных признаков, т.е.признаков, принимающих только два возможных значения. Исследования их корреляции основано на показателях, построенных на четырехклеточных таблицах, в которые сводится число единиц для заданных значений признаков:

Решение. Для измерения тесноты взаимосвязи признаков производится расчет коэффициента контингенции по формуле

Коэффициент контингенции принимает значения на интервале [-1; 1 ]. Интерпретация аналогична коэффициенту корреляции. Мы получили слабую отрицательную связь.

Другой метод измерения связи основан на расчете коэффициента ассоциации:

„ л 30x5-20x15 л „

Получим: Q =-= -0,33

Знак «минус» перед коэффициентом указывает на то, что чем больше студентов было привито от гриппа, тем ниже заболеваемость.

Коэффициент контингенции всегда бывает меньше коэффициента ассоциации и дает более корректную оценку тесноты связи.

Для оценки тесноты связи между признаками, принимающими любое число вариантов значений (категориальные, номинальные признаки), применяется коэффициент взаимной сопряженности Пирсона. Основой изучения связи между категориальными признаками служит таблица сопряженности - двумерное распределение единиц совокупности по признакам. Вся информация о наличии или отсутствии связи содержится в совместных частотах сочетаний признаков.

Информация для оценки этой связи группируется в виде таблицы (например, для трех значений первого признака и двух - второго), табл. 6.10.

Таблица 6.10

Пример таблицы сопряженности

Признак

Итого

Ъгпц

ЪЪгпц

Обозначения: ту - частоты взаимного сочетания двух атрибутивных признаков; п = YLmy - число наблюдений.

Коэффициент взаимной сопряженности Пирсона определяется по формуле

где ср - показатель средней квадратической сопряженности:

Коэффициент взаимной сопряженности принимает значения в интервале и интерпретируется подобно коэффициенту парной линейной корреляции Пирсона.

Пример 6.10. Для изучения влияния условий труда на взаимоотношения в коллективе было проведено выборочное обследование 250 работников предприятия, ответы которых распределились, как представлено в табл. 6.11.

Таблица 6.11

Исходные данные об условиях труда и взаимоотношениях в коллективе

Требуется охарактеризовать связь между исследуемыми показателями с помощью коэффициента взаимной сопряженности Пирсона.

Решение.

Полученное значение коэффициента сопряженности свидетельствует, что связь между условиями труда и взаимоотношениями в коллективе умеренная.

События С

эксперт j = 1

экспертов a ij

эксперт j = 2

эксперт j = 1

важности а ij

эксперт j = 2

Суммарный ранг важности а i

Среднее значение для суммарных рангов рассматриваемого ряда

Суммарное квадратическое отклонение Sсуммарных событий от среднего значения а есть

называемое коэффициентом конкордации. Величина Wизменяется в пределах от 0 до 1. При W = 0 согласованности совершенно нет, т.е. связь между оценками различных экспертов отсутствует. Наоборот, при W = 1 согласованность мнений экспертов полная.

В том случае, если последовательность (5.2) кроме строгих нера­венств имеет равенства, т.е. существует совпадение рангов, то формула для вычисления коэффициента конкордации имеет вид

Когда ранги повторяются, то для получения нормальной ранжи­ровки, имеющей среднее значение ранга, равное

необходимо приписать событиям, имеющим одинаковые ранги, ранг, равный среднему значению мест, которые эти события поделили между собой.

Например, получена следующая ранжировка событий:

Ранги а i

События 2 и 5 поделили между собой второе и третье места. Зна­чит, им приписывается ранг

события 3, 4 и 6 поделили между собой четвертое, пятое, шестое места, и им приписывается ранг

Таким образом, получаем нормальную ранжировку:

Ранги а" i

Пример. Рассмотрим ранжированиеm= 10 событий р = 3 экспер­тами;N,Q,R. Результаты расчетов представлены в табл. 5.3.

Для крайних значений коэффициента конкордации могут быть вы­сказаны следующие предположения. Если W= 0, то согласованности в оценках нет, поэтому для получения достоверных оценок следует уточ­нить исходные данные о событиях и (либо) изменить состав группы экс­пертов. При W = 1 далеко не всегда можно считать полученные оценки объективными, поскольку иногда оказывается, что все члены экспертной группы заранее сговорились, защищая свои общие интересы.

Необходимо, чтобы найденное значение W было больше заданного значения W 3 (W >W 3). Можно принятьW 3 = 0,5, т.е. при W > 0.5 дейст­вия экспертов в большей степени согласованы, чем не согласованы. При W < 0,5 полученные оценки нельзя считать достоверными, и поэтому следует повторить опрос заново. Жесткость данного утверждения опреде­ляется важностью проводимого исследования и возможностью повторной экспертизы. Практика показывает, что очень часто этим требованием пренебрегают.

Расчет коэффициента W при учете компетентности экспертов при­водится в работе .




Top